1
|
Akkaya A, Aktaş S. Radioactive Contaminants in Edible Mushrooms: A Comparative Study of 137Cs and Natural Radionuclides in Amasya and Tekirdağ, Türkiye. J Fungi (Basel) 2025; 11:351. [PMID: 40422685 DOI: 10.3390/jof11050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/19/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Mushrooms are a significant component of human diets but can bioaccumulate hazardous substances, including both anthropogenic (137Cs) and naturally occurring (238U, 232Th, and 40K) radionuclides. This study quantified these radionuclides in 24 commonly consumed mushroom species collected in Amasya and Tekirdağ, provinces of Türkiye. Using a high-purity germanium (HPGe) detector, we found 137Cs activity in the Tekirdağ samples ranging from 3.9 to 127.8 Bq/kg, while the 137Cs activity in the Amasya samples ranged from 3.1 to 63.7 Bq/kg. In particular, Tricholoma terreum (Tekirdağ) and Tricholoma imbricatum (Amasya) exhibited notably higher 137Cs concentrations. The concentration of 238U varied between 4.8 and 17.5 Bq/kg in the Tekirdağ samples and 6.5 and 16 Bq/kg in the Amasya samples, whereas the 232Th and 40K values fluctuated across species and regions, with 40K sometimes exceeding 1900 Bq/kg. These results highlight that mushrooms can serve as effective bioindicators for residual radioactive contamination and underline the need for periodic monitoring to assess potential public health risks associated with wild mushroom consumption. These findings also offer a valuable dataset for understanding post-Chernobyl fallout dynamics in the forest ecosystems of Türkiye.
Collapse
Affiliation(s)
- Afife Akkaya
- Department of Biology, Faculty of Science, Selçuk University, 42250 Konya, Turkey
| | - Sinan Aktaş
- Department of Biology, Faculty of Science, Selçuk University, 42250 Konya, Turkey
| |
Collapse
|
2
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
3
|
Rodríguez-Pupo EC, Pérez-Llano Y, Tinoco-Valencia JR, Sánchez NS, Padilla-Garfias F, Calahorra M, Sánchez NDC, Sánchez-Reyes A, Rodríguez-Hernández MDR, Peña A, Sánchez O, Aguirre J, Batista-García RA, Folch-Mallol JL, Sánchez-Carbente MDR. Osmolyte Signatures for the Protection of Aspergillus sydowii Cells under Halophilic Conditions and Osmotic Shock. J Fungi (Basel) 2021; 7:414. [PMID: 34073303 PMCID: PMC8228332 DOI: 10.3390/jof7060414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus sydowii is a moderate halophile fungus extensively studied for its biotechnological potential and halophile responses, which has also been reported as a coral reef pathogen. In a recent publication, the transcriptomic analysis of this fungus, when growing on wheat straw, showed that genes related to cell wall modification and cation transporters were upregulated under hypersaline conditions but not under 0.5 M NaCl, the optimal salinity for growth in this strain. This led us to study osmolyte accumulation as a mechanism to withstand moderate salinity. In this work, we show that A. sydowii accumulates trehalose, arabitol, mannitol, and glycerol with different temporal dynamics, which depend on whether the fungus is exposed to hypo- or hyperosmotic stress. The transcripts coding for enzymes responsible for polyalcohol synthesis were regulated in a stress-dependent manner. Interestingly, A. sydowii contains three homologs (Hog1, Hog2 and MpkC) of the Hog1 MAPK, the master regulator of hyperosmotic stress response in S. cerevisiae and other fungi. We show a differential regulation of these MAPKs under different salinity conditions, including sustained basal Hog1/Hog2 phosphorylation levels in the absence of NaCl or in the presence of 2.0 M NaCl, in contrast to what is observed in S. cerevisiae. These findings indicate that halophilic fungi such as A. sydowii utilize different osmoadaptation mechanisms to hypersaline conditions.
