1
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. Microbiol Spectr 2024; 12:e0348223. [PMID: 38230927 PMCID: PMC10846039 DOI: 10.1128/spectrum.03482-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Periodontitis has recently been defined as a dysbiotic disease caused by an imbalanced oral microbiota. The transition from commensal microbial communities to periodontitis-associated ones requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis. To determine the role of S. cristatus in altering the interactions of P. gingivalis with other oral bacteria in a complex context, we collected dental plaque samples from patients with periodontitis and assigned them to two groups based on the ratios of S. cristatus and P. gingivalis. We then characterized the microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and compared the oral microbial composition and functional capabilities of the group with high S. cristatus-P. gingivalis ratios with the low ratio group. Taxonomic annotation revealed significant differences in the microbial composition at both the genus and species levels between the low and high S. cristatus-P. gingivalis ratio groups. Notably, a higher microbial diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. Furthermore, the antibiotic resistance gene profiles of the two groups were also distinct, with a significantly increased abundance of the genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios. It, therefore, indicates that the S. cristatus-P. gingivalis ratios influenced the virulence potential of the oral microbiome. Our work shows that enhancing the S. cristatus-P. gingivalis ratio in oral microbial communities can be an attractive approach for revising the dysbiotic oral microbiome.IMPORTANCEPeriodontitis, one of the most common chronic diseases, is linked to several systemic diseases, such as cardiovascular disease and diabetes. Although Porphyromonas gingivalis is a keystone pathogen that causes periodontitis, its levels, interactions with accessory bacteria and pathobionts in the oral microbiome, and its association with the pathogenic potential of the microbial communities are still not well understood. In this study, we revealed the role of Streptococcus cristatus and the ratios of S. cristatus and P. gingivalis in modulating the oral microbiome to facilitate a deeper understanding of periodontitis and its progression. The study has important clinical implications as it laid a foundation for developing novel non-antibiotic therapies against P. gingivalis and improving the efficiency of periodontal treatments.
Collapse
Affiliation(s)
- Qingguo Wang
- School of Applied Computational Sciences, Meharry Medical College, Nashville, Tennessee, USA
| | - Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Siddharth Pratap
- School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. RESEARCH SQUARE 2023:rs.3.rs-3266326. [PMID: 37674718 PMCID: PMC10479432 DOI: 10.21203/rs.3.rs-3266326/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Periodontitis has been recently defined as a dysbiotic disease resulting from imbalanced oral microbiota. The transition of microbial communities from commensal to periodontitis-associated ones likely requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis and the role of S. cristatus in inhibition of the biofilm formation, invasion, and gingipain enzymatic activity of P. gingivalis. Given the importance of P. gingivalis as a keystone pathogen of polymicrobial communities, the determinants of P. gingivalis levels, its interaction with the core microbiota, and association with the pathogenic potential of the microbial communities need to be addressed. Results This present study intends to determine the role of S. cristatus in altering interactions of P. gingivalis with other oral bacteria in a complex context. We collected dental plaque samples from periodontitis patients and assigned them into two groups based on their ratios of S. cristatus and P. gingivalis. We then characterized microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and subsequently compared oral microbial composition and functional capabilities between groups with high or low S. cristatus-P. gingivalis ratios. Taxonomic annotation showed significant differences in microbial compositions at both genus and species levels between the two groups. Notably, a higher microbial composition diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. The antibiotic resistance gene profiles of the two groups are also distinct, with significantly increased diversity and abundance of antibiotic resistance genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios, which likely lead to elevated virulence potential. Conclusions Overall, our work highlights the importance of S. cristatus-P. gingivalis ratios in influencing the virulence of the oral microbiome. Approaches to enhance S. cristatus-P. gingivalis ratios in oral microbial communities will be attractive for revising the dysbiotic oral microbiome.
Collapse
Affiliation(s)
| | - Bing-Yan Wang
- University of Texas Health Science Center at Houston
| | | | | |
Collapse
|
3
|
Parga A, Balboa S, Otero-Casal P, Otero A. New Preventive Strategy against Oral Biofilm Formation in Caries-Active Children: An In Vitro Study. Antibiotics (Basel) 2023; 12:1263. [PMID: 37627682 PMCID: PMC10451667 DOI: 10.3390/antibiotics12081263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Quorum quenching (QQ) is the inhibition of bacterial communication, i.e., quorum sensing (QS). QS is a key mechanism in regulating biofilm formation and phenotype in complex bacterial communities, such as those found within cariogenic biofilms. Whereas QQ approaches were shown to effectively reduce biomass, knowledge of their impact on the taxonomic composition of oral polymicrobial biofilms remains scarce. Here, we investigate the effect of the QQ lactonase Aii20J on biomass production and taxonomical composition of biofilms. We collected supragingival plaque samples from 10 caries-free and 10 caries-active children and cultured them to generate in vitro biofilms. We describe significant biomass reductions upon Aii20J exposure, as assessed by crystal violet assays. Taxonomical profiling using 16S rRNA gene amplicon sequencing revealed no significant changes in bacterial composition at the genus level. Interestingly, at the species level Aii20J-treatment increased the abundance of Streptococcus cristatus and Streptococcus salivarius. Both S. cristatus and S. salivarius express pH-buffering enzymes (arginine deiminase and urease, respectively) that catalyze ammonia production, thereby potentially raising local pH and counteracting the biofilm's cariogenic potential. Within the limitations of the study, our findings provide evidence of the biofilm-modulating ability of QQ and offer novel insights into alternative strategies to restore homeostasis within dysbiotic ecosystems.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Sabela Balboa
- Department of Microbiology and Parasitology, Center of Cross-Disciplinary Research in Environmental Technologies (CRETUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Odontology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Unit of Oral Health, Centro de Saúde Santa Comba-Negreira, SERGAS, 15841 Santa Comba, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
4
|
Wang BY, Burgardt G, Parthasarathy K, Ho DK, Weltman RL, Tribble GD, Hong J, Cron S, Xie H. Influences of race/ethnicity in periodontal treatment response and bacterial distribution, a cohort pilot study. FRONTIERS IN ORAL HEALTH 2023; 4:1212728. [PMID: 37377523 PMCID: PMC10291508 DOI: 10.3389/froh.2023.1212728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Objectives Periodontitis disproportionately affects different racial and ethnic populations. We have previously reported the higher levels of Porphyromonas gingivalis and lower ratios of Streptococcus cristatus to P. gingivalis may contribute to periodontal health disparities. This prospective cohort study was designed to investigate if ethnic/racial groups responded differently to non-surgical periodontal treatment and if the treatment outcomes correlated to the bacterial distribution in patients with periodontitis before treatment. Methods This prospective cohort pilot study was carried out in an academic setting, at the School of Dentistry, University of Texas Health Science Center at Houston. Dental plaque was collected from a total of 75 African Americans, Caucasians and Hispanics periodontitis patients in a 3-year period. Quantitation of P. gingivalis and S. cristatus was carried out using qPCR. Clinical parameters including probing depths and clinical attachment levels were determined before and after nonsurgical treatment. Data were analyzed using one-way ANOVA, the Kruskal-Wallis test, the paired samples t-test and the chi-square test. Results The gains in clinical attachment levels after treatment significantly differed amongst the 3 groups-Caucasians responded most favorably, followed by African-Americans, lastly Hispanics, while numbers of P. gingivalis were highest in Hispanics, followed by African-Americans, and lowest in Caucasians (p = 0.015). However, no statistical differences were found in the numbers of S. cristatus amongst the 3 groups. Conclusion Differential response to nonsurgical periodontal treatment and distribution of P. gingivalis are present in different ethnic/racial groups with periodontitis.
