1
|
Brand C, Newton-Foot M, Grobbelaar M, Whitelaw A. Antibiotic-induced stress responses in Gram-negative bacteria and their role in antibiotic resistance. J Antimicrob Chemother 2025; 80:1165-1184. [PMID: 40053699 PMCID: PMC12046405 DOI: 10.1093/jac/dkaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Bacteria adapt to changes in their natural environment through a network of stress responses that enable them to alter their gene expression to survive in the presence of stressors, including antibiotics. These stress responses can be specific to the type of stress and the general stress response can be induced in parallel as a backup mechanism. In Gram-negative bacteria, various envelope stress responses are induced upon exposure to antibiotics that cause damage to the cell envelope or result in accumulation of toxic metabolic by-products, while the heat shock response is induced by antibiotics that cause misfolding or accumulation of protein aggregates. Antibiotics that result in the production of reactive oxygen species (ROS) induce the oxidative stress response and those that cause DNA damage, directly and through ROS production, induce the SOS response. These responses regulate the expression of various proteins that work to repair the damage that has been caused by antibiotic exposure. They can contribute to antibiotic resistance by refolding, degrading or removing misfolded proteins and other toxic metabolic by-products, including removal of the antibiotics themselves, or by mutagenic DNA repair. This review summarizes the stress responses induced by exposure to various antibiotics, highlighting their interconnected nature, as well the roles they play in antibiotic resistance, most commonly through the upregulation of efflux pumps. This can be useful for future investigations targeting these responses to combat antibiotic-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Chanté Brand
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Melanie Grobbelaar
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Chen X, Ding Y, Bamert RS, Le Brun AP, Duff AP, Wu CM, Hsu HY, Shiota T, Lithgow T, Shen HH. Substrate-dependent arrangements of the subunits of the BAM complex determined by neutron reflectometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183587. [PMID: 33639106 DOI: 10.1016/j.bbamem.2021.183587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022]
Abstract
In Gram-negative bacteria, the β-barrel assembly machinery (BAM) complex catalyses the assembly of β-barrel proteins into the outer membrane, and is composed of five subunits: BamA, BamB, BamC, BamD and BamE. Once assembled, - β-barrel proteins can be involved in various functions including uptake of nutrients, export of toxins and mediating host-pathogen interactions, but the precise mechanism by which these ubiquitous and often essential β-barrel proteins are assembled is yet to be established. In order to determine the relative positions of BAM subunits in the membrane environment we reconstituted each subunit into a biomimetic membrane, characterizing their interaction and structural changes by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and neutron reflectometry. Our results suggested that the binding of BamE, or a BamDE dimer, to BamA induced conformational changes in the polypeptide transported-associated (POTRA) domains of BamA, but that BamB or BamD alone did not promote any such changes. As monitored by neutron reflectometry, addition of an unfolded substrate protein extended the length of POTRA domains further away from the membrane interface as part of the mechanism whereby the substrate protein was folded into the membrane.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yue Ding
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca S Bamert
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Anthony P Duff
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Chun-Ming Wu
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, PR China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, PR China
| | - Takuya Shiota
- Institute for Tenure Track Promotion, Organization for Promotion of Career Management, University of Miyazaki, Miyazaki, Japan
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Hsin-Hui Shen
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
3
|
Wu R, Stephenson R, Gichaba A, Noinaj N. The big BAM theory: An open and closed case? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183062. [PMID: 31520605 DOI: 10.1016/j.bbamem.2019.183062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
The β-barrel assembly machinery (BAM) is responsible for the biogenesis of outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria. These OMPs have a membrane-embedded domain consisting of a β-barrel fold which can vary from 8 to 36 β-strands, with each serving a diverse role in the cell such as nutrient uptake and virulence. BAM was first identified nearly two decades ago, but only recently has the molecular structure of the full complex been reported. Together with many years of functional characterization, we have a significantly clearer depiction of BAM's structure, the intra-complex interactions, conformational changes that BAM may undergo during OMP biogenesis, and the role chaperones may play. But still, despite advances over the past two decades, the mechanism for BAM-mediated OMP biogenesis remains elusive. Over the years, several theories have been proposed that have varying degrees of support from the literature, but none has of yet been conclusive enough to be widely accepted as the sole mechanism. We will present a brief history of BAM, the recent work on the structures of BAM, and a critical analysis of the current theories for how it may function.