Collapse
Affiliation(s)
- Eya Caridad Rodríguez-Pupo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Yordanis Pérez-Llano
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - José Raunel Tinoco-Valencia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - Norma Silvia Sánchez
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Francisco Padilla-Garfias
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Martha Calahorra
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Nilda del C. Sánchez
- Centro de Ciencias Genómicas, UNAM, Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - Ayixón Sánchez-Reyes
- Catedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Campus Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - María del Rocío Rodríguez-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| | - Antonio Peña
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Olivia Sánchez
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Jesús Aguirre
- Instituto de Fisiología Celular, UNAM, Cto. Exterior s/n, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Federal District, Mexico; (N.S.S.); (F.P.-G.); (M.C.); (A.P.); (O.S.); (J.A.)
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, IICBA, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| | - María del Rayo Sánchez-Carbente
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (E.C.R.-P.); (Y.P.-L.); (M.d.R.R.-H.); (J.L.F.-M.)
| |
Collapse
|
4
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
5
|
Contreras-Arzate D, Islas-Espinoza M, Fall C, Alcántara-Díaz D, Olguin MT, López-Callejas R, Peña-Eguiluz R. Microbial mortality behavior promoted by silver (Ag +/Ag o)-modified zeolite-rich tuffs for water disinfection. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:755-768. [PMID: 33312600 PMCID: PMC7721831 DOI: 10.1007/s40201-020-00501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND In developing countries, death due to diseases caused by fecal-oral ingestion can be avoided by taking action on drinking water issues. Adequate access to water treatment systems to reduce infections is a critical cause. Silver has been used as an antibacterial product, including biomedical applications. Therefore, in this paper, the effect of the chemical speciation of silver from silver-modified zeolite-rich tuffs on the mortality of Escherichia coli (E. coli), Streptococcus faecalis (S. faecalis) and Candida albicans (C. albicans) suspended in aqueous solution was investigated for disinfection purposes. METHODS The following aspects were considered to develop the investigation: a) the technique to prepare the modified zeolitic materials, either with ionic silver or silver nanoparticles, which were obtained in two ways: one, with grapefruit extract and the second, by using non-thermal plasma generated in a dielectric barrier discharge reactor of parallel plates; b) the response of the prokaryotes (bacteria) and eukaryote (yeast) microorganisms to disinfectant agents in batch systems; c) the disinfection processes as a function of time to obtain kinetics parameters; and d) the kinetics of the silver release from the silver-modified zeolite-rich tuffs, considering the models of Higuchi and Korsmeyer. The zeolitic materials were characterized by low-vacuum scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). RESULTS The non-thermal plasma reduced ionic silver is more efficient at generating silver compounds with several oxidation states, which are essential during the microbial inhibition process. For the bacterial (E. coli and S. faecalis), the materials with nanoparticles were efficient to inactivate them. However, the yeast (C. albicans) reaches the total inactivation when the zeolitic material contains ionic silver in the crystalline network. CONCLUSION The E. coli, S. faecalis and C. albicans survival behavior suspended in aqueous solutions after contact with Ag-modified natural zeolites depends on the chemical speciation of the silver present in these materials, Ag+1 in the case of OAgiZ or nanoparticles of Ago promoted by the grapefruit extract (OAgnpTZ), as well as by non-thermal plasma generated in a dielectric barrier discharge reactor of parallel plates (OAgnpPZ). In general, the concentration of silver in the aqueous solution after the disinfection process cannot exceed the recommended levels established for international organizations. The OAgnpPZ is a potential microbicide agent against E. coli and C. albicans, and the OAgn pTZ for F. faecalis.Graphical abstractARTWORK.
