1
|
Zhou T, Wu J, Khan A, Hu T, Wang Y, Salama ES, Su S, Han H, Jin W, Li X. A probiotic Limosilactobacillus fermentum GR-3 mitigates colitis-associated tumorigenesis in mice via modulating gut microbiome. NPJ Sci Food 2024; 8:61. [PMID: 39242568 PMCID: PMC11379937 DOI: 10.1038/s41538-024-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Bacterial therapy for colorectal cancer (CRC) represents a burgeoning frontier. The probiotic Limosilactobacillus fermentum GR-3, derived from traditional food "Jiangshui", exhibited superior antioxidant capacity by producing indole derivatives ICA and IPA. In an AOM/DSS-induced CRC mouse model, GR-3 treatment alleviated weight loss, colon shortening, rectal bleeding and intestinal barrier disruption by reducing oxidative stress and inflammation. GR-3 colonization in distant colon induced apoptosis and reduced tumor incidence by 51.2%, outperforming the control strain and vitamin C. The beneficial effect of GR-3 on CRC was associated with gut microbiome modulation, increasing SCFA producer Lachnospiraceae NK4A136 group and suppressing pro-inflammatory strain Bacteroides. Metagenomic and metabolic analyses revealed that GR-3 intervention upregulated antioxidant genes (xseA, ALDH) and butyrate synthesis gene (bcd), while increasing beneficial metabolites (SCFAs, ICA, IPA, VB12 and VD3) and reducing harmful secondary bile acids. Overall, GR-3 emerges as a promising candidate in CRC therapy, offering effective gut microbiome remediation.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Shaochen Su
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
2
|
Amábile-Cuevas CF. Ascorbate and Antibiotics, at Concentrations Attainable in Urine, Can Inhibit the Growth of Resistant Strains of Escherichia coli Cultured in Synthetic Human Urine. Antibiotics (Basel) 2023; 12:985. [PMID: 37370304 DOI: 10.3390/antibiotics12060985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
There are conflicting reports on the antibacterial activity of ascorbate; all at concentrations much higher than the typical in human plasma, but that can be reached in urine. The effect of 10 mM ascorbate (in itself not inhibitory) along with antibiotics, was tested both in Mueller-Hinton broth (MHb) and in synthetic human urine (SHU), against resistant isolates of Escherichia coli from lower urinary infections. The activity of nitrofurantoin and sulfamethoxazole was higher in SHU than in MHb; minimal inhibitory concentrations (MICs) in SHU with ascorbate were below typical urinary concentrations. For other antibiotics, MICs were the same in MHb vs. SHU, with no effect of ascorbate in MHb; but in SHU with ascorbate, MICs of ciprofloxacin and gentamicin also went below reported urinary concentrations, with a lesser effect with norfloxacin and trimethoprim, and none with ampicillin. The effect of ascorbate was independent of oxygen and not related to the susceptibility of each strain to oxidative stress. Ascorbate oxidizes during incubation in SHU, and bacterial growth partially prevented oxidation. These results suggest that 10 mM ascorbate can enhance the inhibitory activity of antibiotics upon resistant strains in urine. Clinical experimentation with ascorbate-antibiotic combinations against urinary infections caused by resistant bacteria is warranted.
Collapse
|
3
|
McDonald ND, Rosenberger JR, Almagro-Moreno S, Boyd EF. The Role of Nutrients and Nutritional Signals in the Pathogenesis of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:195-211. [PMID: 36792877 DOI: 10.1007/978-3-031-22997-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio cholerae, the agent of cholera, is a natural inhabitant of aquatic environments. Over the past decades, the importance of specific nutrients and micronutrients in the environmental survival, host colonization, and pathogenesis of this species has become increasingly clear. For instance, V. cholerae has evolved ingenious mechanisms that allow the bacterium to colonize and establish a niche in the intestine of human hosts, where it competes with commensals (gut microbiota) and other pathogenic bacteria for available nutrients. Here, we discuss the carbon and energy sources utilized by V. cholerae and what is known about the role of nutrition in V. cholerae colonization. We examine how nutritional signals affect virulence gene regulation and how interactions with intestinal commensal species can affect intestinal colonization.