Collapse
Affiliation(s)
- Runrun Wu
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Stephenson
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Gichaba
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Hews CL, Cho T, Rowley G, Raivio TL. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front Cell Infect Microbiol 2019; 9:313. [PMID: 31552196 PMCID: PMC6737893 DOI: 10.3389/fcimb.2019.00313] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σE- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Timothy Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
YraP Contributes to Cell Envelope Integrity and Virulence of Salmonella enterica Serovar Typhimurium. Infect Immun 2018; 86:IAI.00829-17. [PMID: 30201701 DOI: 10.1128/iai.00829-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in σE-regulated lipoproteins have previously been shown to impact bacterial viability under conditions of stress and during in vivo infection. YraP is conserved across a number of Gram-negative pathogens, including Neisseria meningitidis, where the homolog is a component of the Bexsero meningococcal group B vaccine. Investigations using laboratory-adapted Escherichia coli K-12 have shown that yraP mutants have elevated sensitivity to a range of compounds, including detergents and normally ineffective antibiotics. In this study, we investigate the role of the outer membrane lipoprotein YraP in the pathogenesis of Salmonella enterica serovar Typhimurium. We show that mutations in S Typhimurium yraP result in a defective outer membrane barrier with elevated sensitivity to a range of compounds. This defect is associated with attenuated virulence in an oral infection model and during the early stages of systemic infection. We show that this attenuation is not a result of defects in lipopolysaccharide and O-antigen synthesis, changes in outer membrane protein levels, or the ability to adhere to and invade eukaryotic cell lines in vitro.
Collapse
|
6
|
Krin E, Pierlé SA, Sismeiro O, Jagla B, Dillies MA, Varet H, Irazoki O, Campoy S, Rouy Z, Cruveiller S, Médigue C, Coppée JY, Mazel D. Expansion of the SOS regulon of Vibrio cholerae through extensive transcriptome analysis and experimental validation. BMC Genomics 2018; 19:373. [PMID: 29783948 PMCID: PMC5963079 DOI: 10.1186/s12864-018-4716-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. RESULTS Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. CONCLUSIONS We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other γ-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria.
Collapse
Affiliation(s)
- Evelyne Krin
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| | - Sebastian Aguilar Pierlé
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| | - Odile Sismeiro
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Bernd Jagla
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
- Present adress: Institut Pasteur, Biomarker Discovery Platform, UtechS CB and Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, Paris, France
| | - Marie-Agnès Dillies
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
- Present adress: Institut Pasteur, Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, Paris, France
| | - Hugo Varet
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Oihane Irazoki
- grid.7080.fDepartament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Susana Campoy
- grid.7080.fDepartament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Zoé Rouy
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Stéphane Cruveiller
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Claudine Médigue
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Jean-Yves Coppée
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Didier Mazel
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| |
Collapse
|
7
|
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, Noinaj N. Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae. J Biol Chem 2018; 293:1106-1119. [PMID: 29229778 PMCID: PMC5787791 DOI: 10.1074/jbc.ra117.000437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface-displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330,
| | - Igor H Wierzbicki
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Ryszard A Zielke
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Rachael F Ryner
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Susan K Buchanan
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
8
|
Li H, Tan H, Hu Y, Pan P, Su X, Hu C. Small protein A and phospholipase D immunization serves a protective role in a mouse pneumonia model of Acinetobacter baumannii infection. Mol Med Rep 2017; 16:1071-1078. [PMID: 28586022 PMCID: PMC5561983 DOI: 10.3892/mmr.2017.6688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/16/2017] [Indexed: 02/01/2023] Open
Abstract
Acinetobacter baumannii is an important pathogen that primarily causes hospital-acquired pneumonia. The present study sought to investigate whether small protein A (SmpA) and phospholipase D (PLD) are potential candidates for protective immunity against infection with A. baumannii. Mice immunized with the fusion proteins histidine (His)‑SmpA and His‑PLD exhibited a specific immunoglobulin G response. In a pneumonia model, active and passive immunization against SmpA and PLD protected mice from A. baumannii infection. The protection was demonstrated by a markedly improved survival rate, and reduced pulmonary bacterial load, infiltration and cytokine levels in the broncho‑alveolar lavage fluid and the serum, although a combination of the two antigens did not provide improved protection compared with immunization with the individual antigens alone. In conclusion, it was identified that SmpA and PLD are highly immunogenic proteins, and potential antigen candidates for the development of effective vaccines or to prepare antisera to mitigate A. baumannii infection.