Collapse
Affiliation(s)
- Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Grayson Burgardt
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kavitha Parthasarathy
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
| | - Daniel K. Ho
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Robin L. Weltman
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Clinical Sciences, University of Nevada, Las Vegas, NV, United States
| | - Gena D. Tribble
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jianming Hong
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Stanley Cron
- School of Nursing, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
5
|
Wang BY, Cao A, Ho MH, Wilus D, Sheng S, Meng HW, Guerra E, Hong J, Xie H. Identification of microbiological factors associated with periodontal health disparities. Front Cell Infect Microbiol 2023; 13:1137067. [PMID: 36875522 PMCID: PMC9978005 DOI: 10.3389/fcimb.2023.1137067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The present study aimed at identifying risk factors associated with periodontitis development and periodontal health disparities with emphasis on differential oral microbiota. The prevalence of periodontitis is recently rising dentate adults in the US, which presents a challenge to oral health and overall health. The risk of developing periodontitis is higher in African Americans (AAs), and Hispanic Americans (HAs) than in Caucasian Americans (CAs). To identify potentially microbiological determinations of periodontal health disparities, we examined the distribution of several potentially beneficial and pathogenic bacteria in the oral cavities of AA, CA, and HA study participants. Dental plaque samples from 340 individuals with intact periodontium were collected prior to any dental treatment, and levels of some key oral bacteria were quantitated using qPCR, and the medical and dental histories of participants were obtained retrospectively from axiUm. Data were analyzed statistically using SAS 9.4, IBM SPSS version 28, and R/RStudio version 4.1.2. Amongst racial/ethnic groups: 1) neighborhood medium incomes were significantly higher in the CA participants than the AA and the HA participants; 2) levels of bleeding on probing (BOP) were higher in the AAs than in the CAs and HAs; 3) Porphyromonas gingivalis levels were higher in the HAs compared to that in the CAs; 4) most P. gingivalis detected in the AAs were the fimA genotype II strain that was significantly associated with higher BOP indexes along with the fimA type IV strain. Our results suggest that socioeconomic disadvantages, higher level of P. gingivalis, and specific types of P. gingivalis fimbriae, particularly type II FimA, contribute to risks for development of periodontitis and periodontal health disparities.
Collapse
Affiliation(s)
- Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Bing-Yan Wang, ; Hua Xie,
| | - Aize Cao
- School of Applied Computational Sciences, Meharry Medical College, Nashville, TN, United States
| | - Meng-Hsuan Ho
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Derek Wilus
- School of Graduate Studies, Meharry Medical College, Nashville, TN, United States
| | - Sally Sheng
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hsiu-Wan Meng
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Elissa Guerra
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jianming Hong
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
- *Correspondence: Bing-Yan Wang, ; Hua Xie,
| |
Collapse
|
6
|
Akimbekov NS, Digel I, Yerezhepov AY, Shardarbek RS, Wu X, Zha J. Nutritional factors influencing microbiota-mediated colonization resistance of the oral cavity: A literature review. Front Nutr 2022; 9:1029324. [PMID: 36337619 PMCID: PMC9630914 DOI: 10.3389/fnut.2022.1029324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2023] Open
Abstract
The oral cavity is a key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems. The oral microbiota is a vital part of the human microbiome. It has been developed through mutual interactions among the environment, host physiological state, and microbial community composition. Indigenious microbiota of the oral cavity is one of the factors that prevent adhesion and invasion of pathogens on the mucous membrane, i.e., the development of the infectious process and thereby participating in the implementation of one of the mechanisms of local immunity-colonization resistance. The balance between bacterial symbiosis, microbial virulence, and host resistance ensures the integrity of the oral cavity. In this review we have tried to address how nutritional factors influence integrity of the oral indigenous microbiota and its involvement in colonization resistance.
Collapse
Affiliation(s)
- Nuraly S. Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering, FH Aachen University of Applied Sciences, Jülich, Germany
| | - Adil Y. Yerezhepov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Raiymbek S. Shardarbek
- Department of Internal Diseases, Kazakh National Medical University Named After S.D. Asfendiyarov, Almaty, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| |
Collapse
|
7
|
Zhang Y, Ding Y, Guo Q. Probiotic Species in the Management of Periodontal Diseases: An Overview. Front Cell Infect Microbiol 2022; 12:806463. [PMID: 35402306 PMCID: PMC8990095 DOI: 10.3389/fcimb.2022.806463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontal diseases are one of the most common chronic inflammatory diseases of the oral cavity, which are initiated and sustained by pathogenic plaque biofilms. Central to modern periodontology is the idea that dysbiosis of periodontal microecology and disorder of host inflammatory response gives rise to degradation of periodontal tissues together, which eventually leads to tooth loss, seriously affecting the life quality of patients. Probiotics were originally used to treat intestinal diseases, while in recent years, extensive studies have been exploring the utilization of probiotics in oral disease treatment and oral healthcare. Probiotic bacteria derived from the genera Lactobacillus, Bifidobacterium, Streptococcus, and Weissella are found to play an effective role in the prevention and treatment of periodontal diseases via regulating periodontal microbiota or host immune responses. Here, we review the research status of periodontal health-promoting probiotic species and their regulatory effects. The current issues on the effectiveness and safety of probiotics in the management of periodontal diseases are also discussed at last. Taken together, the use of probiotics is a promising approach to prevent and treat periodontal diseases. Nevertheless, their practical use for periodontal health needs further research and exploration.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Qiang Guo,
| |
Collapse
|
8
|
Wang BY, Lu T, Cai Q, Ho MH, Sheng S, Meng HW, Arsto L, Hong J, Xie H. Potential Microbiological Risk Factors Associated With Periodontitis and Periodontal Health Disparities. Front Cell Infect Microbiol 2021; 11:789919. [PMID: 34869082 PMCID: PMC8637773 DOI: 10.3389/fcimb.2021.789919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Periodontitis disproportionately affects different racial and ethnic populations. In this study, we used qPCR to determine and compare oral microbial profiles in dental plaque samples from 191 periodontitis patients of different ethnic/racial backgrounds. We also obtained the periodontal parameters of these patients retrospectively using axiUm and performed statistical analysis using SAS 9.4. We found that in this patient cohort, neighborhood median incomes were significantly higher among Caucasians Americans (CAs) than among African Americans (AAs) and Hispanic Americans (HAs). Levels of total bacteria and Porphyromonas gingivalis, a keystone periodontal pathogen, were not evenly distributed among the three groups. We confirmed our previous findings that Streptococcus cristatus reduces P. gingivalis virulence potential and likely serves as a beneficial bacterium. We also showed the ratio of S. cristatus to P. gingivalis to be significantly higher in CAs than in HAs and AAs. Our results suggest that higher levels of P. gingivalis and lower ratios of S. cristatus to P. gingivalis may contribute to periodontal health disparities.