Collapse
Affiliation(s)
- N D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - J R Rosenberger
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Brothwell JA, Fortney KR, Batteiger T, Katz BP, Spinola SM. Dispensability of Ascorbic Acid Uptake and Utilization Encoded by ulaABCD for the Virulence of Haemophilus ducreyi in Humans. J Infect Dis 2023; 227:317-321. [PMID: 35876728 PMCID: PMC10169391 DOI: 10.1093/infdis/jiac314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Compared with wounded skin, ascorbic acid is enriched in pustules of humans experimentally infected with Haemophilus ducreyi. Compared with the broth-grown inocula, transcription of the H. ducreyi ulaABCD operon, which encodes genes for ascorbic acid uptake, is increased in pustules. We hypothesized that ascorbic acid uptake plays a role in H. ducreyi virulence. Five volunteers were infected with both H. ducreyi strain 35000HP and its isogenic ulaABCD deletion mutant at multiple sites; the papule and pustule formation rates of the mutant and parent strains were similar. Thus, ascorbic acid uptake is not essential for H. ducreyi virulence in humans.
Collapse
Affiliation(s)
- Julie A Brothwell
- Departments of Microbiology and Immunology, Indiana University, Indianapolis, Indiana, USA
| | - Kate R Fortney
- Departments of Microbiology and Immunology, Indiana University, Indianapolis, Indiana, USA
| | - Teresa Batteiger
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Barry P Katz
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
| | - Stanley M Spinola
- Departments of Microbiology and Immunology, Indiana University, Indianapolis, Indiana, USA.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Su Z, Zhang Y, Zhao R, Zhou J. Enhancement of dissimilatory nitrate/nitrite reduction to ammonium of Escherichia coli sp. SZQ1 by ascorbic acid: Mechanism and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158423. [PMID: 36055483 DOI: 10.1016/j.scitotenv.2022.158423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) can be used for nitrogen recovery. However, due to the low conversion efficiency of the DNRA process of microorganisms, the process cannot be industrially applied. Ascorbic acid (ASA) can improve DNRA efficiency of Escherichia coli sp. SZQ1 (E. coli). Experimental studies suggest that 10 g L-1 ASA promoted DNRA process of E. coli at high concentrations of nitrite (10-20 mM). In the 5 g L-1 ASA system, 9.2 mM nitrite was reduced to 8.21 mM ammonium by E. coli in 120 h. Mechanistic studies reveal that ASA reduced the oxidation-reduction potential (ORP) of the system and scavenged reactive oxygen species (ROS) in the cell of E. coli. Meanwhile, ASA was utilized by E. coli as the sole carbon source and provided electrons to DNRA process through ASA metabolic pathways. This study proposes a new strategy for increasing the efficiency of DNRA.
Collapse
Affiliation(s)
- Zhiqiang Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Ruizhi Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| |
Collapse
|
6
|
Piorino F, Styczynski MP. Harnessing Escherichia coli's Native Machinery for Detection of Vitamin C (Ascorbate) Deficiency. ACS Synth Biol 2022; 11:3592-3600. [PMID: 36300901 PMCID: PMC9807260 DOI: 10.1021/acssynbio.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vitamin C (l-ascorbate) deficiency is a global public health issue most prevalent in resource-limited regions, creating a need for an inexpensive detection platform. Here, we describe efforts to engineer whole-cell and cell-free ascorbate biosensors. Both sensors used the protein UlaR, which binds to a metabolite of ascorbate and regulates transcription. The whole-cell sensor could detect lower, physiologically relevant concentrations of ascorbate, which we attributed to intact functionality of a phosphotransferase system (PTS) that transports ascorbate across the cell membrane and phosphorylates it to form UlaR's ligand. We used multiple strategies to enhance cell-free PTS functionality (which has received little previous attention), improving the cell-free sensor's performance, but the whole-cell sensor remained more sensitive. These efforts demonstrated an advantage of whole-cell sensors for detection of molecules─like ascorbate─transformed by a PTS, but also proof of principle for cell-free sensors requiring membrane-bound components like the PTS. In addition, the cell-free sensor was functional in plasma, setting the stage for future implementation of ascorbate sensors for clinically relevant biofluids in field-deployable formats.