Collapse
Affiliation(s)
- Haitao Li
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongyi Tan
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongbin Hu
- Department of Pathological Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pinhua Pan
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoli Su
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chengpin Hu
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
9
|
Woods EC, McBride SM. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes Infect 2017; 19:238-248. [PMID: 28153747 DOI: 10.1016/j.micinf.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.
Collapse
Affiliation(s)
- Emily C Woods
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Ferrer-Navarro M, Ballesté-Delpierre C, Vila J, Fàbrega A. Characterization of the outer membrane subproteome of the virulent strain Salmonella Typhimurium SL1344. J Proteomics 2016; 146:141-7. [DOI: 10.1016/j.jprot.2016.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 05/12/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
11
|
Runkel S, Wells HC, Rowley G. Living with Stress: A Lesson from the Enteric Pathogen Salmonella enterica. ADVANCES IN APPLIED MICROBIOLOGY 2016; 83:87-144. [PMID: 23651595 DOI: 10.1016/b978-0-12-407678-5.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to sense and respond to the environment is essential for the survival of all living organisms. Bacterial pathogens such as Salmonella enterica are of particular interest due to their ability to sense and adapt to the diverse range of conditions they encounter, both in vivo and in environmental reservoirs. During this cycling from host to non-host environments, Salmonella encounter a variety of environmental insults ranging from temperature fluctuations, nutrient availability and changes in osmolarity, to the presence of antimicrobial peptides and reactive oxygen/nitrogen species. Such fluctuating conditions impact on various areas of bacterial physiology including virulence, growth and antimicrobial resistance. A key component of the success of any bacterial pathogen is the ability to recognize and mount a suitable response to the discrete chemical and physical stresses elicited by the host. Such responses occur through a coordinated and complex programme of gene expression and protein activity, involving a range of transcriptional regulators, sigma factors and two component regulatory systems. This review briefly outlines the various stresses encountered throughout the Salmonella life cycle and the repertoire of regulatory responses with which Salmonella counters. In particular, how these Gram-negative bacteria are able to alleviate disruption in periplasmic envelope homeostasis through a group of stress responses, known collectively as the Envelope Stress Responses, alongside the mechanisms used to overcome nitrosative stress, will be examined in more detail.
Collapse
Affiliation(s)
- Sebastian Runkel
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
12
|
Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae. Vet Microbiol 2015; 183:1-8. [PMID: 26790928 DOI: 10.1016/j.vetmic.2015.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 11/21/2022]
Abstract
The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae.