Collapse
Affiliation(s)
- Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tom Lu
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, United States
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Meng-Hsuan Ho
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Sally Sheng
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hsiu-Wan Meng
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Laura Arsto
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jianming Hong
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
9
|
Kuriki N, Asahi Y, Sotozono M, Machi H, Noiri Y, Hayashi M, Ebisu S. Next-Generation Sequencing for Determining the Effect of Arginine on Human Dental Biofilms Using an In Situ Model. PHARMACY 2021; 9:pharmacy9010018. [PMID: 33445627 PMCID: PMC7838886 DOI: 10.3390/pharmacy9010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Oral biofilms are associated with caries, periodontal diseases, and systemic diseases. Generally, antimicrobial therapy is used as the first line of treatment for infectious diseases; however, bacteria in biofilms eventually develop antibiotic resistance. This study aimed to apply our in situ biofilm model to verify whether an arginine preparation is useful for plaque control. Ten healthy subjects who did not show signs of caries, gingivitis, or periodontitis were recruited. The dental biofilms from the subjects were obtained using our oral device before and after gargling with arginine solution for 4 weeks. We found that 8% arginine solution significantly increased the concentration of ammonium ions (NH4
+) in vitro and in vivo in saliva (p < 0.05) and decreased the proportions of the genera Atopobium and Catonella in vivo. However, the viable count was unaffected by the mouthwash. Further, oral populations of the genera Streptococcus and Neisseria tended to increase with the use of arginine. Therefore, we concluded that using an 8% arginine solution decreased the NH4
+ concentration in the oral cavity without affecting the number of viable bacteria, and that the diversity of oral bacterial flora changed. We suggest that arginine might help prevent mature biofilm formation.
Collapse
Affiliation(s)
- Nanako Kuriki
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
- Correspondence: ; Tel.: +81-(66)-8792927
| | - Yoko Asahi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Maki Sotozono
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Hiroyuki Machi
- Osaka University Dental Technology Institute, Suita, Osaka 565-0871, Japan;
| | - Yuichiro Noiri
- Department of Oral Health Science, Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Shigeyuki Ebisu
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| |
Collapse
|
10
|
Ho MH, Hasturk H, Young DF, Xie H. In vivo and ex vivo actions of a novel P. gingivalis inhibitor on multi-species biofilm, inflammatory response, and periodontal bone loss. Mol Oral Microbiol 2020; 35:193-201. [PMID: 32608190 PMCID: PMC7727922 DOI: 10.1111/omi.12305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Chronic periodontitis is one of the most common infectious inflammatory diseases worldwide. Current therapeutic options for the disease are only partially and temporarily successful due to periodontal re-emergence of pathogens such as Porphyromonas gingivalis, a keystone bacterium in the oral microbial communities, which elicits a dysbiosis between the microbiota and the host. Previously, we reported a peptide inhibitor of P. gingivalis (SAPP) that specifically targets P. gingivalis and reduces its virulence potential in vitro. Here, we show that SAPP can modulate the ability of P. gingivalis to suppress the host innate immune system. Using a cytokine array analysis, we found that the levels of several cytokines including IL-6, IL-8, and MCP-1 in the culture media of human oral keratinocytes (HOKs) were significantly diminished in the presence of P. gingivalis. Whereas the levels of these cytokines were restored, at least partially, in the culture media of HOKs by SAPP treatment. Furthermore, we also observed in an ex vivo assay that SAPP efficiently inhibited biofilm primed formation by mixed-species oral bacteria, and significantly dampened the abnormally innate immune responses induced by these bacteria. We also demonstrated, using a mouse model, that SAPP could prevent alveolar bone loss induced by P. gingivalis. Our results suggest that SAPP specifically targets P. gingivalis and its associated bacterial communities and could be envisioned as an emerging therapy for periodontitis.
Collapse
Affiliation(s)
- Meng-Hsuan Ho
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| | - Hatice Hasturk
- Department of Applied Oral Sciences, Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Daphne F. Young
- General Practice Residency Program, Meharry Medical College, Nashville, TN. USA
| | - Hua Xie
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
11
|
Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol 2019; 34:169-182. [PMID: 31389653 PMCID: PMC6772003 DOI: 10.1111/omi.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.
Collapse
Affiliation(s)
- Maryta N. Sztukowska
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Mohammad Roky
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| |
Collapse
|
12
|
Vermilyea DM, Ottenberg GK, Davey ME. Citrullination mediated by PPAD constrains biofilm formation in P. gingivalis strain 381. NPJ Biofilms Microbiomes 2019; 5:7. [PMID: 32029738 PMCID: PMC6367333 DOI: 10.1038/s41522-019-0081-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is the only known human-associated prokaryote that produces a peptidylarginine deiminase (PPAD), a protein-modifying enzyme that is secreted along with a number of virulence factors via a type IX secretion system (T9SS). While the function of PPAD in P. gingivalis physiology is not clear, human peptidylarginine deiminases are known to convert positively charged arginine residues within proteins to neutral citrulline and, thereby, impact protein conformation and function. Here, we report that the lack of citrullination in a PPAD deletion mutant (Δ8820) enhances biofilm formation. More Δ8820 cells attached to the surface than the parent strain during the early stages of biofilm development and, ultimately, mature Δ8820 biofilms were comprised of significantly more cell-cell aggregates and extracellular matrix. Imaging by electron microscopy discovered that Δ8820 biofilm cells secrete copious amounts of protein aggregates. Furthermore, gingipain-derived adhesin proteins, which are also secreted by the T9SS were predicted by mass spectrometry to be citrullinated and citrullination of these targets by wild-type strain 381 in vitro was confirmed. Lastly, Δ8820 biofilms contained more gingipain-derived adhesin proteins and more gingipain activity than 381 biofilms. Overall, our findings support the model that citrullination of T9SS cargo proteins known to play a key role in colonization, such as gingipain-derived adhesin proteins, is an underlying mechanism that modulates P. gingivalis biofilm development.
Collapse
Affiliation(s)
- Danielle M Vermilyea
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Gregory K Ottenberg
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Mary E Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Ho M, Lamont RJ, Chazin WJ, Chen H, Young DF, Kumar P, Xie H. Characterization and development of SAPP as a specific peptidic inhibitor that targets Porphyromonas gingivalis. Mol Oral Microbiol 2018; 33:430-439. [PMID: 30298683 PMCID: PMC6246824 DOI: 10.1111/omi.12246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023]
Abstract
Porphyromonas gingivalis is a keystone bacterium in the oral microbial communities that elicits a dysbiosis between the microbiota and the host. Therefore, inhibition of this organism in dental plaques has been one of the strategies for preventing and treating chronic periodontitis. We previously identified a Streptococcal ArcA derived Anti-P gingivalils Peptide (SAPP) that in vitro, is capable of repressing the expression of several virulence genes in the organism. This leads to a significant reduction in P gingivalis virulence potential, including its ability to colonize on the surface of Streptococcus gordonii, to invade human oral epithelial cells, and to produce gingipains. In this study, we showed that SAPP had minimal cytotoxicity to human oral keratinocytes and gingival fibroblasts. We observed that SAPP directly bound to the cell surface of P gingivalis, and that alterations in the sequence at the N-terminus of SAPP diminished its abilities to interact with P gingivalis cells and repressed the expression of virulence genes. Most strikingly, we demonstrated using an ex-vivo assay that besides its inhibitory activity against P gingivalis colonization, SAPP could also reduce the levels of several other oral Gram-negative bacteria strongly associated with periodontitis in multispecies biofilms. Our results provide a platform for the development of SAPP-targeted therapeutics against chronic periodontitis.
