2
|
Marcoux PÉ, Vincent AT, Massicotte MA, Paquet VE, Doucet ÉJ, Hosseini N, Trudel MV, Byatt G, Laurent M, Frenette M, Charette SJ. Systematic Analysis of the Stress-Induced Genomic Instability of Type Three Secretion System in Aeromonas salmonicida subsp. salmonicida. Microorganisms 2020; 9:microorganisms9010085. [PMID: 33396556 PMCID: PMC7823893 DOI: 10.3390/microorganisms9010085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The type three secretion system (TTSS) locus of Aeromonas salmonicida subsp. salmonicida, located on the plasmid pAsa5, is known to be lost when the bacterium is grown at temperatures of 25 °C. The loss of the locus is due to the recombination of the insertion sequences flanking the TTSS region. However, the mechanism involved in this recombination is still elusive. Here, we analyzed 22 A. salmonicida subsp. salmonicida strains that had already lost their TTSS locus, and we systematically explored another 47 strains for their susceptibility to lose the same locus when grown at 25 °C. It appeared that strains from Europe were more prone to lose their TTSS locus compared to Canadian strains. More specifically, it was not possible to induce TTSS loss in Canadian strains that have AsaGEI2a, a genomic island, and prophage 3, or in Canadian strains without a genomic island. A comparative genomic approach revealed an almost perfect correlation between the presence of a cluster of genes, not yet characterized, and the susceptibility of various groups of strains to lose their locus. This cluster of genes encodes putative proteins with DNA binding capacity and phage proteins. This discovery creates new opportunities in the study of pAsa5 thermosensitivity.
Collapse
Affiliation(s)
- Pierre-Étienne Marcoux
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Antony T. Vincent
- Département des Sciences Animales, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Marie-Ange Massicotte
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Valérie E. Paquet
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Émilie J. Doucet
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Nava Hosseini
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Mélanie V. Trudel
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Gabriel Byatt
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Mathilde Laurent
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Michel Frenette
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (M.-A.M.); (V.E.P.); (É.J.D.); (N.H.); (M.V.T.); (G.B.); (M.L.)
- Hôpital Laval, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada;
- Correspondence: ; Tel.: +418-656-2131 (ext. 406914)
| |
Collapse
|
5
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
6
|
Akashi M, Harada S, Moki S, Okouji Y, Takahashi K, Kada S, Yamagami K, Sekine Y, Watanabe S, Chibazakura T, Yoshikawa H. Transposition of insertion sequence IS256Bsu1 in Bacillus subtilis 168 is strictly dependent on recA. Genes Genet Syst 2017; 92:59-71. [PMID: 28344191 DOI: 10.1266/ggs.16-00071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We developed an insertion sequence transposition detection system called the "jumping cat assay" and applied it to the Bacillus subtilis chromosome using IS256Bsu1 derived from B. subtilis natto. The high frequency of transposition enabled us to explore host factors; combining the assay and genetic analyses revealed that recA is essential for the transposition of IS256Bsu1. Detailed analyses using various domain mutants of recA demonstrated that this essentiality is not related to the function of recA in homologous recombination. Instead, the ATP binding and hydrolysis function seemed to be crucial for IS transposition. To elucidate the role of recA, we focused on the muB gene of the enterobacteriophage Mu. Based on information from the NCBI Conserved Domain Database, both MuB and RecA belong to the P-loop dNTPase superfamily. Further experiments revealed that muB complements the transposition-defective phenotype of a recA deletant, although it could not rescue UV sensitivity. These results suggest that recA shares a common function with muB that helps the transposition of IS256Bsu1 in B. subtilis.