Collapse
|
13
|
Webb CT, Heinz E, Lithgow T. Evolution of the β-barrel assembly machinery. Trends Microbiol 2012; 20:612-20. [DOI: 10.1016/j.tim.2012.08.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022]
|
14
|
Rezuchova B, Homerova D, Sevcikova B, Novakova R, Feckova L, Roberts M, Kormanec J. Phenotypic analysis of Salmonella enterica serovar Typhimurium rpoE mutants encoding RNA polymerase extracytoplasmic stress response sigma factors σ(E) with altered promoter specificity. Arch Microbiol 2012; 195:27-36. [PMID: 22972381 DOI: 10.1007/s00203-012-0843-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 11/25/2022]
Abstract
We previously identified mutants in the rpoE gene of Salmonella enterica serovar Typhimurium (S. Typhimurium) encoding RNA polymerase extracytoplasmic stress response sigma factors σ(E) with altered promoter specificity. The replacement of the conserved R171 residue in the conserved region 4.2 of σ(E) by different amino acid residues exhibited different phenotypes. While R171A almost completely abolished sigma factor activity, R171G and R171C mutant changes imparted a relaxed recognition phenotype to the sigma factor. In the present study, we introduced these mutations into the S. Typhimurium chromosome to investigate their phenotype during ethanol stress and in promoter recognition. Both relaxed sigma factors were found to initiate transcription from a high number of artificial promoters in the S. Typhimurium genome. Both mutants had substantially decreased activity under stress conditions. However, this decreased activity and also the recognition of atypical promoters had no significant effect upon growth, even in stressful conditions.
Collapse
Affiliation(s)
- Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Kim KH, Aulakh S, Paetzel M. The bacterial outer membrane β-barrel assembly machinery. Protein Sci 2012; 21:751-68. [PMID: 22549918 DOI: 10.1002/pro.2069] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/20/2012] [Indexed: 12/31/2022]
Abstract
β-Barrel proteins found in the outer membrane of Gram-negative bacteria serve a variety of cellular functions. Proper folding and assembly of these proteins are essential for the viability of bacteria and can also play an important role in virulence. The β-barrel assembly machinery (BAM) complex, which is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, has been the focus of many recent studies. This review summarizes the significant progress that has been made toward understanding the structure and function of the bacterial BAM complex.
Collapse
Affiliation(s)
- Kelly H Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
16
|
Cao Y, Johnson HM, Bazemore-Walker CR. Improved enrichment and proteomic identification of outer membrane proteins from a Gram-negative bacterium: focus on Caulobacter crescentus. Proteomics 2012; 12:251-262. [PMID: 22106052 DOI: 10.1002/pmic.201100288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/16/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2025]
Abstract
Efforts to characterize proteins found in the outer membrane (OM) of Gram-negative bacteria have been steadily increasing due to the promise of expanding our understanding of fundamental bacterial processes such as cell adhesion or cell wall biogenesis as well as the promise of finding potential vaccine- or drug-targets for virulent bacteria. We have developed a mass spectrometry-compatible experimental strategy that resulted in increased coverage of the OM proteome of a model organism, Caulobacter crescentus. The specificity of the OM enrichment step was improved by using detergent solubilization of the protein pellet, low-density cell culture conditions, and a surface-layer deficient cell line. Additionally, efficient gel-assisted digestion, high-resolution RP/RP-MS/MS, and rigorous bioinformatic analysis led to the identification of 234 proteins using strict identification criteria (≥ two unique peptides per protein; peptide false discovery rate <2%). Eighty-four of the detected proteins were predicted to localize to the OM or extracellular space. These results represent ~70% coverage of the predicted OM/extracellular proteome of C. crescentus. This analytical approach, which considers important experimental variables not previously explored in published OM protein studies, can be applied to other OM proteomic endeavors "as is" or with slight modification and should improve the large-scale study of this especially challenging subproteome.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
17
|
Characterization of the micA gene encoding a small regulatory σE-dependent RNA in Salmonella enterica serovar Typhimurium. Folia Microbiol (Praha) 2011; 56:59-65. [PMID: 21394477 DOI: 10.1007/s12223-011-0014-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
The role of MicA (repressing small regulatory non-coding RNAs of two Salmonella porins) was determined in virulence of Salmonella enterica serovar Typhimurium. Transcriptional analysis revealed that the expression of the micA gene is driven by a single σ(E)-dependent promoter, micAp. Its activity increased towards stationary phase; in exponential phase, the activity was induced by several stresses by a DegS-dependent mechanism. Although phenotypic analysis revealed no significant differences between wild-type and the micA mutant strains, in vivo studies showed that this mutant is more virulent in the mouse model.