Collapse
Affiliation(s)
- M. Ho
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| | - R. J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - W. J. Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - H. Chen
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - D. F. Young
- General Practice Residency Program, Meharry Medical College, Nashville, TN. USA
| | - P. Kumar
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| | - H. Xie
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
14
|
Abstract
The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.
Collapse
|
15
|
Elmasri WA, Zhu R, Peng W, Al-Hariri M, Kobeissy F, Tran P, Hamood AN, Hegazy MF, Paré PW, Mechref Y. Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium Staphylococcus aureus: A Proteomic Characterization. J Proteome Res 2017; 16:2579-2586. [PMID: 28541047 DOI: 10.1021/acs.jproteome.7b00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth inhibition of the pathogen Staphylococcus aureus with currently available antibiotics is problematic in part due to bacterial biofilm protection. Although recently characterized natural products, including 3',4',5-trihydroxy-6,7-dimethoxy-flavone [1], 3',4',5,6,7-pentahydroxy-flavone [2], and 5-hydroxy-4',7-dimethoxy-flavone [3], exhibit both antibiotic and biofilm inhibitory activities, the mode of action of such hydroxylated flavonoids with respect to S. aureus inhibition is yet to be characterized. Enzymatic digestion and high-resolution MS analysis of differentially expressed proteins from S. aureus with and without exposure to antibiotic flavonoids (1-3) allowed for the characterization of global protein alterations induced by metabolite treatment. A total of 56, 92, and 110 proteins were differentially expressed with bacterial exposure to 1, 2, or 3, respectively. The connectivity of the identified proteins was characterized using a search tool for the retrieval of interacting genes/proteins (STRING) with multitargeted S. aureus inhibition of energy metabolism and biosynthesis by the assayed flavonoids. Identifying the mode of action of natural products as antibacterial agents is expected to provide insight into the potential use of flavonoids alone or in combination with known therapeutic agents to effectively control S. aureus infection.
Collapse
Affiliation(s)
- Wael A Elmasri
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Rui Zhu
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Wenjing Peng
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Moustafa Al-Hariri
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut , Beirut 1107 2020, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut , Beirut 1107 2020, Lebanon
| | | | | | - Mohamed F Hegazy
- Department of Phytochemistry, National Research Centre , Giza 12311, Egypt
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
16
|
Ho MH, Lamont RJ, Xie H. Identification of Streptococcus cristatus peptides that repress expression of virulence genes in Porphyromonas gingivalis. Sci Rep 2017; 7:1413. [PMID: 28469253 PMCID: PMC5431200 DOI: 10.1038/s41598-017-01551-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Dental plaque is a complex multispecies biofilm, and is a direct precursor of periodontal disease. The virulence of periodontal pathogens, such as Porphyromonas gingivalis, is expressed in the context of this polymicrobial community. Previously, we reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis, and identified arginine deiminase (ArcA) of S. cristatus as the signaling molecule to which P. gingivalis responds by repressing the expression and production of FimA protein. Here we demonstrate that direct interaction between P. gingivalis and S. cristatus is necessary for the cell-cell communication. Two surface proteins of P. gingivalis, PGN_0294 and PGN_0806, were found to interact with S. cristatus ArcA. Using a peptide array analysis, we identified several P. gingivalis-binding sites of ArcA, which led to the discovery of an 11-mer peptide with the native sequence of ArcA that repressed expression of fimbriae and of gingipains. These data indicate that a functional motif of ArcA is sufficient to selectively alter virulence gene expression in P. gingivalis, and PGN_0294 and PGN_0806 may serve as receptors for ArcA. Our findings provide a molecular basis for future rational design of agents that interfere with the initiation and formation of a P. gingivalis-induced pathogenic community.
Collapse
Affiliation(s)
- Meng-Hsuan Ho
- Department of Oral Biology, Meharry Medical College, Nashville, TN, 37208, United States
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, 40202, United States
| | - Hua Xie
- Department of Oral Biology, Meharry Medical College, Nashville, TN, 37208, United States.
| |
Collapse
|
17
|
Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS One 2015; 10:e0121835. [PMID: 25946040 PMCID: PMC4422691 DOI: 10.1371/journal.pone.0121835] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37oC. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm3/μm2) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi-species oral biofilm development and community composition and enhances the activity of CPC. The incorporation of LAHCl into oral healthcare products may be useful for enhanced biofilm control.
Collapse
Affiliation(s)
- Ethan Kolderman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Deepti Bettampadi
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Derek Samarian
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Scot E. Dowd
- Molecular Research LP (MR DNA), Shallowater, TX, United States of America
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Nicholas S. Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, United States of America
| | - Alexander H. Rickard
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
18
|
Aruni AW, Mishra A, Dou Y, Chioma O, Hamilton BN, Fletcher HM. Filifactor alocis--a new emerging periodontal pathogen. Microbes Infect 2015; 17:517-30. [PMID: 25841800 DOI: 10.1016/j.micinf.2015.03.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Filifactor alocis, a previously unrecognized Gram-positive anaerobic rod, is now considered a new emerging pathogen that may play a significant role in periodontal disease. F. alocis' unique characteristics and variations at the molecular level that may be responsible for the functional changes required to mediate the pathogenic process are discussed.
Collapse
Affiliation(s)
- A Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Arunima Mishra
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Ozioma Chioma
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Brittany N Hamilton
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA; Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Citrulline protects Streptococcus pyogenes from acid stress using the arginine deiminase pathway and the F1Fo-ATPase. J Bacteriol 2015; 197:1288-96. [PMID: 25645553 DOI: 10.1128/jb.02517-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED A common stress encountered by both pathogenic and environmental bacteria is exposure to a low-pH environment, which can inhibit cell growth and lead to cell death. One major defense mechanism against this stress is the arginine deiminase (ADI) pathway, which catabolizes arginine to generate two ammonia molecules and one molecule of ATP. While this pathway typically relies on the utilization of arginine, citrulline has also been shown to enter into the pathway and contribute to protection against acid stress. In the pathogenic bacterium Streptococcus pyogenes, the utilization of citrulline has been demonstrated to contribute to pathogenesis in a murine model of soft tissue infection, although the mechanism underlying its role in infection is unknown. To gain insight into this question, we analyzed a panel of mutants defective in different steps in the ADI pathway to dissect how arginine and citrulline protect S. pyogenes in a low-pH environment. While protection provided by arginine utilization occurred through the buffering of the extracellular environment, citrulline catabolism protection was pH independent, requiring the generation of ATP via the ADI pathway and a functional F1Fo-ATP synthase. This work demonstrates that arginine and citrulline catabolism protect against acid stress through distinct mechanisms and have unique contributions to virulence during an infection. IMPORTANCE An important aspect of bacterial pathogenesis is the utilization of host-derived nutrients during an infection for growth and virulence. Previously published work from our lab identified a unique role for citrulline catabolism in Streptococcus pyogenes during a soft tissue infection. The present article probes the role of citrulline utilization during this infection and its contribution to protection against acid stress. This work reveals a unique and concerted action between the catabolism of citrulline and the F1Fo-ATPase that function together to provide protection for bacteria in a low-pH environment. Dissection of these collaborative pathways highlights the complexity of bacterial infections and the contribution of atypical nutrients, such as citrulline, to pathogenesis.