Collapse
Affiliation(s)
- Fernanda Piorino
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
7
|
Kaidow A, Ishii N, Suzuki S, Shiina T, Kasahara H. Vitamin C Maintenance against Cell Growth Arrest and Reactive Oxygen Species Accumulation in the Presence of Redox Molecular Chaperone hslO Gene. Int J Mol Sci 2022; 23:12786. [PMID: 36361576 PMCID: PMC9659236 DOI: 10.3390/ijms232112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosome damage combined with defective recombinase activity renders cells inviable, owing to deficient double-strand break repair. Despite this, recA polA cells grow well under either DNA damage response (SOS) conditions or catalase medium supplementation. Catalase treatments reduce intracellular reactive oxygen species (ROS) levels, suggesting that recA polA cells are susceptible to not only chronic chromosome damage but also ROS. In this study, we used a reducing agent, vitamin C, to confirm whether cell growth could be improved. Vitamin C reduced ROS levels and rescued colony formation in recAts polA cells under restrictive temperatures in the presence of hslO, the gene encoding a redox molecular chaperone. Subsequently, we investigated the role of hslO in the cell growth failure of recAts polA cells. The effects of vitamin C were observed in hslO+ cells; simultaneously, cells converged along several ploidies likely through a completion of replication, with the addition of vitamin C at restrictive temperatures. These results suggest that HslO could manage oxidative stress to an acceptable level, allowing for cell division as well as rescuing cell growth. Overall, ROS may regulate several processes, from damage response to cell division. Our results provide a basis for understanding the unsolved regulatory interplay of cellular processes.
Collapse
Affiliation(s)
- Akihiro Kaidow
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
- Hokkaido Regional Research Center, Tokai University, Sapporo 005-8601, Japan
| | - Noriko Ishii
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Hirokazu Kasahara
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
| |
Collapse
|
8
|
Park S, Nam EW, Kim Y, Lee S, Kim SI, Yoon H. Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce. J Microbiol Biotechnol 2020; 30:1729-1738. [PMID: 32830190 PMCID: PMC9728351 DOI: 10.4014/jmb.2007.07036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.
Collapse
Affiliation(s)
- Sojung Park
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Eun woo Nam
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Yeeun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Seohyeon Lee
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon16499 Republic of Korea
| | - Seul I Kim
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon16499 Republic of Korea,Corresponding author Phone: +82-31-219-2450 Fax: +82-31-219-1610 E-mail:
| |
Collapse
|
9
|
Shimada T, Yokoyama Y, Anzai T, Yamamoto K, Ishihama A. Regulatory Role of PlaR (YiaJ) for Plant Utilization in Escherichia coli K-12. Sci Rep 2019; 9:20415. [PMID: 31892694 PMCID: PMC6958661 DOI: 10.1038/s41598-019-56886-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Outside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization). The natural hosts of enterobacterium Escherichia coli are warm-blooded animals, but even outside hosts, E. coli can survive even under stressful environments. On earth, the most common organic materials to be used as nutrients by E. coli are plant-derived components, but up to the present time, the genetic system of E. coli for plant utilization is poorly understand. In the course of gSELEX screening of the regulatory targets for hitherto uncharacterized TFs, we identified in this study the involvement of the IclR-family YiaJ in the regulation of about 20 genes or operons, of which the majority are related to the catabolism of plant-derived materials such as ascorbate, galacturonate, sorbitol, fructose and fructoselysine. Therefore, we propose to rename YiaJ to PlaR (regulator of plant utilization).