Collapse
|
18
|
Reyes LH, Almario MP, Kao KC. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 2011; 6:e17678. [PMID: 21408113 PMCID: PMC3050900 DOI: 10.1371/journal.pone.0017678] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/05/2011] [Indexed: 01/08/2023] Open
Abstract
Background n-Butanol is a promising emerging biofuel, and recent metabolic engineering efforts have demonstrated the use of several microbial hosts for its production. However, most organisms have very low tolerance to n-butanol (up to 2% (v/v)), limiting the economic viability of this biofuel. The rational engineering of more robust n-butanol production hosts relies upon understanding the mechanisms involved in tolerance. However, the existing knowledge of genes involved in n-butanol tolerance is limited. The goal of this study is therefore to identify E. coli genes that are involved in n-butanol tolerance. Methodology/Principal Findings Using a genomic library enrichment strategy, we identified approximately 270 genes that were enriched or depleted in n-butanol challenge. The effects of these candidate genes on n-butanol tolerance were experimentally determined using overexpression or deletion libraries. Among the 55 enriched genes tested, 11 were experimentally shown to confer enhanced tolerance to n-butanol when overexpressed compared to the wild-type. Among the 84 depleted genes tested, three conferred increased n-butanol resistance when deleted. The overexpressed genes that conferred the largest increase in n-butanol tolerance were related to iron transport and metabolism, entC and feoA, which increased the n-butanol tolerance by 32.8±4.0% and 49.1±3.3%, respectively. The deleted gene that resulted in the largest increase in resistance to n-butanol was astE, which enhanced n-butanol tolerance by 48.7±6.3%. Conclusions/Significance We identified and experimentally verified 14 genes that decreased the inhibitory effect of n-butanol tolerance on E. coli. From the data, we were able to expand the current knowledge on the genes involved in n-butanol tolerance; the results suggest that an increased iron transport and metabolism and decreased acid resistance may enhance n-butanol tolerance. The genes and mechanisms identified in this study will be helpful in the rational engineering of more robust biofuel producers.
Collapse
Affiliation(s)
- Luis H. Reyes
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Maria P. Almario
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Katy C. Kao
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Rowley G, Skovierova H, Stevenson A, Rezuchova B, Homerova D, Lewis C, Sherry A, Kormanec J, Roberts M. The periplasmic chaperone Skp is required for successful Salmonella Typhimurium infection in a murine typhoid model. MICROBIOLOGY-SGM 2010; 157:848-858. [PMID: 21148205 DOI: 10.1099/mic.0.046011-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The alternative sigma factor σ(E) (rpoE) is essential for survival in vivo of Salmonella Typhimurium but is dispensable during growth in the laboratory. We have been identifying σ(E)-regulated genes and studying their regulation and function to elucidate their potential role in the severe attenuation of S. Typhimurium rpoE mutants. In this study we identify five promoters that control the rseP, yaeT (bamA), skp region. A confirmed σ(E)-dependent promoter, yaeTp1, and a second downstream promoter, yaeTp2, are located within the upstream gene rseP and direct expression of the downstream genes. The only known function of RseP is σ(E) activation, and it is therefore not expected to be essential for S. Typhimurium in vitro. However, it proved impossible to delete the entire rseP gene due to the presence of internal promoters that regulate the essential gene yaeT. We could inactivate rseP by deleting the first third of the gene, leaving the yaeT promoters intact. Like the rpoE mutant, the rseP mutant exhibited severe attenuation in vivo. We were able to delete the entire coding sequence of skp, which encodes a periplasmic chaperone involved in targeting misfolded outer-membrane proteins to the β-barrel assembly machinery. The skp mutant was attenuated in mice after oral and parenteral infection. Virulence could be complemented by providing skp in trans but only by linking it to a heterologous σ(E)-regulated promoter. The reason the skp mutant is attenuated is currently enigmatic, but we know it is not through increased sensitivity to a variety of RpoE-activating host stresses, such as H(2)O(2), polymyxin B and high temperature, or through altered secretion of effector proteins by either the Salmonella pathogenicity island (SPI)-1 or the SPI-2 type III secretion system.