Collapse
Affiliation(s)
| | - Shota Harada
- Department of Bioscience, Tokyo University of Agriculture
| | - Syunsuke Moki
- Department of Bioscience, Tokyo University of Agriculture
| | - Yuki Okouji
- Department of Bioscience, Tokyo University of Agriculture
| | | | - Shigeki Kada
- Central Research Institute, Mitsukan Group Co., Ltd
| | | | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St Paul's) University
| | | | | | | |
Collapse
|
7
|
Vandecraen J, Monsieurs P, Mergeay M, Leys N, Aertsen A, Van Houdt R. Zinc-Induced Transposition of Insertion Sequence Elements Contributes to Increased Adaptability of Cupriavidus metallidurans. Front Microbiol 2016; 7:359. [PMID: 27047473 PMCID: PMC4803752 DOI: 10.3389/fmicb.2016.00359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Bacteria can respond to adverse environments by increasing their genomic variability and subsequently facilitating adaptive evolution. To demonstrate this, the contribution of Insertion Sequence (IS) elements to the genetic adaptation of Cupriavidus metallidurans AE126 to toxic zinc concentrations was determined. This derivative of type strain CH34, devoid of its main zinc resistance determinant, is still able to increase its zinc resistance level. Specifically, upon plating on medium supplemented with a toxic zinc concentration, resistant variants arose in which a compromised cnrYX regulatory locus caused derepression of CnrH sigma factor activity and concomitant induction of the corresponding RND-driven cnrCBA efflux system. Late-occurring zinc resistant variants likely arose in response to the selective conditions, as they were enriched in cnrYX disruptions caused by specific IS elements whose transposase expression was found to be zinc-responsive. Interestingly, deletion of cnrH, and consequently the CnrH-dependent adaptation potential, still enabled adaptation by transposition of IS elements (ISRme5 and IS1086) that provided outward-directed promoters driving cnrCBAT transcription. Finally, adaptation to zinc by IS reshuffling can also enhance the adaptation to subsequent environmental challenges. Thus, transposition of IS elements can be induced by stress conditions and play a multifaceted, pivotal role in the adaptation to these and subsequent stress conditions.
Collapse
Affiliation(s)
- Joachim Vandecraen
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium; Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Pieter Monsieurs
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Max Mergeay
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven Leuven, Belgium
| | - Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| |
Collapse
|
8
|
Kamada M, Hase S, Fujii K, Miyake M, Sato K, Kimura K, Sakakibara Y. Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods. PLoS One 2015; 10:e0141369. [PMID: 26505996 PMCID: PMC4624242 DOI: 10.1371/journal.pone.0141369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022] Open
Abstract
Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.
Collapse
Affiliation(s)
- Mayumi Kamada
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazushi Fujii
- Department of Biological Sciences, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masato Miyake
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keitarou Kimura
- Division of Applied Microbiology, National Food Research Institute, 2-1-12 12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
12
|
Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl Environ Microbiol 2010; 76:5046-57. [PMID: 20543043 DOI: 10.1128/aem.00660-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The genetic manageability of the biotechnologically important Bacillus licheniformis is hampered due to its poor transformability, whereas Bacillus subtilis efficiently takes up DNA during genetic competence, a quorum-sensing-dependent process. Since the sensor histidine kinase ComP, encoded by a gene of the quorum-sensing module comQXPA of B. licheniformis DSM13, was found to be inactive due to an insertion element within comP, the coding region was exchanged with a functional copy. Quorum sensing was restored, but the already-poor genetic competence dropped further. The inducible expression of the key regulator for the transcription of competence genes, ComK, in trans resulted in highly competent strains and facilitated the direct disruption of genes, as well as the conditional knockout of an essential operon. As ComK is inhibited at low cell densities by a proteolytic complex in which MecA binds ComK and such inhibition is antagonized by the interaction of MecA with ComS (the expression of the latter is controlled by cell density in B. subtilis), we performed an in silico analysis of MecA and the hitherto unidentified ComS, which revealed differences for competent and noncompetent strains, indicating that the reduced competence possibly is due to a nonfunctional coupling of the comQXPA-encoded quorum module and ComK. The obtained increased genetic tractability of this industrial workhorse should improve a wide array of scientific investigations.
Collapse
|