1
|
Ayres BS, Varela Junior AS, Corcini CD, Lopes EM, Nery LEM, Maciel FE. Effects of high temperature and LPS injections on the hemocytes of the crab Neohelice granulata. J Invertebr Pathol 2024; 205:108144. [PMID: 38810835 DOI: 10.1016/j.jip.2024.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Temperature fluctuations, particularly elevated temperatures, can significantly affect immune responses. These fluctuations can influence the immune system and alter its response to infection signals, such as lipopolysaccharide (LPS). Therefore, this study was designed to investigate how high temperatures and LPS injections collectively influence the immune system of the crab Neohelice granulata. Two groups were exposed to 20 °C (control) or 33 °C for four days. Subsequently, half were injected with 10 μL of physiological crustacean (PS), while the rest received 10 μL of LPS [0.1 mg.kg-1]. After 30 min, the hemolymph samples were collected. Hemocytes were then isolated and assessed for various parameters using flow cytometry, including cell integrity, DNA fragmentation, total hemocyte count (THC), differential hemocyte count (DHC), reactive oxygen species (ROS) level, lipid peroxidation (LPO), and phagocytosis. Results showed lower cell viability at 20 °C, with more DNA damage in the same LPS-injected animals. There was no significant difference in THC, but DHC indicated a decrease in hyaline cells (HC) at 20 °C following LPS administration. In granular cells (GC), an increase was observed after both PS and LPS were injected at the same temperature. In semi-granular cells (SGC), there was a decrease at 20 °C with the injection of LPS, while at a temperature of 33 °C, the SGC there was a decrease only in SGC injected with LPS. Crabs injected with PS and LPS at 20 °C exhibited higher levels of ROS in GC and SGC, while at 33 °C, the increase was observed only in GC and SGC cells injected with LPS. A significant increase in LPO was observed only in SGC cells injected with PS and LPS at 20 °C and 33 °C. Phagocytosis decreased in animals at 20 °C with both injections and exposed to 33 °C only in those injected with LPS. These results suggest that elevated temperatures induce changes in immune system parameters and attenuate the immune responses triggered by LPS.
Collapse
Affiliation(s)
- Bruna Soares Ayres
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Antonio Sergio Varela Junior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Carine Dahl Corcini
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas- UFPEL, Campus Universitário, S / N, Capão do Leão, Pelotas, RS 96160-000, Brazil
| | - Eduarda Marques Lopes
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Fábio Everton Maciel
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil.
| |
Collapse
|
2
|
Cao G, Bao J, Feng C, Li X, Lang Y, Xing Y, Jiang H. First report of Metschnikowia bicuspidata infection in Chinese grass shrimp (Palaemonetes sinensis) in China. Transbound Emerg Dis 2022; 69:3133-3141. [PMID: 35076183 DOI: 10.1111/tbed.14460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
The Chinese grass shrimp (Palaemonetes sinensis) was found with white turbidity appearance in the Panjin area. After dissection, typical symptoms of milky disease with hemolymph emulsification and noncoagulation were observed; however, the pathogen was unknown. In this study, we aimed to isolate the pathogen of the diseased P. sinensis. We found that the pathogen could grow on the fungal medium Bengal red, and microscopic examination showed that it reproduced by budding. Molecular identification of the isolated and purified yeast strain LNMB2021 based on 26S rDNA sequence showed that the pathogenic pathogen was Metschnikowia bicuspidata (GenBank OK094821), with 98.74% homology with M. bicuspidata strain LNES0119 (GenBank OK073903) and 98.56% with M. bicuspidata strain Liao (GenBank MT856369). The results of an artificial infection test showed that M. bicuspidata caused the same clinical symptoms in P. sinensis, and the isolated pathogen was still the same, which proved that P. sinensis was a new host of M. bicuspidata. Histopathological analysis showed that there were obvious pathological changes in the hepatopancreas and muscle tissue of the diseased P. sinensis. Identification of the pathogen is essential for the prevention and control of the disease and the healthy culture of P. sinensis. Furthermore, considering the transmissibility and cross-host transmission of M. bicuspidata, its risk of infecting other aquatic animals deserves high attention. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gangnan Cao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Jie Bao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Chengcheng Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Yuxi Lang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Yuenan Xing
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Hongbo Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| |
Collapse
|
3
|
Symbionts of invasive and native crabs, in Argentina: The most recently invaded area on the Southwestern Atlantic coastline. J Invertebr Pathol 2021; 184:107650. [PMID: 34352239 DOI: 10.1016/j.jip.2021.107650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023]
Abstract
Biological invasions have the capacity to introduce non-native parasites. This study aimed to determine whether the invasive green crab population, Carcinus spp., on the Southwestern Atlantic coast of Argentina harbours any symbionts, and whether these may spillover or spillback between native crabs, Cyrtograpsus altimanus and C. angulatus. Macroscopy, histology, and molecular analyses of some parasites were used to describe and compare their diversity across the three species of crab. We also evaluated the susceptibility of invasive Carcinus spp. to a native digenean, Maritrema madrynense, via experimental infections (exposure and cohabitation). Our results revealed that the green crab pathobiome included similar symbiotic groups to native crabs. This included putative viral, bacterial, and protozoan parasites. Haplosporidium-like observations were recorded in all crab species, and a single green crab was found to be parasitized by an Agmasoma-like microsporidium. Metagenomic analysis of one individual revealed additional symbiotic diversity (46 bacteria, 5 eukaryotic species). The green crabs were infected by more microparasite taxa than the native crabs (5:3). Wild populations of Carcinus spp. were free of metazoan parasites and are shown not to be susceptible to M. madryense under experimental conditions. Our results suggest a reduction/escape of macroparasites (trematode Maritrema madrynense; acanthocephalan Profilicollis chasmagnathi) in invasive Carcinus spp. compared to their native competitors.