Collapse
Affiliation(s)
- Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Henrieta Skovierova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovak Republik
| | - Andrew Stevenson
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovak Republik
| | - Dagmar Homerova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovak Republik
| | - Claire Lewis
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Aileen Sherry
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovak Republik
| | - Mark Roberts
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
20
|
Identification of in vitro upregulated genes in a modified live vaccine strain of Edwardsiella ictaluri compared to a virulent parent strain. Comp Immunol Microbiol Infect Dis 2010; 33:e31-40. [DOI: 10.1016/j.cimid.2009.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/09/2009] [Accepted: 10/26/2009] [Indexed: 01/08/2023]
|
21
|
Ryan KR, Taylor JA, Bowers LM. The BAM complex subunit BamE (SmpA) is required for membrane integrity, stalk growth and normal levels of outer membrane {beta}-barrel proteins in Caulobacter crescentus. MICROBIOLOGY (READING, ENGLAND) 2010; 156:742-756. [PMID: 19959579 PMCID: PMC2889432 DOI: 10.1099/mic.0.035055-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/20/2009] [Accepted: 11/27/2009] [Indexed: 11/18/2022]
Abstract
The outer membrane of Gram-negative bacteria is an essential compartment containing a specific complement of lipids and proteins that constitute a protective, selective permeability barrier. Outer membrane beta-barrel proteins are assembled into the membrane by the essential hetero-oligomeric BAM complex, which contains the lipoprotein BamE. We have identified a homologue of BamE, encoded by CC1365, which is located in the outer membrane of the stalked alpha-proteobacterium Caulobacter crescentus. BamE associates with proteins whose homologues in other bacteria are known to participate in outer membrane protein assembly: BamA (CC1915), BamB (CC1653) and BamD (CC1984). Caulobacter cells lacking BamE grow slowly in rich medium and are hypersensitive to anionic detergents, some antibiotics and heat exposure, which suggest that the membrane integrity of the mutant is compromised. Membranes of the DeltabamE mutant have normal amounts of the outer membrane protein RsaF, a TolC homologue, but are deficient in CpaC*, an aggregated form of the outer membrane secretin for type IV pili. Delta bamE membranes also contain greatly reduced amounts of three TonB-dependent receptors that are abundant in wild-type cells. Cells lacking BamE have short stalks and are delayed in stalk outgrowth during the cell cycle. Based on these findings, we propose that Caulobacter BamE participates in the assembly of outer membrane beta-barrel proteins, including one or more substrates required for the initiation of stalk biogenesis.
Collapse
Affiliation(s)
- Kathleen R Ryan
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A Taylor
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lisa M Bowers
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus. PLoS One 2010; 5:e8619. [PMID: 20062535 PMCID: PMC2797634 DOI: 10.1371/journal.pone.0008619] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane.