Collapse
|
20
|
Comparative genome analysis and identification of competitive and cooperative interactions in a polymicrobial disease. ISME JOURNAL 2014; 9:629-42. [PMID: 25171331 PMCID: PMC4331577 DOI: 10.1038/ismej.2014.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Polymicrobial diseases are caused by combinations of multiple bacteria, which can lead to not only mild but also life-threatening illnesses. Periodontitis represents a polymicrobial disease; Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, called ‘the red complex', have been recognized as the causative agents of periodontitis. Although molecular interactions among the three species could be responsible for progression of periodontitis, the relevant genetic mechanisms are unknown. In this study, we uncovered novel interactions in comparative genome analysis among the red complex species. Clustered regularly interspaced short palindromic repeats (CRISPRs) of T. forsythia might attack the restriction modification system of P. gingivalis, and possibly work as a defense system against DNA invasion from P. gingivalis. On the other hand, gene deficiencies were mutually compensated in metabolic pathways when the genes of all the three species were taken into account, suggesting that there are cooperative relationships among the three species. This notion was supported by the observation that each of the three species had its own virulence factors, which might facilitate persistence and manifestations of virulence of the three species. Here, we propose new mechanisms of bacterial symbiosis in periodontitis; these mechanisms consist of competitive and cooperative interactions. Our results might shed light on the pathogenesis of periodontitis and of other polymicrobial diseases.
Collapse
|
21
|
Guo L, He X, Shi W. Intercellular communications in multispecies oral microbial communities. Front Microbiol 2014; 5:328. [PMID: 25071741 PMCID: PMC4076886 DOI: 10.3389/fmicb.2014.00328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/14/2014] [Indexed: 01/22/2023] Open
Abstract
The oral cavity contains more than 700 microbial species that are engaged in extensive cell–cell interactions. These interactions contribute to the formation of highly structured multispecies communities, allow them to perform physiological functions, and induce synergistic pathogenesis. Co-adhesion between oral microbial species influences their colonization of oral cavity and effectuates, to a large extent, the temporal and spatial formation of highly organized polymicrobial community architecture. Individual species also compete and collaborate with other neighboring species through metabolic interactions, which not only modify the local microenvironment such as pH and the amount of oxygen, making it more suitable for the growth of other species, but also provide a metabolic framework for the participating microorganisms by maximizing their potential to extract energy from limited substrates. Direct physical contact of bacterial species with its neighboring co-habitants within microbial community could initiate signaling cascade and achieve modulation of gene expression in accordance with different species it is in contact with. In addition to communication through cell–cell contact, quorum sensing (QS) mediated by small signaling molecules such as competence-stimulating peptides (CSPs) and autoinducer-2 (AI-2), plays essential roles in bacterial physiology and ecology. This review will summarize the evidence that oral microbes participate in intercellular communications with co-inhabitants through cell contact-dependent physical interactions, metabolic interdependencies, as well as coordinative signaling systems to establish and maintain balanced microbial communities.
Collapse
Affiliation(s)
- Lihong Guo
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Xuesong He
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Wenyuan Shi
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| |
Collapse
|
22
|
Aruni W, Chioma O, Fletcher HM. Filifactor alocis: The Newly Discovered Kid on the Block with Special Talents. J Dent Res 2014; 93:725-32. [PMID: 24898946 DOI: 10.1177/0022034514538283] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/07/2014] [Indexed: 01/05/2023] Open
Abstract
Infection-induced periodontal disease has been primarily focused on a small group of periodontal pathogens. A paradigm shift, based on data emerging from the oral microbiome project, now suggests the involvement of as-yet-unculturable and fastidious organisms. Collectively, these studies have demonstrated that there are changes in the periodontal status associated with shifts in the composition of the bacterial community in the periodontal pocket. In addition, it is likely that the emerging new pathogens may play a more significant role in the disease. One of the organisms previously unrecognized is Filifactor alocis. While this Gram-positive anaerobic rod has been identified in peri-implantitis, in endodontic infections, and in patients with localized aggressive periodontitis, its presence is now observed at significantly higher levels in patients with adult periodontitis or refractory periodontitis. Its colonization properties and its potential virulence attributes support the proposal that F. alocis should be included as a diagnostic indicator of periodontal disease. Moreover, these emerging characteristics would be consistent with the polymicrobial synergy and dysbiosis (PSD) periodontal pathogenesis model. Here, unique characteristics of F. alocis are discussed. F. alocis has specific factors that can modulate multiple changes in the microbial community and host cell proteome. It is likely that such variations at the molecular level are responsible for the functional changes required to mediate the pathogenic process.
Collapse
Affiliation(s)
- W Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - O Chioma
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Katharios-Lanwermeyer S, Xi C, Jakubovics NS, Rickard AH. Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development. BIOFOULING 2014; 30:1235-1251. [PMID: 25421394 DOI: 10.1080/08927014.2014.976206] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coaggregation is the specific recognition and adherence of genetically distinct microorganisms. Because most biofilms are polymicrobial communities, there is potential for coaggregation to play an integral role in spatiotemporal biofilm development and the moderation of biofilm community composition. However, understanding of the mechanisms contributing to coaggregation and the relevance of coaggregation to biofilm ecology is at a very early stage. The purpose of this review is to highlight recent advances in the understanding of microbial coaggregation within different environments and to describe the possible ecological ramifications of such interactions. Bacteria that coaggregate with many partner species within different environments will be highlighted, including oral streptococci and oral bridging organisms such as fusobacteria, as well as the freshwater sphingomonads and acinetobacters. Irrespective of environment, it is proposed that coaggregation is essential for the orchestrated development of multi-species biofilms.
Collapse
Affiliation(s)
- S Katharios-Lanwermeyer
- a Department of Environmental Health Sciences , University of Michigan , Ann Arbor , MI , USA
| | | | | | | |
Collapse
|
24
|
Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:43-110. [PMID: 24581389 DOI: 10.1016/b978-0-12-800261-2.00002-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now clear that the most common oral diseases, dental caries and periodontitis, are caused by mixed-species communities rather than by individual pathogens working in isolation. Oral streptococci are central to these disease processes since they are frequently the first microorganisms to colonize oral surfaces and they are numerically the dominant microorganisms in the human mouth. Numerous interactions between oral streptococci and other bacteria have been documented. These are thought to be critical for the development of mixed-species oral microbial communities and for the transition from oral health to disease. Recent metagenomic studies are beginning to shed light on the co-occurrence patterns of streptococci with other oral bacteria. Refinements in microscopy techniques and biofilm models are providing detailed insights into the spatial distribution of streptococci in oral biofilms. Targeted genetic manipulation is increasingly being applied for the analysis of specific genes and networks that modulate interspecies interactions. From this work, it is clear that streptococci produce a range of extracellular factors that promote their integration into mixed-species communities and enable them to form social networks with neighboring taxa. These "community integration factors" include coaggregation-mediating adhesins and receptors, small signaling molecules such as peptides or autoinducer-2, bacteriocins, by-products of metabolism including hydrogen peroxide and lactic acid, and a range of extracellular enzymes. Here, we provide an overview of various types of community interactions between oral streptococci and other microorganisms, and we consider the possibilities for the development of new technologies to interfere with these interactions to help control oral biofilms.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Sufian A Yassin
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Interspecies communication and periodontal disease. ScientificWorldJournal 2013; 2013:765434. [PMID: 24396307 PMCID: PMC3874309 DOI: 10.1155/2013/765434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
More than 500 bacterial strains may be found in dental plaque. In the beginning, the emphasis was laid on the isolation of bacteria in pure culture to define their properties. However, now, it has been well established that in nature the bacteria exist as a member of polymicrobial community or consortium of interacting species. Interactions among human oral bacteria are integral to the development and maturation of the plaque. These interactions occur at several levels including physical contact, metabolic exchange, small-signal molecule-mediated communication, and exchange of genetic material. This high level of interspecies interaction benefits the microorganism by providing a broader habitat range, effective metabolism, increasing the resistance to host defence, and enhancing their virulence. This generally has a detrimental effect on the host and is attributed to many chronic infections which poses a therapeutic challenge.