Collapse
|
4
|
Bojko J, Burgess AL, Baker AG, Orr CH. Invasive Non-Native Crustacean Symbionts: Diversity and Impact. J Invertebr Pathol 2020; 186:107482. [PMID: 33096058 DOI: 10.1016/j.jip.2020.107482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
Invasive non-native species (INNS) pose a risk as vectors of parasitic organisms (Invasive Parasites). Introducing invasive parasites can result in ecological disturbances, leading to biodiversity loss and native species illness/mortality, but occasionally can control INNS limiting their impact. Risks to human health and the economy are also associated with INNS and invasive parasites; however, we understand little about the diversity of symbiotic organisms co-invading alongside INNS. This lack of clarity is an important aspect of the 'One Health' prerogative, which aims to bridge the gap between human, wildlife, and ecosystem health. To explore symbiont diversity associated with the invasive crustacean group (including: crab, lobster, crayfish, shrimp, amphipod, isopod, copepod, barnacle, other) (n = 323) derived from 1054 aquatic invertebrates classed as INNS across databases, we compile literature (year range 1800-2017) from the native and invasive range to provide a cumulative symbiont profile for each species. Our search indicated that 31.2% of INN crustaceans were known to hold at least one symbiont, whereby the remaining 68.8% had no documented symbionts. The symbiont list mostly consisted of helminths (27% of the known diversity) and protists (23% of the known diversity), followed by bacteria (12%) and microsporidians (12%). Carcinus maenas, the globally invasive and extremely well-studied green crab, harboured the greatest number of symbionts (n = 72). Additional screening is imperative to become more informed on invasive symbiont threats. We reveal that few studies provide truly empirical data that connect biodiversity loss with invasive parasites and suggest that dedicated studies on available systems will help to provide vital case studies. Despite the lack of empirical data, co-invasive parasites of invasive invertebrates appear capable of lowering local biodiversity, especially by causing behavioural change and mortality in native species. Alternatively, several invasive parasites appear to protect ecosystems by controlling the impact and population size of their invasive host. We provide a protocol that could be followed to explore symbiont diversity in invasive groups as part of our case studies. The consequence of limited parasite screening of INNS, in addition to the impacts invasive parasites impart on local ecologies, are explored throughout the review. We conclude in strong support of the 'One Health' prerogative and further identify a need to better explore disease in invasion systems, many of which are accountable for economic, human health and ecological diversity impacts.
Collapse
Affiliation(s)
- Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, United Kingdom; National Horizons Centre of Excellence in Bioscience Industry, Teesside University, Darlington DL1 1HG, United Kingdom.