Collapse
Affiliation(s)
- D. Contreras-Arzate
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
- Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Unidad de San Cayetano Estado de México, CP 50200, Estado de Mexico, Mexico
| | - M. Islas-Espinoza
- Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Unidad de San Cayetano Estado de México, CP 50200, Estado de Mexico, Mexico
| | - C. Fall
- Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Unidad de San Cayetano Estado de México, CP 50200, Estado de Mexico, Mexico
| | - D. Alcántara-Díaz
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
| | - M. T. Olguin
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
| | - R. López-Callejas
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
| | - R. Peña-Eguiluz
- Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Básicas, Carretera México Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, CP 52750, Estado de Mexico, Mexico
| |
Collapse
|
6
|
Ariño J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast 2019; 36:177-193. [PMID: 30193006 DOI: 10.1002/yea.3355] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+ -ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+ , K+ , and H+ , both under normal growth conditions and in response to stress.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Córdoba, Spain
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Li Y, Sun L, Lu C, Gong Y, Li M, Sun S. Promising Antifungal Targets Against Candida albicans Based on Ion Homeostasis. Front Cell Infect Microbiol 2018; 8:286. [PMID: 30234023 PMCID: PMC6131588 DOI: 10.3389/fcimb.2018.00286] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
In recent decades, invasive fungal infections have been increasing significantly, contributing to high incidences and mortality in immunosuppressed patients. Candida albicans (C. albicans) is the most prevalent opportunistic fungal pathogen in humans that can cause severe and often fatal bloodstream infections. Current antifungal agents have several limitations, including that only a small number of classes of antifungals are available, certain of which have severe toxicity and high cost. Moreover, the emergence of drug resistance is a new limitation to successful patient outcomes. Therefore, the development of antifungals with novel targets is an essential strategy for the efficient management of C. albicans infections. It is widely recognized that ion homeostasis is crucial for all living cells. Many studies have identified that ion-signaling and transduction networks are central to fungal survival by regulating gene expression, morphological transition, host invasion, stress response, and drug resistance. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis of a growing number of compounds that elicit antifungal activity. Most of the potent antifungals have been widely used in the clinic, and certain of them have low toxicity, meaning that they may be expected to be used as antifungal drugs in the future. Hence, we briefly summarize the homeostasis regulation of several important ions, potential antifungal targets based on these ion-signaling networks, and antifungal compounds based on the disruption of ion homeostasis. This summary will help in designing effective drugs and identifying new targets for combating fungal diseases.
Collapse
Affiliation(s)
- Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Licui Sun
- Department of Pharmacy, Feicheng Mining Central Hospital, Feicheng, China
| | - Chunyan Lu
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Gong
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Min Li
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
8
|
Pinu FR, Granucci N, Daniell J, Han TL, Carneiro S, Rocha I, Nielsen J, Villas-Boas SG. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics 2018; 14:43. [PMID: 30830324 DOI: 10.1007/s11306-018-1339-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/07/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Microbial cells secrete many metabolites during growth, including important intermediates of the central carbon metabolism. This has not been taken into account by researchers when modeling microbial metabolism for metabolic engineering and systems biology studies. MATERIALS AND METHODS The uptake of metabolites by microorganisms is well studied, but our knowledge of how and why they secrete different intracellular compounds is poor. The secretion of metabolites by microbial cells has traditionally been regarded as a consequence of intracellular metabolic overflow. CONCLUSIONS Here, we provide evidence based on time-series metabolomics data that microbial cells eliminate some metabolites in response to environmental cues, independent of metabolic overflow. Moreover, we review the different mechanisms of metabolite secretion and explore how this knowledge can benefit metabolic modeling and engineering.
Collapse
Affiliation(s)
- Farhana R Pinu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Ninna Granucci
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - James Daniell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- LanzaTech, Skokie, IL, 60077, USA
| | - Ting-Li Han
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sonia Carneiro
- Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Isabel Rocha
- Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivagen 10, 412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
9
|
Elicharová H, Hušeková B, Sychrová H. ThreeCandida albicanspotassium uptake systems differ in their ability to provideSaccharomyces cerevisiae trk1trk2mutants with necessary potassium. FEMS Yeast Res 2016; 16:fow039. [DOI: 10.1093/femsyr/fow039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 12/31/2022] Open
|
10
|
Gramss G, Voigt KD. Clues for regulatory processes in fungal uptake and transfer of minerals to the basidiospore. Biol Trace Elem Res 2013; 154:140-9. [PMID: 23761201 DOI: 10.1007/s12011-013-9719-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/28/2013] [Indexed: 01/06/2023]
Abstract