Collapse
|
26
|
Wang Q, Wright CJ, Dingming H, Uriarte SM, Lamont RJ. Oral community interactions of Filifactor alocis in vitro. PLoS One 2013; 8:e76271. [PMID: 24098460 PMCID: PMC3789735 DOI: 10.1371/journal.pone.0076271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Filifactor alocis is a gram positive anaerobe that is emerging as an important periodontal pathogen. In the oral cavity F. alocis colonizes polymicrobial biofilm communities; however, little is known regarding the nature of the interactions between F. alocis and other oral biofilm bacteria. Here we investigate the community interactions of two strains of F. alocis with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, organisms with differing pathogenic potential in the oral cavity. In an in vitro community development model, S. gordonii was antagonistic to the accumulation of F. alocis into a dual species community. In contrast, F. nucleatum and the type strain of F. alocis formed a synergistic partnership. Accumulation of a low passage isolate of F. alocis was also enhanced by F. nucleatum. In three species communities of S. gordonii, F. nucleatum and F. alocis, the antagonistic effects of S. gordonii superseded the synergistic effects of F. nucleatum toward F. alocis. The interaction between A. actinomycetemcomitans and F. alocis was strain specific and A. actinomycetemcomitans could either stimulate F. alocis accumulation or have no effect depending on the strain. P. gingivalis and F. alocis formed heterotypic communities with the amount of P. gingivalis greater than in the absence of F. alocis. However, while P. gingivalis benefited from the relationship, levels of F. alocis in the dual species community were lower compared to F. alocis alone. The inhibitory effect of P. gingivalis toward F. alocis was dependent, at least partially, on the presence of the Mfa1 fimbrial subunit. In addition, AI-2 production by P. gingivalis helped maintain levels of F. alocis. Collectively, these results show that the pattern of F. alocis colonization will be dictated by the spatial composition of microbial microenvironments, and that the organism may preferentially accumulate at sites rich in F. nucleatum.
Collapse
Affiliation(s)
- Qian Wang
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Christopher J. Wright
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Huang Dingming
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Silvia M. Uriarte
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Richard J. Lamont
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
27
|
Nagano K. FimA Fimbriae of the Periodontal Disease-associated Bacterium Porphyromonas gingivalis. YAKUGAKU ZASSHI 2013; 133:963-74. [DOI: 10.1248/yakushi.13-00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
28
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
29
|
Evidence for broad-spectrum biofilm inhibition by the bacterium Bacillus sp. strain SW9. Appl Environ Microbiol 2012; 79:1735-8. [PMID: 23263956 DOI: 10.1128/aem.02796-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a Bacillus sp. strain that could display broad-spectrum biofilm inhibition. The broad biofilm prevention could be achieved mainly by direct contact between inhibitor and target cells or was accompanied by an interaction with secreted inhibitory compounds. The repression of cell surface fimbria-like appendages of a biofilm producer was also observed; this was considered to contribute to the reduction in mixed biofilms.
Collapse
|
30
|
Cugini C, Stephens DN, Nguyen D, Kantarci A, Davey ME. Arginine deiminase inhibits Porphyromonas gingivalis surface attachment. MICROBIOLOGY-SGM 2012; 159:275-285. [PMID: 23242802 DOI: 10.1099/mic.0.062695-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | | | - Daniel Nguyen
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Mary E Davey
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
31
|
Xie H, Hong J, Sharma A, Wang BY. Streptococcus cristatus ArcA interferes with Porphyromonas gingivalis pathogenicity in mice. J Periodontal Res 2012; 47:578-83. [PMID: 22448761 DOI: 10.1111/j.1600-0765.2012.01469.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Porphyromonas gingivalis has been implicated as one of the major pathogens in chronic periodontitis, an infectious disease affecting the majority of the adult population. We have previously demonstrated that a surface protein, arginine deiminase (ArcA), of Streptococcus cristatus represses production of P. gingivalis long fimbriae and interrupts the formation of P. gingivalis biofilms in vitro. Our in vivo studies have also shown that the distribution of P. gingivalis and S. cristatus in human subgingival plaque is negatively correlated. The objective of this study was to determine if S. cristatus ArcA inhibits P. gingivalis colonization and attenuates its subsequent pathogenesis in alveolar bone loss in the murine oral cavity. MATERIAL AND METHODS A wild-type strain of S. cristatus (CC5A) and its arcA knockout mutant (ArcAE) were used as initial colonizers in the oral cavity of BALB/cByJ mice. Colonization of P. gingivalis on the existing S. cristatus biofilms was assessed by quantitative PCR, and P. gingivalis-induced alveolar bone loss was measured 6 wk after P. gingivalis infection. RESULTS The presence of S. cristatus CC5A, but not its arcA mutant, attenuated P. gingivalis colonization in the murine oral cavity. In addition, P. gingivalis-induced alveolar bone loss was significantly lower in mice initially infected with S. cristatus CC5A than in those infected with the arcA mutant. CONCLUSION This study provides direct evidence that S. cristatus ArcA has an inhibitory effect on P. gingivalis colonization, which may in turn attenuate the pathogenicity of P. gingivalis.
Collapse
Affiliation(s)
- H Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | | | | | | |
Collapse
|
32
|
Rendueles O, Ghigo JM. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 2012; 36:972-89. [PMID: 22273363 DOI: 10.1111/j.1574-6976.2012.00328.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/17/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
Multi-species biofilm communities are environments in which complex but ill understood exchanges between bacteria occur. Although monospecies cultures are still widely used in the laboratory, new approaches have been undertaken to study interspecies interactions within mixed communities. This review describes our current understanding of competitive relationships involving nonbiocidal biosurfactants, enzymes, and metabolites produced by bacteria and other microorganisms. These molecules target all steps of biofilm formation, ranging from inhibition of initial adhesion to matrix degradation, jamming of cell-cell communications, and induction of biofilm dispersion. This review presents available data on nonbiocidal molecules and provides a new perspective on competitive interactions within biofilms that could lead to antibiofilm strategies of potential biomedical interest.
Collapse
Affiliation(s)
- Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
| | | |
Collapse
|
33
|
Abstract
Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria.