| | - Amy L Burgess
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, United Kingdom; National Horizons Centre of Excellence in Bioscience Industry, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Ambroise G Baker
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, United Kingdom; National Horizons Centre of Excellence in Bioscience Industry, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Caroline H Orr
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, United Kingdom; National Horizons Centre of Excellence in Bioscience Industry, Teesside University, Darlington DL1 1HG, United Kingdom
| |
Collapse
|
5
|
Davidovich N, Morick D, Carella F. Mycobacteriosis in Aquatic Invertebrates: A Review of Its Emergence. Microorganisms 2020; 8:E1249. [PMID: 32824567 PMCID: PMC7464023 DOI: 10.3390/microorganisms8081249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
Mycobacteriosis is a chronic bacterial disease reported in aquatic and terrestrial animals, including humans. The disease affects a wide range of cultured and wild organisms worldwide. Mycobacteriosis is well-known in aquatic vertebrates (e.g., finfish, marine mammals), while in the last few years, reports of its presence in aquatic invertebrates have been on the rise, for both freshwater and marine species. The number of cases is likely to increase as a result of increased awareness, surveillance and availability of diagnostic methods. Domestication of wild aquatic species and the intensification of modern aquaculture are also leading to an increase in the number of reported cases. Moreover, climate changes are affecting fresh and marine aquatic ecosystems. The increasing reports of mycobacteriosis in aquatic invertebrates may also be influenced by global climate warming, which could contribute to the microbes' development and survival rates, pathogen transmission and host susceptibility. Several species of the genus Mycobacterium have been diagnosed in aquatic invertebrates; a few of them are significant due to their wide host spectrum, economic impact in aquaculture, and zoonotic potential. The impact of mycobacteriosis in aquatic invertebrates is probably underestimated, and there is currently no effective treatment other than facility disinfection. In this review, we provide an overview of the diversity of mycobacterial infections reported in molluscs, crustaceans, cnidarians, echinoderms and sponges. We highlight important issues relating to its pathological manifestation, diagnosis and zoonotic considerations.
Collapse
Affiliation(s)
| | - Danny Morick
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, China
| | - Francesca Carella
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, Ed. 7, 80136 Naples, Italy;
| |
Collapse
|
6
|
Diagnosis and prevalence of two new species of haplosporidians infecting shore crabs Carcinus maenas: Haplosporidium carcini n. sp., and H. cranc n. sp. Parasitology 2020; 147:1229-1237. [PMID: 32539882 PMCID: PMC7443749 DOI: 10.1017/s0031182020000980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study provides a morphological and phylogenetic characterization of two novel species of the order Haplosporida (Haplosporidium carcini n. sp., and H. cranc n. sp.) infecting the common shore crab Carcinus maenas collected at one location in Swansea Bay, South Wales, UK. Both parasites were observed in the haemolymph, gills and hepatopancreas. The prevalence of clinical infections (i.e. parasites seen directly in fresh haemolymph preparations) was low, at ~1%, whereas subclinical levels, detected by polymerase chain reaction, were slightly higher at ~2%. Although no spores were found in any of the infected crabs examined histologically (n = 334), the morphology of monokaryotic and dikaryotic unicellular stages of the parasites enabled differentiation between the two new species. Phylogenetic analyses of the new species based on the small subunit (SSU) rDNA gene placed H. cranc in a clade of otherwise uncharacterized environmental sequences from marine samples, and H. carcini in a clade with other crustacean-associated lineages.
Collapse
|
7
|
Vogt G. Cytopathology and immune response in the hepatopancreas of decapod crustaceans. DISEASES OF AQUATIC ORGANISMS 2020; 138:41-88. [PMID: 32103822 DOI: 10.3354/dao03443] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hepatopancreas of decapod crustaceans is used as an example to illustrate the range of cytopathologies, detoxification mechanisms, and immune responses that environmental toxicants and pathogens can induce in a single organ. The hepatopancreas is the central metabolic organ of decapods and consists of hundreds of blindly-ending tubules and intertubular spaces. The tubular epithelium contains 5 structurally and functionally different cell types, and the interstitium contains haemolymph, haemocytes, connective tissue, and fixed phagocytes. Some physiological conditions such as moulting and starvation cause marked but reversible ultrastructural alterations of the epithelial cells. Environmental toxicants induce either detoxification mechanisms or structural damage in cells, depending on toxicant and concentration. The hepatopancreas is also a main target organ for pathogens, mainly viruses, bacteria, and protists that enter the body via the digestive tract and gills and replicate in the hepatopancreatocytes. The cytopathologies caused by toxicants and pathogens affect single cell types specifically or, more often, several cell types simultaneously. Pathogenesis often begins in a certain cell organelle such as the nucleus, mitochondrion, or endoplasmic reticulum, spreads to other organelles, and ends with death of the infected cell. Fixed phagocytes in the interstitium capture and degrade pathogens that move from the infected tubules into the intertubular spaces or enter the hepatopancreas via circulation. Relatively few disease agents elicit the melanisation and encapsulation reaction that encloses infected tubules by a rigid melanised capsule and kills the entrapped pathogens.