Collapse
|
23
|
Príncipe A, Jofré E, Alvarez F, Mori G. Role of a serine-type D-alanyl-D-alanine carboxypeptidase on the survival of Ochrobactrum sp. 11a under ionic and hyperosmotic stress. FEMS Microbiol Lett 2009; 295:261-73. [PMID: 19646181 DOI: 10.1111/j.1574-6968.2009.01604.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The plant growth-promoting rhizobacterium, Ochrobactrum sp. 11a displays a high intrinsic salinity tolerance and has been used in this work to study the molecular basis of bacterial responses to high concentrations of NaCl. A collection of Ochrobactrum sp. 11a mutants was generated by Tn5-B21 mutagenesis and screened for sensitivity to salinity. One clone, designated PBP and unable to grow on glutamate mannitol salt agar medium supplemented with 300 mM NaCl was selected and further characterized. The PBP mutant carries a single transposon insertion in a gene showing a high degree of identity to the serine-type d-alanyl-d-alanine carboxypeptidase gene of Ochrobactrum anthropi. Interestingly, the expression of this gene was shown to be upregulated by salt in the PBP mutant. Moreover, evidence is presented for the requirement of the gene product for adaptation to high-salt conditions as well as to overcome the toxicity of LiCl, KCl, sucrose, polyethylene glycol (PEG), AlCl(3), CuSO(4), and ZnSO(4). In addition to the altered tolerance to both ionic and osmotic stresses, the PBP mutant exhibited changes in colony and cell morphology, exopolysaccharide production, and an increased sensitivity to detergents.
Collapse
Affiliation(s)
- Analía Príncipe
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | | | | | | |
Collapse
|
24
|
Promnares K, Kumar M, Shroder DY, Zhang X, Anderson JF, Pal U. Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol Microbiol 2009; 74:112-125. [PMID: 19703109 PMCID: PMC2754595 DOI: 10.1111/j.1365-2958.2009.06853.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Borrelia burgdorferi lipoprotein Lp6.6 is a differentially produced spirochete antigen. An assessment of lp6.6 expression covering representative stages of the infectious cycle of spirochetes demonstrates that the gene is solely expressed during pathogen persistence in ticks. Deletion of lp6.6 in infectious B. burgdorferi did not influence in vitro growth, or its ability to persist and induce inflammation in mice, migrate to larval or nymphal ticks or survive through the larval-nymphal molt. However, Lp6.6-deficient spirochetes displayed significant impairment in their ability to transmit from infected ticks to naïve mice, which was restored upon genetic complementation of the mutant with a wild-type copy of lp6.6, establishing that Lp6.6 plays a role in pathogen transmission from ticks to mammals. Lp6.6 is a subsurface, yet highly abundant, outer membrane antigen. Two-dimensional blue native/SDS-PAGE coupled with liquid chromatography-mass spectrometry (LC-MS/MS) analysis and protein cross-linking studies independently shows that Lp6.6 exists in multiple protein complexes in the outer membrane. We speculate that the function of Lp6.6 is connected to the physiological processes of these membrane complexes. Further characterization of differentially produced membrane antigens and associated protein complexes will likely aid in our understanding of the molecular details of B. burgdorferi persistence and transmission through a complex enzootic cycle.
Collapse
Affiliation(s)
- Kamoltip Promnares
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Manish Kumar
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Deborah Y Shroder
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Xinyue Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - John F Anderson
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| |
Collapse
|
25
|
Fardini Y, Trotereau J, Bottreau E, Souchard C, Velge P, Virlogeux-Payant I. Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella. Microbiology (Reading) 2009; 155:1613-1622. [DOI: 10.1099/mic.0.025155-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, the assembly of outer-membrane proteins (OMP) requires the BAM complex and periplasmic chaperones, such as SurA or DegP. Previous work has suggested a potential link between OMP assembly and expression of the genes encoding type-III secretion systems. In order to test this hypothesis, we studied the role of the different lipoproteins of the BAM complex (i.e. BamB, BamC, BamD and BamE), and the periplasmic chaperones SurA and DegP, in these two phenotypes in Salmonella. Analysis of the corresponding deletion mutants showed that, as previously described with the ΔbamB mutant, BamD, SurA and, to a lesser extent, BamE play a role in outer-membrane biogenesis in Salmonella Enteritidis, while the membrane was not notably disturbed in ΔbamC and ΔdegP mutants. Interestingly, we found that BamD is not essential in Salmonella, unlike its homologues in Escherichia coli and Neisseria gonorrhoeae. In contrast, BamD was the only protein required for full expression of T3SS-1 and flagella, as demonstrated by transcriptional analysis of the genes involved in the biosynthesis of these T3SSs. In line with this finding, bamD mutants showed a reduced secretion of effector proteins by these T3SSs, and a reduced ability to invade HT-29 cells. As ΔsurA and ΔbamE mutants had lower levels of OMPs in their outer membrane, but showed no alteration in T3SS-1 and flagella expression, these results demonstrate the absence of a systematic link between an OMP assembly defect and the downregulation of T3SSs in Salmonella; therefore, this link appears to be related to a more specific mechanism that involves at least BamB and BamD.