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan. .,Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan.
| | - Yui Yokoyama
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Takumi Anzai
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kaneyoshi Yamamoto
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Akira Ishihama
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan. .,Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan.
| |
Collapse
|
10
|
Jiao JY, Salam N, Liu L, Rao MPN, Zhang XT, Fang BZ, Han MX, Zhang ZT, Chen J, Zhao J, Zhou Y, Alkhalifah DHM, Liu Q, Xiao M, Klenk HP, Li WJ. Genome sequence and comparative analysis of Jiangella alba YIM 61503 T isolated from a medicinal plant Maytenus austroyunnanensis. Antonie van Leeuwenhoek 2017; 111:667-678. [PMID: 29288361 DOI: 10.1007/s10482-017-1010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/20/2017] [Indexed: 11/28/2022]
Abstract
A draft genome sequence of Jiangella alba YIM 61503T revealed a genome size of 7,664,864 bp arranged in 33 scaffolds. The genome was predicted to contain 7196 predicted genes, including 51 coding for RNA. Phylogenetic and comparative analyses of the draft genome of J. alba YIM 61503T with the available genomes of other Jiangella species suggested a proximal similarity between strains J. alba YIM 61503T and J. muralis DSM 45357T, while indicating a high divergence between J. gansuensis YIM 002T and other Jiangella species. The genome of J. alba YIM 61503T also revealed genes involved in indole-3-acetic acid biosynthesis and an alkylresorcinols gene cluster. Further, detection of phosphotransferase genes in the genome of all Jiangella species indicated that they can uptake and phosphorylate sugars. The presences of TreX-Z, TreS and OtsA-OtsB genes in some of the Jiangella strains also indicated a possible mechanism for their tolerance of high salinity. Besides providing new insights into its genetic features, our results suggested that J. alba YIM 61503T could be a potential strain for further genome mining studies. The release of this genome may, therefore, provide a better prospect for understanding "evolutionary taxonomy" about this genus in future.
Collapse
Affiliation(s)
- Jian-Yu Jiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Tong Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ming-Xian Han
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Zi-Tong Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jing Chen
- Beijing Genomics Institute at Shenzhen (BGI-Shenzhen), Shenzhen, 518083, China
| | - Jiao Zhao
- Beijing Genomics Institute at Shenzhen (BGI-Shenzhen), Shenzhen, 518083, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Dalal Hussien M Alkhalifah
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11564, Kingdom of Saudi Arabia
| | - Qing Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China. .,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
11
|
Afzal M, Shafeeq S, Kuipers OP. Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2. Front Microbiol 2015; 6:72. [PMID: 25717320 PMCID: PMC4324149 DOI: 10.3389/fmicb.2015.00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
In this study, we have explored the impact of ascorbic acid on the transcriptome of Streptococcus pneumoniae D39. The expression of several genes and operons, including the ula operon (which has been previously shown to be involved in ascorbic acid utilization), the AdcR regulon (which has been previously shown to be involved in zinc transport and virulence) and a PTS operon (which we denote here as ula2 operon) were altered in the presence of ascorbic acid. The ula2 operon consists of five genes, including the transcriptional activator ulaR2. Our β-galactosidase assay data and transcriptome comparison of the ulaR2 mutant with the wild-type demonstrated that the transcriptional activator UlaR2 in the presence of ascorbic acid activates the expression of the ula2 operon. We further predict a 16-bp regulatory site (5′-ATATTGTGCTCAAATA-3′) for UlaR2 in the Pula2. Furthermore, we have explored the effect of ascorbic acid on the expression of the AdcR regulon. Our ICP-MS analysis showed that addition of ascorbic acid to the medium causes zinc starvation in the cell which leads to the activation of the AdcR regulon.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands ; Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands ; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