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Xu W, Han Z, Xing Y, Li X, Zhao Y, Chen Q, Li Y. Distribution of the parasitic isopod Tachaea chinensis in China. Sci Rep 2019; 9:19965. [PMID: 31882704 PMCID: PMC6934580 DOI: 10.1038/s41598-019-56402-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Tachaea chinensis Thielemann, 1910 (Isopoda: Corallanidae) is a branchial ectoparasite that attaches onto shrimps and prawns. However, the distribution of T. chinensis in China, especially its epidemiology, remains unclear. We determined the prevalence of T. chinensis on the ridgetail white prawn (Exopalaemon carinicauda Holthuis, 1950) in Jiangsu Province. Fifty ponds in 10 shrimp farms were assessed. Isopod species were identified by morphological features and mitochondrial 16S rRNA gene analysis. A literature review was performed to determine the geographical distribution of T. chinensis in China. Published data revealed that T. chinensis was geographically distributed throughout five provinces in China, including Liaoning, Tianjin, Henan, Hubei, and Guangxi. A total of 998 T. chinensis were collected from 50 ridgetail white prawn ponds in Yancheng City and Rudong County. Tachaea chinensis prevalence ranged from 0.98% to 4.42% in Yancheng City and 0.62% to 0.92% in Rudong County. This is the first study to investigate the geographical distribution of T. chinensis in China and determine the prevalence of T. chinensis on the ridgetail white prawn in Jiangsu Province. Overall, we provide available data that fill gaps in the epidemiology of T. chinensis.
Collapse
Affiliation(s)
- Weibin Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Zhibin Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Yuenan Xing
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Qijun Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China.
| |
Collapse
|
9
|
Bojko J, Stebbing PD, Dunn AM, Bateman KS, Clark F, Kerr RC, Stewart-Clark S, Johannesen Á, Stentiford GD. Green crab Carcinus maenas symbiont profiles along a North Atlantic invasion route. DISEASES OF AQUATIC ORGANISMS 2018; 128:147-168. [PMID: 29733028 DOI: 10.3354/dao03216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The green crab Carcinus maenas is an invader on the Atlantic coast of Canada and the USA. In these locations, crab populations have facilitated the development of a legal fishery in which C. maenas is caught and sold, mainly for use as bait to capture economically important crustaceans such as American lobster Homarus americanus. The paucity of knowledge on the symbionts of invasive C. maenas in Canada and their potential for transfer to lobsters poses a potential risk of unintended transmission. We carried out a histological survey for symbionts of C. maenas from their native range in Northern Europe (in the UK and Faroe Islands), and invasive range in Atlantic Canada. In total, 19 separate symbiotic associations were identified from C. maenas collected from 27 sites. These included metazoan parasites (nematodes, Profilicollis botulus, Sacculina carcini, Microphallidae, ectoparasitic crustaceans), microbial eukaryotes (ciliates, Hematodinium sp., Haplosporidium littoralis, Ameson pulvis, Parahepatospora carcini, gregarines, amoebae), bacteria (Rickettsia-like organism, milky disease), and viral pathogens (parvo-like virus, herpes-like virus, iridovirus, Carcinus maenas bacilliform virus and a haemocyte-infecting rod-shaped virus). Hematodinium sp. were not observed in the Canadian population; however, parasites such as Trematoda and Acanthocephala were present in all countries despite their complex, multi-species lifecycles. Some pathogens may pose a risk of transmission to other decapods and native fauna via the use of this host in the bait industry, such as the discovery of a virus resembling the previously described white spot syndrome virus (WSSV), B-virus and 'rod-shaped virus' (RV-CM) and amoebae, which have previously been found to cause disease in aquaculture (e.g. Salmo salar) and fisheries species (e.g. H. americanus).
Collapse
Affiliation(s)
- Jamie Bojko
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Sweet MJ, Bateman KS. Reprint of 'Diseases in marine invertebrates associated with mariculture and commercial fisheries'. JOURNAL OF SEA RESEARCH 2016; 113:28-44. [PMID: 32336937 PMCID: PMC7172773 DOI: 10.1016/j.seares.2016.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 05/26/2023]
Abstract
Diseases in marine invertebrates are increasing in both frequency and intensity around the globe. Diseases in individuals which offer some commercial value are often well documented and subsequently well studied in comparison to those wild groups offering little commercial gain. This is particularly the case with those associated with mariculture or the commercial fisheries. Specifically, these include many Holothuroidea, and numerous crustacea and mollusca species. Pathogens/parasites consisting of both prokaryotes and eukaryotes from all groups have been associated with diseases from such organisms, including bacteria, viruses, fungi and protozoa. Viral pathogens in particular, appear to be an increasingly important group and research into this group will likely highlight a larger number of diseases and pathogens being described in the near future. Interestingly, although there are countless examples of the spread of disease usually associated with transportation of specific infected hosts for development of aquaculture practices, this process appears to be continuing with no real sign of effective management and mitigation strategies being implicated. Notably, even in well developed countries such as the UK and the US, even though live animal trade may be well managed, the transport of frozen food appears to be less well so and as evidence suggests, even these to have the potential to transmit pathogens when used as a food source for example.