Several fungal species are notorious for the preferential acquisition of toxicants such as AsCdHgPbU in their wild-grown basidiomes, but it is not known how, or whether at all, mineral uptake is regulated. In this study, basidiomes of Kuehneromyces mutabilis, Pleurotus ostreatus, and Hypholoma fasciculare were grown on Fagus sylvatica logs embedded in sand, uranium-overburden soil, and garden soil (SIO) at a lab scale to raise the accessible mineral resources 30 to >1,000 times over those available in the timber alone. Non-embedded logs and a field culture established on SIO served as controls. Concentrations of 22 minerals were determined by inductively coupled plasma mass spectrometry from microwave-digested samples of timber, soils, whole and dissected mushrooms, and basidiospores. It was the goal to determine whether mineral uptake rates vary simply with their concentration in the substrate or undergo selections which indicate the ability of metal sensing and optimizing/delimiting the quantity of (essential) elements on their passage from a substrate via basidiome to the basidiospores. It is shown that an underrepresented substrate mineral is up-concentrated to a more or less regulated and physiologically compatible mean, whereas a rising external mineral supply leads to uptake blockage by downregulation of the bioconcentration rate in the vicinity of an apparent mycelial saturation point. The resulting concentrations in whole K. mutabilis basidiomes of the essential metals, CaCoCuFeMgMn(Sr)Zn corresponded surprisingly with those in wheat grains which share the main metabolic pathways with fungi and whose metallome is believed to be out-regulated for an optimum and stress-free development. Concentrations of nonessential metals, too, fitted the range of those common crops, whereas KP reached the higher typical level of fungi. Minerals entering the lower stipe of the K. mutabilis basidiome were specifically enriched/diluted on a passage to the gills and once more abruptly up/down-concentrated at the basidium/sterigma/spore interface. Mineral concentrations of spores corresponded then again with those in wheat grains, with the metalloenzyme-linked CdCoCuFeMnNa(Ni) appearing moderately higher. It is concluded that the substrate/fungal interface may be the major site of metal sensing/selecting and uptake regulation. Concentration shifts obtained during the mineral transfer through the basidiome are then subject to ultimate corrections at the gill/spore interface.
Collapse
Affiliation(s)
- Gerhard Gramss
- Institute of Geosciences, Friedrich-Schiller-University, Burgweg 11, 07749 Jena, Germany.
| | | |
Collapse
|
11
|
Jung KW, Strain AK, Nielsen K, Jung KH, Bahn YS. Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet Biol 2012; 49:332-45. [PMID: 22343280 DOI: 10.1016/j.fgb.2012.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/26/2022]
Abstract
Maintenance of cation homeostasis is essential for survival of all living organisms in their biological niches. It is also important for the survival of human pathogenic fungi in the host, where cation concentrations and pH will vary depending on different anatomical sites. However, the exact role of diverse cation transporters and ion channels in virulence of fungal pathogens remains elusive. In this study we functionally characterized ENA1 and NHA1, encoding a putative Na(+)/ATPase and Na(+)/H(+) antiporter, respectively, in Cryptococcus neoformans, a basidiomycete fungal pathogen which causes fatal meningoencephalitis. Expression of NHA1 and ENA1 is induced in response to salt and osmotic shock mainly in a Hog1-dependent manner. Phenotypic analysis of the ena1Δ, nha1Δ, and ena1Δnha1Δ mutants revealed that Ena1 controls cellular levels of toxic cations, such as Na(+) and Li(+) whereas both Ena1 and Nha1 are important for controlling less toxic K(+) ions. Under alkaline conditions, Ena1 was highly induced and required for growth in the presence of low levels of Na(+) or K(+) salt and Nha1 played a role in survival under K(+) stress. In contrast, Nha1, but not Ena1, was essential for survival at acidic conditions (pH 4.5) under high K(+) stress. In addition, Ena1 and Nha1 were required for maintenance of plasma membrane potential and stability, which appeared to modulate antifungal drug susceptibility. Perturbation of ENA1 and NHA1 enhanced capsule production and melanin synthesis. However, Nha1 was dispensable for virulence of C. neoformans although Ena1 was essential. In conclusion, Ena1 and Nha1 play redundant and discrete roles in cation homeostasis, pH regulation, membrane potential, and virulence in C. neoformans, suggesting that these transporters could be novel antifungal drug targets for treatment of cryptococcosis.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. EUKARYOTIC CELL 2011; 10:1219-29. [PMID: 21764911 DOI: 10.1128/ec.05026-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Saccharomyces cerevisiae general amino acid permease Gap1 (ScGap1) not only mediates the uptake of most amino acids but also functions as a receptor for the activation of protein kinase A (PKA). Fungal pathogens can colonize different niches in the host, each containing various levels of different amino acids and sugars. The Candida albicans genome contains six genes homologous to the S. cerevisiae GAP1. The expression of these six genes in S. cerevisiae showed that the products of all six C. albicans genes differ in their transport capacities. C. albicans Gap2 (CaGap2) is the true orthologue of ScGap1 as it transports all tested amino acids. The other CaGap proteins have narrower substrate specificities though CaGap1 and CaGap6 transport several structurally unrelated amino acids. CaGap1, CaGap2, and CaGap6 also function as sensors. Upon detecting some amino acids, e.g., methionine, they are involved in a rapid activation of trehalase, a downstream target of PKA. Our data show that CaGAP genes can be functionally expressed in S. cerevisiae and that CaGap permeases communicate to the intracellular signal transduction pathway similarly to ScGap1.