12
|
Afzal M, Shafeeq S, Henriques-Normark B, Kuipers OP. UlaR activates expression of the ula operon in Streptococcus pneumoniae in the presence of ascorbic acid. MICROBIOLOGY-SGM 2014; 161:41-49. [PMID: 25355938 DOI: 10.1099/mic.0.083899-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, the regulatory mechanism of the ula (utilization of l-ascorbic acid) operon, putatively responsible for transport and utilization of ascorbic acid in Streptococcus pneumoniae strain D39, is studied. β-Galactosidase assay data demonstrate that expression of the ula operon is increased in the presence of ascorbic acid as compared with the effects of other sugar sources including glucose. The ula operon consists of nine genes, including a transcriptional regulator UlaR, and is transcribed as a single transcriptional unit. We demonstrate the role of the transcriptional regulator UlaR as a transcriptional activator of the ula operon in the presence of ascorbic acid and show that activation of the ula operon genes by UlaR is CcpA-independent. Furthermore, we predict a 16 bp regulatory site (5'-AACAGTCCGCTGTGTA-3') for UlaR in the promoter region of ulaA. Deletion of the half or full UlaR regulatory site in PulaA confirmed that the UlaR regulatory site present in PulaA is functional.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177, Stockholm, Sweden
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
13
|
Sadaka A, Palmer K, Suzuki T, Gilmore MS. In vitro and in vivo models of Staphylococcus aureus endophthalmitis implicate specific nutrients in ocular infection. PLoS One 2014; 9:e110872. [PMID: 25340474 PMCID: PMC4207797 DOI: 10.1371/journal.pone.0110872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To define global transcriptional responses of Staphylococcus aureus and its codY mutant (CodY is a transcription regulator of virulence and metabolic genes in response to branched-chain amino acids) when growing in bovine aqueous (AH) and vitreous humor (VH) in vitro, and to investigate the impact of codY deletion on S. aureus virulence in a novel murine anterior chamber (AC) infection model. METHODS For the in vitro model, differential transcriptomic gene expression of S. aureus and its codY mutant grown in chemically defined medium (CDM), AH, and VH was analyzed. Furthermore, the strains were inoculated into the AC of mice. Changes in bacterial growth, electroretinography and inflammation scores were monitored. RESULTS Bovine AH and VH provide sufficient nutrition for S. aureus growth in vitro. Transcriptome analysis identified 72 unique open reading frames differentially regulated ≥10-fold between CDM, AH, and VH. In the AC model, we found comparable growth of the codY mutant and wild type strains in vivo. Average inflammation scores and retinal function were significantly worse for codY mutant-infected eyes at 24 h post-infection. CONCLUSION Our in vitro bovine AH and VH models identified likely nutrient sources for S. aureus in the ocular milieu. The in vivo model suggests that control of branched-chain amino acid availability has therapeutic potential in limiting S. aureus endophthalmitis severity.
Collapse
Affiliation(s)
- Ama Sadaka
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Kelli Palmer
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Takashi Suzuki
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| | - Michael S. Gilmore
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- The Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Microbial Sciences Initiative, Cambridge, Massachusetts, United States of America
| |
Collapse
|
14
|
Abstract
We show that Enterococcus faecalis can utilize ascorbate for fermentative growth. In chemically defined media, growth yield was limited by the supply of amino acids, and the cells showed a much higher demand for amino acids than when they were grown on glucose.