Collapse
Affiliation(s)
- Michael J. Sweet
- Molecular Health and Disease Laboratory, University of Derby, DE22 1GB, UK
| | - Kelly S. Bateman
- European Union Reference Laboratory for Crustacean Diseases, CEFAS, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
12
|
Bacterial Community Associated with Organs of Shallow Hydrothermal Vent Crab Xenograpsus testudinatus near Kuishan Island, Taiwan. PLoS One 2016; 11:e0150597. [PMID: 26934591 PMCID: PMC4774926 DOI: 10.1371/journal.pone.0150597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 01/21/2023] Open
Abstract
Shallow-water hydrothermal vents off Kueishan Island (northeastern Taiwan) provide a unique, sulfur-rich, highly acidic (pH 1.75-4.6) and variable-temperature environment. In this species-poor habitat, the crab Xenograpsus testudinatus is dominant, as it mainly feeds on zooplankton killed by sulfurous plumes. In this study, 16S ribosomal RNA gene amplicon pyrosequencing was used to investigate diversity and composition of bacteria residing in digestive gland, gill, stomach, heart, and mid-gut of X. testudinatus, as well as in surrounding seawater. Dominant bacteria were Gamma- and Epsilonproteobacteria that might be capable of autotrophic growth by oxidizing reduced sulfur compounds and are usually resident in deep-sea hydrothermal systems. Dominant bacterial OTUs in X. testudinatus had both host and potential organ specificities, consistent with a potential trophic symbiotic relationship (nutrient transfer between host and bacteria). We inferred that versatile ways to obtain nutrients may provide an adaptive advantage for X. testudinatus in this demanding environment. To our knowledge, this is the first study of bacterial communities in various organs/tissues of a crustacean in a shallow-water hydrothermal system, and as such, may be a convenient animal model for studying these systems.
Collapse
|
13
|
Thrupp TJ, Whitten MMA, Rowley AF. A novel bacterial infection of the edible crab, Cancer pagurus. J Invertebr Pathol 2015; 133:83-6. [PMID: 26674010 DOI: 10.1016/j.jip.2015.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/16/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
There are few reports of bacterial diseases in crabs. A juvenile edible crab (Cancer pagurus) with a rickettsial-like infection was found in the intertidal zone at Freshwater East in South West Wales in July, 2012. Large numbers of bacteria-like particles were found in the haemolymph and within fixed phagocytes of the hepatopancreas. Molecular sequencing and subsequent phylogenetic analysis showed that the infectious agent was a member of the order Rhizobiales and therefore distinct to bacteria classified as rickettsia.
Collapse
Affiliation(s)
- Tara J Thrupp
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Miranda M A Whitten
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Andrew F Rowley
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK.
| |
Collapse
|
14
|
Sweet MJ, Bateman KS. Diseases in marine invertebrates associated with mariculture and commercial fisheries. JOURNAL OF SEA RESEARCH 2015; 104:16-32. [PMID: 32336936 PMCID: PMC7172736 DOI: 10.1016/j.seares.2015.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 05/15/2023]
Abstract
Diseases in marine invertebrates are increasing in both frequency and intensity around the globe. Diseases in individuals which offer some commercial value are often well documented and subsequently well studied in comparison to those wild groups offering little commercial gain. This is particularly the case with those associated with mariculture or the commercial fisheries. Specifically, these include many Holothuroidea, and numerous crustacea and mollusca species. Pathogens/parasites consisting of both prokaryotes and eukaryotes from all groups have been associated with diseases from such organisms, including bacteria, viruses, fungi and protozoa. Viral pathogens in particular, appear to be an increasingly important group and research into this group will likely highlight a larger number of diseases and pathogens being described in the near future. Interestingly, although there are countless examples of the spread of disease usually associated with transportation of specific infected hosts for development of aquaculture practices, this process appears to be continuing with no real sign of effective management and mitigation strategies being implicated. Notably, even in well developed countries such as the UK and the US, even though live animal trade may be well managed, the transport of frozen food appears to be less well so and as evidence suggests, even these to have the potential to transmit pathogens when used as a food source for example.