Collapse
Affiliation(s)
- Ruijie Huang
- Department of Oral Biology and Tobacco Cessation and Biobehavioral Center, School of Dentistry, Indiana University, Indianapolis, IN, USA
| | | | | |
Collapse
|
34
|
Abstract
The mitis group streptococci (MGS) are widespread in the oral cavity and are traditionally associated with oral health. However, these organisms have many attributes that contribute to the development of pathogenic oral communities. MGS adhere rapidly to saliva-coated tooth surfaces, thereby providing an attachment substratum for more overtly pathogenic organisms such as Porphyromonas gingivalis, and the two species assemble into heterotypic communities. Close physical association facilitates physiologic support, and pathogens such as Aggregatibacter actinomycetemcomitans display resource partitioning to favour carbon sources generated by streptococcal metabolism. MGS exchange information with community members through a number of interspecies signalling systems including AI-2 and contact dependent mechanisms. Signal transduction systems induced in P. gingivalis are based on protein dephosphorylation mediated by the tyrosine phosphatase Ltp1, and converge on a LuxR-family transcriptional regulator, CdhR. Phenotypic responses in P. gingivalis include regulation of hemin uptake systems and gingipain activity, processes that are intimately linked to the virulence of the organism. Furthermore, communities of S. gordonii with P. gingivalis or with A. actinomycetemcomitans are more pathogenic in animal models than the constituent species alone. We propose that MGS should be considered accessory pathogens, organisms whose pathogenic potential only becomes evident in the context of a heterotypic microbial community.
Collapse
Affiliation(s)
- Sarah E Whitmore
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
35
|
The kinetics of the arginine deiminase pathway in the meat starter culture Lactobacillus sakei CTC 494 are pH-dependent. Food Microbiol 2011; 28:597-604. [DOI: 10.1016/j.fm.2010.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022]
|
36
|
|
37
|
Abstract
Growth of oral bacteria in situ requires adhesion to a surface because the constant flow of host secretions thwarts the ability of planktonic cells to grow before they are swallowed. Therefore, oral bacteria evolved to form biofilms on hard tooth surfaces and on soft epithelial tissues, which often contain multiple bacterial species. Because these biofilms are easy to study, they have become the paradigm of multispecies biofilms. In this Review we describe the factors involved in the formation of these biofilms, including the initial adherence to the oral tissues and teeth, cooperation between bacterial species in the biofilm, signalling between the bacteria and its role in pathogenesis, and the transfer of DNA between bacteria. In all these aspects distance between cells of different species is integral for oral biofilm growth.
Collapse
|
38
|
Wang BY, Alvarez P, Hong J, Kuramitsu HK. Periodontal pathogens interfere with quorum-sensing-dependent virulence properties in Streptococcus mutans. J Periodontal Res 2010; 46:105-10. [PMID: 21108642 DOI: 10.1111/j.1600-0765.2010.01319.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE The mechanism by which periodontal pathogens dominate at disease sites is not yet understood. One possibility is that these late colonizers antagonize the quorum-sensing systems of early colonizers and render those early colonizers less resistant to environmental factors. In this study, we utilized Streptococcus mutans, a well-documented oral Streptococcus with many quorum-sensing-dependent properties, as an example of an earlier colonizer antagonized by periodontal pathogens. MATERIAL AND METHODS In this study, S. mutans NG8 and S. mutans LT11 were used in experiments assessing transformation, and S. mutans BM71 was used in experiments investigating bacteriocin production. The effects of the periodontal pathogens Porphyromonas gingivalis and Treponema denticola on these competence-stimulating peptide-dependent properties were evaluated in mixed-broth assays. RESULTS Both P. gingivalis (either live bacteria or membrane vesicles) and T. denticola antagonized transformation in S. mutans NG8 and LT11. The production of bacteriocin by S. mutans BM71 was also inhibited by P. gingivalis and T. denticola. Boiling of these late colonizers before addition to the broth cultures abolished their ability to inhibit S. mutans transformation and bacteriocin production. P. gingivalis and T. denticola inactivated S. mutans exogenous competence-stimulating peptide, whereas the boiled bacteria did not. CONCLUSIONS This study demonstrated that periodontal pathogens antagonize S. mutans quorum-sensing properties. This may render S. mutans less virulent and less resistant to environmental antibacterial factors.
Collapse
Affiliation(s)
- B Y Wang
- Department of Periodontics and Endodontics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
39
|
Wang BY, Deutch A, Hong J, Kuramitsu HK. Proteases of an early colonizer can hinder Streptococcus mutans colonization in vitro. J Dent Res 2010; 90:501-5. [PMID: 21088146 DOI: 10.1177/0022034510388808] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Streptococcus mutans is the primary cariogen that produces several virulence factors that are modulated by a competence-stimulating peptide (CSP) signaling system. In this study, we sought to determine if proteases produced by early dental plaque colonizers such as Streptococcus gordonii interfere with the subsequent colonization of S. mutans BM71 on the existing streptococcal biofilms. We demonstrated that S. mutans BM71 colonized much less efficiently in vitro on streptococcal biofilms than on Actinomyces naeslundii biofilms. Several oral streptococci, relative to A. naeslundii, produced proteases that inactivated the S. mutans CSP. We further demonstrated that cell protein extracts from S. gordonii, but not from A. naeslundii, interfered with S. mutans BM71 colonization. In addition, S. mutans BM71 colonized more efficiently on the sgc protease knockout mutant of S. gordonii than on the parent biofilms. In conclusion, proteases of early colonizers can interfere with subsequent colonization by S. mutans in vitro.
Collapse
Affiliation(s)
- B-Y Wang
- Department of Periodontics and Endodontics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
40
|
Chawla A, Hirano T, Bainbridge BW, Demuth DR, Xie H, Lamont RJ. Community signalling between Streptococcus gordonii and Porphyromonas gingivalis is controlled by the transcriptional regulator CdhR. Mol Microbiol 2010; 78:1510-22. [PMID: 21143321 DOI: 10.1111/j.1365-2958.2010.07420.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interspecies signalling between Porphyromonas gingivalis and Streptococcus gordonii serves to constrain development of dual species communities. Contact with S. gordonii propagates a tyrosine phosphorylation-dependent signal within P. gingivalis that culminates in reduced transcription of adhesin and signalling genes. Here we demonstrate the involvement of the P. gingivalis orphan LuxR family transcription factor PGN_1373, which we designate CdhR, in this control pathway. Expression of cdhR is elevated following contact with S. gordonii; however, regulation of cdhR did not occur in a mutant lacking the tyrosine phosphatase Ltp1, indicating that CdhR and Ltp1 are components of the same regulon. Contact between S. gordonii and a CdhR mutant resulted in increased transcription of mfa, encoding the subunit of the short fimbriae, along with higher levels of Mfa protein. Expression of luxS, encoding AI-2 synthase, was also increased in the cdhR mutant after contact with S. gordonii. The Mfa adhesive function and AI-2-dependent signalling participate in the formation and development of dual species communities, and consistent with this the cdhR mutant displayed elevated accumulation on a substratum of S. gordonii. Recombinant CdhR protein bound to upstream regulatory regions of both mfa and luxS, indicating that CdhR has a direct effect on gene expression. LuxS was also found to participate in a positive feedback loop that suppresses CdhR expression. Interaction of Mfa fimbriae with S. gordonii is necessary to initiate signalling through CdhR. These results reveal CdhR to be an effector molecule in a negative regulatory network that controls P. gingivalis-S. gordonii heterotypic communities.