Collapse
|
15
|
Microbial production of N-acetyl cis-4-hydroxy-l-proline by coexpression of the Rhizobium l-proline cis-4-hydroxylase and the yeast N-acetyltransferase Mpr1. Appl Microbiol Biotechnol 2012; 97:247-57. [DOI: 10.1007/s00253-012-4204-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/19/2012] [Accepted: 05/22/2012] [Indexed: 11/26/2022]
|
16
|
Blass SC, Goost H, Tolba RH, Stoffel-Wagner B, Kabir K, Burger C, Stehle P, Ellinger S. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: a PRCT. Clin Nutr 2012; 31:469-75. [PMID: 22284340 DOI: 10.1016/j.clnu.2012.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS : We hypothesize that wound closure in trauma patients with disorders in wound healing is accelerated by supplementation of antioxidant micronutrients and glutamine. METHODS In a randomized, double-blind, placebo-controlled trial, 20 trauma patients with disorders in wound healing were orally supplemented with antioxidant micronutrients (ascorbic acid, α-tocopherol, β-carotene, zinc, selenium) and glutamine (verum) or they received isoenergetic amounts of maltodextrine (placebo) for 14 days. Plasma/serum levels of micronutrients, glutamine, and vascular endothelial growth factor-A (VEGF-A) were determined before and after supplementation. In the wound, several parameters of microcirculation were measured. Time from study entry to wound closure was recorded. RESULTS Micronutrients in plasma/serum did not change except for selenium which increased in the verum group (1.1 ± 0.2 vs. 1.4 ± 0.2 μmol/l; P = 0.009). Glutamine decreased only in the placebo group (562 ± 68 vs. 526 ± 55 μmol/l; P = 0.047). The prevalence of hypovitaminoses and the concentration of VEGF-A did not change. Considering microcirculation, only O(2)-saturation decreased in the placebo group (56.7 ± 23.4 vs. 44.0 ± 24.0 [arbitrary units]; P = 0.043). Wound closure occurred more rapidly in the verum than in the placebo group (35 ± 22 vs. 70 ± 35 d; P = 0.01). CONCLUSIONS Time to wound closure can be shortened by oral antioxidant and glutamine containing supplements in trauma patients with disorders in wound healing.
Collapse
Affiliation(s)
- Sandra C Blass
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Linares D, Michaud P, Delort AM, Traïkia M, Warrand J. Catabolism of L-ascorbate by Lactobacillus rhamnosus GG. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4140-7. [PMID: 21401096 DOI: 10.1021/jf104343r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Catabolism of L-ascorbate by enteric bacteria is well documented, but no study has formally proved that bacteria of the Lactobacillus genus ferment this compound. However, some genes analogous to those of yiaK-S operon and ula regulon, which encoded proteins leading to L-ascorbate degradation by Escherichia coli and Klebsiella pneumoniae , have been identified in the recently sequenced Lactobacillus rhamnosus GG genome. Investigations by HPLC and in vivo (13)C NMR using L-[1,6-(13)C]-ascorbate showed that L. rhamnosus GG, a common probiotic strain, has the ability to catabolize L-ascorbate under anaerobiosis. The main products of the ascorbate degradation have been identified as CO(2), acetate, and lactate. These results are in accordance with the metabolic pathway proposed for the fermentation of L-ascorbate by E. coli.
Collapse
Affiliation(s)
- Denis Linares
- Clermont Université, Université Blaise Pascal, Laboratoire de Génie Chimique et Biochimique, Polytech' Clermont Ferrand, Aubière, France
| | | | | | | | | |
Collapse
|
18
|
Campos E, Aguilera L, Giménez R, Aguilar J, Baldoma L, Badia J. Role of YiaX2 in L-ascorbate transport in Klebsiella pneumoniae 13882. Can J Microbiol 2009; 55:1319-22. [PMID: 19940941 DOI: 10.1139/w09-090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yiaK-S operon is required for aerobic growth on L-ascorbate in several Enterobacteriaceae. Here we present evidence that the yiaX2 gene belonging to the yiaK-S operon of Klebsiella pneumoniae 13882, which encodes a protein similar to the putative transporters classified as the major facilitator superfamily, is involved in the uptake of L-ascorbate. Concentration kinetic analysis yielded an apparent K(m) of YiaX2 for L-ascorbate of 161.38 +/-8.28 micromol x L(-1) and a Vmax of 3.81 +/- 0.60 nmol x mg(-1) x min(-1). This carrier uses the energy from electrochemical gradients, since it was inhibited by carbonyl cyanide m-chlorophenylhydrazone, a hydrophobic proton conductor that dissipates proton motive force.