Collapse
Affiliation(s)
- Michael J. Sweet
- Molecular Health and Disease Laboratory, University of Derby, DE22 1GB, UK
- Corresponding author.
| | - Kelly S. Bateman
- European Union Reference Laboratory for Crustacean Diseases, CEFAS, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
15
|
Lv S, Xu J, Zhao J, Yin N, Lu B, Li S, Chen Y, Xu H. Classification and phagocytosis of circulating haemocytes in Chinese mitten crab (Eriocheir sinensis) and the effect of extrinsic stimulation on circulating haemocytes in vivo. FISH & SHELLFISH IMMUNOLOGY 2014; 39:415-422. [PMID: 24929244 DOI: 10.1016/j.fsi.2014.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
Eriocheir sinensis (Henri Milne Edwards 1854) is one of the most important aquaculture species in China. In this investigation, we characterised the different types of haemocytes of E. sinensis using light and electron microscopy combined with cytochemical analysis and determined the in vivo phagocytic ability of different haemocyte types by injecting polystyrene beads. The haemocytes of E. sinensis were divided into three types: hyalinocytes, semigranulocytes and granulocytes. The hyalinocytes had no or few cytoplasmic granules; the semigranulocytes contained abundant small granules and a few large refractile cytoplasmic granules; and the granulocytes contained numerous large refractile cytoplasmic granules. The hyalinocytes were demonstrated to be the most abundant circulating haemocytes and the most avid phagocytic haemocytes, accounting for approximately 88.7% of the total phagocytes. The haemocyte-containing granules displayed limited phagocytic ability, with approximately 5.0% of granulocytes and 6.3% of semigranulocytes displaying positive phagocytic ability against the invading polystyrene beads in vivo. After injection with Aeromonas hydrophila, Bacillus subtilis and different concentrations of lipopolysaccharide for 0.25, 0.5, 1, 2, 4, 6 and 8 h, all three types of haemocytes experienced dramatic decline and then rapid recovery to their initial levels. A high concentration of lipopolysaccharide and A. hydrophila were extremely toxic to the crabs, as they induced a more serious loss of haemocytes compared with a low concentration of lipopolysaccharide and B. subtilis. Overall, the results obtained in this study indicate that a small proportion of the haemocytes of E. sinensis contributed to the phagocytic process, and the migration of haemocytes and haemocyte lysis were most likely a prominent pathway for pathogen elimination.
Collapse
Affiliation(s)
- Sunjian Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jiehao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Na Yin
- College of Life Sciences, Qufu Normal University, Jining 272000, Shandong Province, China
| | - Binjie Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Song Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
16
|
Leignel V, Stillman JH, Baringou S, Thabet R, Metais I. Overview on the European green crab Carcinus spp. (Portunidae, Decapoda), one of the most famous marine invaders and ecotoxicological models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9129-9144. [PMID: 24793074 DOI: 10.1007/s11356-014-2979-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Green crabs (Carcinus, Portunidae) include two species native to Europe--Carcinus aestuarii (Mediterranean species) and Carcinus maenas (Atlantic species). These small shore crabs (maximal length carapace, approximately 10 cm) show rapid growth, high fecundity, and long planktonic larval stages that facilitate broad dispersion. Carcinus spp. have a high tolerance to fluctuations of environmental factors including oxygen, salinity, temperature, xenobiotic compounds, and others. Shipping of Carcinus spp. over the past centuries has resulted in its invasions of America, Asia, and Australia. Classified as one of the world's 100 worst invaders by the International Union for Conservation of Nature, Carcinus spp. are the most widely distributed intertidal crabs in the world. Their voracious predatory activity makes them strong interactors in local communities, and they are recognized as a model for invasiveness in marine systems as well as a sentinel species in ecotoxicology. This review shows an exhaustive analysis of the literature on the life cycle, diversity, physiological tolerance, genomic investigations, ecotoxicological use, historical invasion, control programs, and putative economical valorization of shore crabs.