Collapse
Affiliation(s)
- Aarti Chawla
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
41
|
Christopher AB, Arndt A, Cugini C, Davey ME. A streptococcal effector protein that inhibits Porphyromonas gingivalis biofilm development. MICROBIOLOGY-SGM 2010; 156:3469-3477. [PMID: 20705665 DOI: 10.1099/mic.0.042671-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dental plaque formation is a developmental process involving cooperation and competition within a diverse microbial community, approximately 70 % of which is composed of an array of streptococci during the early stages of supragingival plaque formation. In this study, 79 cell-free culture supernatants from a variety of oral streptococci were screened to identify extracellular compounds that inhibit biofilm formation by the oral anaerobe Porphyromonas gingivalis strain 381. The majority of the streptococcal supernatants (61 isolates) resulted in lysis of P. gingivalis cells, and some (17 isolates) had no effect on cell viability, growth or biofilm formation. One strain, however, produced a supernatant that abolished biofilm formation without affecting growth rate. Analysis of this activity led to the discovery that a 48 kDa protein was responsible for the inhibition. Protein sequence identification and enzyme activity assays identified the effector protein as an arginine deiminase. To identify the mechanism(s) by which this protein inhibits biofilm formation, we began by examining the expression levels of genes encoding fimbrial subunits; surface structures known to be involved in biofilm development. Quantitative RT-PCR analysis revealed that exposure of P. gingivalis cells to this protein for 1 h resulted in the downregulation of genes encoding proteins that are the major subunits of two distinct types of thin, single-stranded fimbriae (fimA and mfa1). Furthermore, this downregulation occurred in the absence of arginine deiminase enzymic activity. Hence, our data indicate that P. gingivalis can sense this extracellular protein, produced by an oral streptococcus (Streptococcus intermedius), and respond by downregulating expression of cell-surface appendages required for attachment and biofilm development.
Collapse
Affiliation(s)
| | - Annette Arndt
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Carla Cugini
- Department of Molecular Genetics, The Forsyth Institute, Boston, MA, USA
| | - Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, Boston, MA, USA
| |
Collapse
|
42
|
Role of arginine deiminase of Streptococcus cristatus in Porphyromonas gingivalis colonization. Antimicrob Agents Chemother 2010; 54:4694-8. [PMID: 20660674 DOI: 10.1128/aac.00284-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to attach to a variety of oral surfaces is an important characteristic of Porphyromonas gingivalis. Previous studies have demonstrated that expression and production of FimA, a major subunit protein of the long fimbriae, is required for P. gingivalis colonization. Here we report that a surface protein, arginine deiminase (ArcA) of Streptococcus cristatus, represses FimA production and inhibits biofilm formation of P. gingivalis. This inhibitory function of ArcA is also observed in the formation of heterotypic P. gingivalis-Streptococcus gordonii biofilms. P. gingivalis is released from streptococcal substrates in the presence of ArcA, likely due to an inhibition of FimA production. This work suggests that ArcA may have the potential to be a specific antibiofilm agent to fight P. gingivalis infections.
Collapse
|
43
|
Abstract
Mature dental biofilms consist of towering microcolonies in which the resident bacterial cells interact with one another and exchange messages in the form of signalling molecules and metabolites. These structures have been compared with the bustling office blocks and apartment buildings of busy cities. Social and communication networks are the lifeblood of large communities, and there is mounting evidence that mutually beneficial interactions between microbial cells are essential to the development of biofilms in the oral cavity. This review discusses the mutualistic partnerships that form between oral bacteria, and the contribution of interspecies communication to the formation of mixed microbial communities.
Collapse
Affiliation(s)
- N S Jakubovics
- School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, UK.
| |
Collapse
|
44
|
|
45
|
|
46
|
Negative correlation of distributions of Streptococcus cristatus and Porphyromonas gingivalis in subgingival plaque. J Clin Microbiol 2009; 47:3902-6. [PMID: 19846640 DOI: 10.1128/jcm.00072-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is one of the major causative agents of adult periodontitis. One of the features of this periodontal pathogen is its ability to attach to a variety of oral bacterial surfaces and to colonize subgingival dental plaque. We have shown that Streptococcus cristatus CC5A inhibits expression of fimA, a gene encoding the major protein subunit of long fimbriae in P. gingivalis; as a result, S. cristatus interrupts formation of P. gingivalis biofilms. Here we further demonstrate that the inhibitory activity of S. cristatus affects multiple strains of P. gingivalis and that optimal inhibitory activity correlates with levels of arginine deiminase expression in S. cristatus. More strikingly, the impact of S. cristatus on P. gingivalis colonization was revealed by comparing levels of P. gingivalis and S. cristatus in subgingival dental plaque. Spearman correlation analysis indicated a negative correlation between the distributions of S. cristatus and P. gingivalis (r = -0.57; P < 0.05). These data suggest that some early colonizers of dental plaque, such as S. cristatus, may be beneficial to the host by antagonizing the colonization and accumulation of periodontal pathogens such as P. gingivalis.
Collapse
|
47
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
48
|
Vrancken G, Rimaux T, Wouters D, Leroy F, De Vuyst L. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt. Food Microbiol 2009; 26:720-7. [PMID: 19747605 DOI: 10.1016/j.fm.2009.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/10/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
The arginine deiminase (ADI) pathway is a means by which certain sourdough lactic acid bacteria (LAB) convert arginine into ornithine via citrulline while producing ammonia and ATP, thereby coping with acid stress and gaining an energetic advantage. Lactobacillus fermentum IMDO 130101, an isolate from a spontaneous laboratory rye sourdough, possesses an ADI pathway which is modulated by environmental pH. In the present study, a broader view of the activity of the ADI pathway in response to growth under two other commonly encountered stress factors, temperature and added salt, was obtained. In both cases, an increase in ornithine production was observed as a response to growth under both temperature and salt stress conditions. Biokinetic parameters were obtained to describe the kinetics of the ADI pathway as a function of temperature and added salt. The arginine conversion rate increased as a function of added NaCl concentrations but was hardly affected by temperature. In addition, arginine-into-citrulline conversion rate was not affected by temperature but increased with increasing NaCl concentrations. Citrulline-into-ornithine conversion rate increased with increasing temperature, while it dropped to zero with added salt. These findings suggest a more pronounced adaptation of the strain through the ADI pathway to added salt, as compared with different constant temperatures. Furthermore, these results suggest that the ADI pathway in L. fermentum IMDO 130101 is active in adapting to non-optimal growth conditions.
Collapse
Affiliation(s)
- G Vrancken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Regulation of hemin binding proteins by a novel transcriptional activator in Porphyromonas gingivalis. J Bacteriol 2008; 191:115-22. [PMID: 18931136 DOI: 10.1128/jb.00841-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the features of the periodontal pathogen Porphyromonas gingivalis is the presence of complex iron acquisition systems that include an hmuYRSTUV locus. HmuY and HmuR are hemin binding proteins required for P. gingivalis growth. Previous studies have demonstrated that expression of the hmu locus is regulated in response to environmental changes, such as growth phases. However, the mechanisms involved in hmu gene regulation are poorly understood. Here we report that a novel transcriptional activator, PG1237, is required for the expression of humY and humR, but not other iron acquisition-related genes, such as fetB and tlr, which also encode hemin binding proteins. Real-time reverse transcription-PCR analysis revealed that a mutation in the pg1237 gene decreased expression of hmuY and hmuR 149- and 25-fold, respectively, compared to that observed in the wild-type strain. In addition, differential expression of hmuY, hmuR, and the pg1237 gene was found to be quorum-sensing dependent, such that higher expression levels of these genes were observed when P. gingivalis was grown at a lower cell density, such as that seen during the early exponential growth phase. This work demonstrates the involvement of a novel transcriptional activator, PG1237, in expression of the hmu operon in a cell density-dependent fashion.
Collapse
|