Collapse
Affiliation(s)
- Yann Fardini
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Jérôme Trotereau
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Elisabeth Bottreau
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Charlène Souchard
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Philippe Velge
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | | |
Collapse
|
26
|
Lewis C, Skovierova H, Rowley G, Rezuchova B, Homerova D, Stevenson A, Spencer J, Farn J, Kormanec J, Roberts M. Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection. MICROBIOLOGY-SGM 2009; 155:873-881. [PMID: 19246758 DOI: 10.1099/mic.0.023754-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HtrA is a bifunctional stress protein required by many bacterial pathogens to successfully cause infection. Salmonella enterica serovar Typhimurium (S. Typhimurium) htrA mutants are defective in intramacrophage survival and are highly attenuated in mice. Transcription of htrA in Escherichia coli is governed by a single promoter that is dependent on sigma(E) (RpoE). S. Typhimurium htrA also possesses a sigma(E)-dependent promoter; however, we found that the absence of sigma(E) had little effect on production of HtrA by S. Typhimurium. This suggests that additional promoters control expression of htrA in S. Typhimurium. We identified three S. Typhimurium htrA promoters. Only the most proximal promoter, htrAp3, was sigma(E) dependent. The other promoters, htrAp1 and htrAp2, are probably recognized by the principal sigma factor sigma(70). These two promoters were constitutively expressed but were also slightly induced by heat shock. Thus expression of htrA is different in S. Typhimurium and E. coli. The role of HtrA is to deal with misfolded/damaged proteins in the periplasm. It can do this either by degrading (protease activity) or folding/capturing (chaperone/sequestering, C/S, activity) the aberrant protein. We investigated which of these functions are important to S. Typhimurium in vitro and in vivo. Point or deletion mutants of htrA that encode variant HtrA molecules have been used in previous studies to investigate the role of different regions of HtrA in C/S and protease activity. These htrA variants were placed under the control of the S. Typhimurium htrAP123 promoters and expressed in a S. Typhimurium htrA mutant, GVB1343. Both wild-type HtrA and HtrA (HtrA S210A) lacking protease activity enabled GVB1343 to grow at high temperature (46 degrees C). Both molecules also significantly enhanced the growth/survival of GVB1343 in the liver and spleen of mice during infection. However, expression of wild-type HtrA enabled GVB1343 to grow to much higher levels than expression of HtrA S210A. Thus both the protease and C/S functions of HtrA operate in vivo during infection but the protease function is probably more important. Absence of either PDZ domain completely abolished the ability of HtrA to complement the growth defects of GVB1343 in vitro or in vivo.
Collapse
Affiliation(s)
- Claire Lewis
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Henrieta Skovierova
- Institute of Molecular Biology, Slovak Academy of Science, Dubravska cesta 21, 845 51 Bratislava, Slovak Republik
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Science, Dubravska cesta 21, 845 51 Bratislava, Slovak Republik
| | - Dagmar Homerova
- Institute of Molecular Biology, Slovak Academy of Science, Dubravska cesta 21, 845 51 Bratislava, Slovak Republik
| | - Andrew Stevenson
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Janice Spencer
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Jacinta Farn
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Science, Dubravska cesta 21, 845 51 Bratislava, Slovak Republik
| | - Mark Roberts
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|