Collapse
Affiliation(s)
- V Leignel
- Laboratoire Mer-Molécules-Sante, Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans, France,
| | | | | | | | | |
Collapse
|
17
|
Shaowu L, Di W, Hongbai L, Tongyan L. Isolation of Yersinia ruckeri strain H01 from farm-raised Amur Sturgeon Acipenser schrencki in China. JOURNAL OF AQUATIC ANIMAL HEALTH 2013; 25:9-14. [PMID: 23241058 DOI: 10.1080/08997659.2012.728169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease or yersiniosis, which affects salmonids and several other species of fish. However, there are no reports on the characteristics and pathogenicity of Y. ruckeri isolated from farm-raised Amur Sturgeon Acipenser schrencki. Here, we isolated and characterized Y. ruckeri strain H01 from the diseased Amur Sturgeon in China. The phenotypic and genotypic characteristics of Y. ruckeri were observed, and its virulence was tested by examining experimentally infected sturgeons. Examination of the flagellar morphology of Y. ruckeri by transmission electron microscopy showed five to eight peritrichous flagella located on the cell body. Actively dividing cells with an obvious cell membrane were approximately 0.64 μm in diameter and between 1.7 and 2.5 μm in length. The dose that was lethal to 50% of the test fish after intraperitoneal injection was determined to be 7.2×10(6) CFU, and Y. ruckeri could be reisolated from the liver and kidneys of infected sturgeon. Antimicrobial susceptibility tests showed that H01 was susceptible to 10 antimicrobial agents. Part of the 16S rRNA sequences (563 base pair) was amplified and sequenced to study the genotypic characterization in Y. ruckeri (GenBank accession number JQ657818). The phylogenetic tree revealed H01 was clustered together with Y. ruckeri strains. Together, this study describes the isolation, characterization, and phenotypic-genotypic analysis of a Y. ruckeri strain isolated from farm-raised Amur Sturgeon. The results discovered may provide some theoretical basis for the prevention and control of yersiniosis in Amur Sturgeon.
Collapse
Affiliation(s)
- Li Shaowu
- Department of Aquaculture, Chinese Academy of Fishery Sciences, Harbin, China
| | | | | | | |
Collapse
|
18
|
Bateman K, Tew I, French C, Hicks R, Martin P, Munro J, Stentiford G. Susceptibility to infection and pathogenicity of White Spot Disease (WSD) in non-model crustacean host taxa from temperate regions. J Invertebr Pathol 2012; 110:340-51. [DOI: 10.1016/j.jip.2012.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
|
19
|
Stentiford GD, Neil DM, Peeler EJ, Shields JD, Small HJ, Flegel TW, Vlak JM, Jones B, Morado F, Moss S, Lotz J, Bartholomay L, Behringer DC, Hauton C, Lightner DV. Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J Invertebr Pathol 2012; 110:141-57. [PMID: 22434002 DOI: 10.1016/j.jip.2012.03.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/01/2011] [Indexed: 12/11/2022]
Abstract
Seafood is a highly traded food commodity. Farmed and captured crustaceans contribute a significant proportion with annual production exceeding 10 M metric tonnes with first sale value of $40bn. The sector is dominated by farmed tropical marine shrimp, the fastest growing sector of the global aquaculture industry. It is significant in supporting rural livelihoods and alleviating poverty in producing nations within Asia and Latin America while forming an increasing contribution to aquatic food supply in more developed countries. Nations with marine borders often also support important marine fisheries for crustaceans that are regionally traded as live animals and commodity products. A general separation of net producing and net consuming nations for crustacean seafood has created a truly globalised food industry. Projections for increasing global demand for seafood in the face of level or declining fisheries requires continued expansion and intensification of aquaculture while ensuring best utilisation of captured stocks. Furthermore, continued pressure from consuming nations to ensure safe products for human consumption are being augmented by additional legislative requirements for animals (and their products) to be of low disease status. As a consequence, increasing emphasis is being placed on enforcement of regulations and better governance of the sector; currently this is a challenge in light of a fragmented industry and less stringent regulations associated with animal disease within producer nations. Current estimates predict that up to 40% of tropical shrimp production (>$3bn) is lost annually, mainly due to viral pathogens for which standard preventative measures (e.g. such as vaccination) are not feasible. In light of this problem, new approaches are urgently required to enhance yield by improving broodstock and larval sourcing, promoting best management practices by farmer outreach and supporting cutting-edge research that aims to harness the natural abilities of invertebrates to mitigate assault from pathogens (e.g. the use of RNA interference therapeutics). In terms of fisheries losses associated with disease, key issues are centred on mortality and quality degradation in the post-capture phase, largely due to poor grading and handling by fishers and the industry chain. Occurrence of disease in wild crustaceans is also widely reported, with some indications that climatic changes may be increasing susceptibility to important pathogens (e.g. the parasite Hematodinium). However, despite improvements in field and laboratory diagnostics, defining population-level effects of disease in these fisheries remains elusive. Coordination of disease specialists with fisheries scientists will be required to understand current and future impacts of existing and emergent diseases on wild stocks. Overall, the increasing demand for crustacean seafood in light of these issues signals a clear warning for the future sustainability of this global industry. The linking together of global experts in the culture, capture and trading of crustaceans with pathologists, epidemiologists, ecologists, therapeutics specialists and policy makers in the field of food security will allow these issues to be better identified and addressed.