Collapse
Affiliation(s)
- Evangelina Campos
- Department of Biochemistry and Molecular Biology, Biomedicine Institute University of Barcelona (IBUB), Faculty of Pharmacy, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Schurig-Briccio LA, Farías RN, Rodríguez-Montelongo L, Rintoul MR, Rapisarda VA. Protection against oxidative stress in Escherichia coli stationary phase by a phosphate concentration-dependent genes expression. Arch Biochem Biophys 2008; 483:106-10. [PMID: 19138658 DOI: 10.1016/j.abb.2008.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/18/2008] [Accepted: 12/23/2008] [Indexed: 11/17/2022]
Abstract
Escherichia coli gradually decline the capacity to resist oxidative stress during stationary phase. Besides the aerobic electron transport chain components are down-regulated in response to growth arrest. However, we have previously reported that E. coli cells grown in media containing at least 37mM phosphate maintained ndh expression in stationary phase, having high viability and low NADH/NAD(+) ratio. Here we demonstrated that, in the former condition, other aerobic respiratory genes (nuoAB, sdhC, cydA, and ubiC) expression was maintained. In addition, reactive oxygen species production was minimal and consequently the levels of thiobarbituric acid-reactive substances and protein carbonylation were lower than the expected for stationary cells. Interestingly, defense genes (katG and ahpC) expression was also maintained during this phase. Our results indicate that cells grown in high phosphate media exhibit advantages to resist endogenous and exogenous oxidative stress in stationary phase.
Collapse
Affiliation(s)
- Lici A Schurig-Briccio
- Departamento Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas, Técnicas-Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | | | | | | |
Collapse
|
20
|
Structure of L-xylulose-5-Phosphate 3-epimerase (UlaE) from the anaerobic L-ascorbate utilization pathway of Escherichia coli: identification of a novel phosphate binding motif within a TIM barrel fold. J Bacteriol 2008; 190:8137-44. [PMID: 18849419 DOI: 10.1128/jb.01049-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of l-ascorbate under anaerobic conditions. UlaD catalyzes a beta-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel beta-strands. The enzyme binds Zn(2+), which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the beta1/alpha1 loop and alpha3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands beta7 and beta8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.
Collapse
|
21
|
The yiaKLX1X2PQRS and ulaABCDEFG gene systems are required for the aerobic utilization of L-ascorbate in Klebsiella pneumoniae strain 13882 with L-ascorbate-6-phosphate as the inducer. J Bacteriol 2008; 190:6615-24. [PMID: 18708499 DOI: 10.1128/jb.00815-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity to both ferment and oxidize L-ascorbate has been widely documented for a number of enteric bacteria. Here we present evidence that all the strains of Klebsiella pneumoniae tested in this study ferment L-ascorbate using the ula regulon-encoded proteins. Under aerobic conditions, several phenotypes were observed for the strains. Our results showed that the yiaK-S system is required for this aerobic metabolic process. Gel shift experiments performed with UlaR and YiaJ and probes corresponding to the specific promoters indicated that L-ascorbate-6-phosphate is the effector molecule recognized by both regulators, since binding of the repressors to their recognition sites was impaired by the presence of this compound. We demonstrated that in K. pneumoniae cells L-ascorbate-6-phosphate is formed only by the action of the UlaABC phosphotransferase system. This finding explains why strains that lack the ula genetic system and therefore are unable to form the inducer intracellularly cannot efficiently use this vitamin as a carbon source under either anaerobic or aerobic conditions. Thus, efficient aerobic metabolism of L-ascorbate in K. pneumoniae is dependent on the presence of both the yiaK-S and ula systems. The expression of the yiaK-S operon, but not the expression of the ula regulon, is controlled by oxygen availability. Both systems are regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and by IHF.
Collapse
|