Collapse
|
13
|
Ramos J, Ariño J, Sychrová H. Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett 2011; 317:1-8. [DOI: 10.1111/j.1574-6968.2011.02214.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
14
|
Krauke Y, Sychrova H. Cnh1 Na+/H+ antiporter and Ena1 Na+-ATPase play different roles in cation homeostasis and cell physiology of Candida glabrata. FEMS Yeast Res 2010; 11:29-41. [DOI: 10.1111/j.1567-1364.2010.00686.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
15
|
Krauke Y, Sychrová H. Chimeras between C. glabrata Cnh1 and S. cerevisiae Nha1 Na+/H+-antiporters are functional proteins increasing the salt tolerance of yeast cells. Folia Microbiol (Praha) 2010; 55:435-41. [DOI: 10.1007/s12223-010-0073-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/02/2010] [Indexed: 10/19/2022]
|
16
|
Krauke Y, Sychrova H. Four Pathogenic Candida Species Differ in Salt Tolerance. Curr Microbiol 2010; 61:335-9. [DOI: 10.1007/s00284-010-9616-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
17
|
Pribylova L, Papouskova K, Sychrova H. The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2–22p) playing different roles in cation homeostasis and cell physiology. Fungal Genet Biol 2008; 45:1439-47. [DOI: 10.1016/j.fgb.2008.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
18
|
Krauke Y, Sychrova H. Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species. BMC Microbiol 2008; 8:80. [PMID: 18492255 PMCID: PMC2424070 DOI: 10.1186/1471-2180-8-80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 05/20/2008] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The virulence of Candida species depends on many environmental conditions. Extracellular pH and concentration of alkali metal cations belong among important factors. Nevertheless, the contribution of transporters mediating the exchange of alkali metal cations for protons across the plasma membrane to the cell salt tolerance and other physiological properties of various Candida species has not been studied so far. RESULTS The tolerance/sensitivity of four pathogenic Candida species to alkali metal cations was tested and the role of one of the cation transporters in that tolerance (presumed to be the plasma-membrane Na+/H+ antiporter) was studied. The genes encoding these antiporters in the most and least salt sensitive species, C. dubliniensis and C. parapsilosis respectively, were identified, cloned and functionally expressed in the plasma membranes of Saccharomyces cerevisiae cells lacking their own cation exporters. Both CpCnh1 and CdCnh1 antiporters had broad substrate specificity and transported Na+, K+, Li+, and Rb+. Their activity in S. cerevisiae cells differed; CpCnh1p provided cells with a much higher salt tolerance than the CdCnh1 antiporter. The observed difference in activity was confirmed by direct measurements of sodium and potassium efflux mediated by these antiporters. CONCLUSION We have cloned two genes encoding putative Na+/H+ antiporters in C. parapsilosis and C. dubliniensis, and characterized the transport properties of encoded proteins. Our results show that the activity of plasma-membrane Na+/H+ antiporters is one of the factors determining the tolerance of pathogenic Candida species to high external concentrations of alkali metal cations.
Collapse
Affiliation(s)
- Yannick Krauke
- Department of Membrane Transport, Institute of Physiology AS CR, v,v,i,, Videnska 1083, 14220 Prague 4, Czech Republic.
| | | |
Collapse
|
19
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|