Collapse
Affiliation(s)
- G D Stentiford
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ferrantini F, Fokin SI, Modeo L, Andreoli I, Dini F, Görtz HD, Verni F, Petroni G. "Candidatus Cryptoprodotis polytropus," a novel Rickettsia-like organism in the ciliated protist Pseudomicrothorax dubius (Ciliophora, Nassophorea). J Eukaryot Microbiol 2011; 56:119-29. [PMID: 19457052 DOI: 10.1111/j.1550-7408.2008.00377.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rickettsia-like organisms (RLO) are obligate, often highly fastidious, intracellular bacterial parasites associated with a variety of vertebrate and invertebrate hosts. Despite their importance as causative agents of severe mortality outbreaks in farmed aquatic species, little is known about their life cycle and their host range. The present work reports the characterization of "Candidatus Cryptoprodotis polytropus," a novel Rickettsia-like bacterium associated with the common ciliate species Pseudomicrothorax dubius by means of the "Full-Cycle rRNA Approach" and ultrastructural observations. The morphological description by in vivo and scanning electron microscopy and the 18S rRNA gene sequence of the host species is provided as well. Phylogenetic analysis based on the 16S rRNA gene supports the inclusion of "Candidatus Cryptoprodotis polytropus" within the family Rickettsiaceae (cl. Alphaproteobacteria) together with the genera Rickettsia and Orientia. Observations on natural ciliate populations account for the occasional nature of this likely parasitic association. The presence of a previously unknown RLO in ciliates sheds a new light on the possible role of protists as transient hosts, vectors or natural reservoir for some economically important pathogens.
Collapse
Affiliation(s)
- Filippo Ferrantini
- Department of Biology, Protistology and Zoology Unit, University of Pisa, Via A. Volta 4/6, I-56126 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Mancuso M, Costanzo MT, Maricchiolo G, Gristina M, Zaccone R, Cuccu D, Genovese L. Characterization of chitinolytic bacteria and histological aspects of Shell Disease Syndrome in European spiny lobsters (Palinurus elephas) (Fabricius 1787). J Invertebr Pathol 2010; 104:242-4. [PMID: 20361978 DOI: 10.1016/j.jip.2010.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 02/21/2010] [Accepted: 03/26/2010] [Indexed: 11/18/2022]
Affiliation(s)
- M Mancuso
- Istituto per l'Ambiente Marino Costiero (IAMC), CNR, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Matozzo V, Marin MG. The role of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda) in immune responses: A first survey. FISH & SHELLFISH IMMUNOLOGY 2010; 28:534-41. [PMID: 20036746 DOI: 10.1016/j.fsi.2009.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 05/24/2023]
Abstract
For the first time, a functional study of haemocytes from the crab Carcinus aestuarii was performed in order to evaluate their involvement in immune responses. Total haemocyte count (THC), phagocytosis, haemolymph opsonisation properties, hydrolytic and oxidative enzyme activities, and production of intracellular superoxide anion were evaluated. A great variability in THC was recorded among individuals, and haemocyte mean number was 6.4 (x10(6)) cells/ml haemolymph. Although only hyalinocytes were able to phagocytose yeast cells or Zymosan, phagocytic index was low (3%) and did not increase significantly (4%) after pre-incubation of yeast and Zymosan in cell-free haemolymph, suggesting that haemolymph did not have opsonising properties. All haemocyte types produced superoxide anion, whereas only granulocytes were positive to the hydrolytic enzymes assayed. In addition, only granulocytes were positive to phenoloxidase activity. Both Petri dish and spectrophotometric assays revealed a very low lysozyme-like activity in cell-free haemolymph (CFH) and haemocyte lysate (HL), although enzyme activity was higher in CFH than in HL. Interestingly, normalisation of data as to total protein content in CFH and HL resulted in an opposite situation, lysozyme-like activity being higher in HL than in CFH. This demonstrated that haemolymph of C. aestuarii has a high quantity of total proteins, functional properties of which need to be better investigated in future studies. Overall, the results obtained in the present study indicated that C. aestuarii haemocytes are not very active phagocytic cells, but they are more active in terms of both hydrolytic and oxidative enzyme activities and superoxide anion production.
Collapse
Affiliation(s)
- Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | | |
Collapse
|