1
|
Alternative Splicing of Heat Shock Transcription Factor 2 Regulates the Expression of Laccase Gene Family in Response to Copper in Trametes trogii. Appl Environ Microbiol 2021; 87:AEM.00055-21. [PMID: 33579682 PMCID: PMC8091107 DOI: 10.1128/aem.00055-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
White-rot fungi, especially Trametes strains, are the primary source of industrial laccases in bioenergy and bioremediation. Trametes strains express members of the laccase gene family with different physicochemical properties and expression patterns. However, the literature on the expression pattern of the laccase gene family in T. trogii S0301 and the response mechanism to Cu2+, a key laccase inducer, in white-rot fungal strains is scarce. In the present study, we found that Cu2+ could induce the mRNAs and proteins of the two alternative splicing variants of heat shock transcription factor 2 (TtHSF2). Furthermore, the overexpression of alternative splicing variants TtHSF2α and TtHSF2β-I in the homokaryotic T. trogii S0301 strain showed opposite effects on the extracellular total laccase activity, with the maximum laccase activity of approximately 0.6 U mL-1 and 3.0 U mL-1, respectively, on the eighth day, which is 0.4 and 2.3 times that of the wild type strain. Similarly, TtHSF2α and TtHSF2β-I play opposite roles in the oxidation tolerance to H2O2 In addition, the direct binding of TtHSF2α to the promoter regions of the representative laccase isoenzymes (TtLac1 and TtLac13) and protein-protein interactions between TtHSF2α and TtHSF2β-I were detected. Our results demonstrate the crucial roles of TtHSF2 and its alternative splicing variants in response to Cu2+ We believe that these findings will deepen our understanding of alternative splicing of HSFs and their regulatory mechanism of the laccase gene family in white-rot fungi.Importance The members of laccase gene family in Trametes strains are the primary source of industrial laccase and have gained widespread attention. Increasing the yield and enzymatic properties of laccase through various methods has always been a topic worthy of attention, and there is no report on the regulation of laccase expression through HSF transcription factor engineering. Here, we found that two alternative splicing variants of TtHSF2 functioned oppositely in regulating the expression of laccase genes, and copper can induce the expression of almost all members of the laccase gene family. Most importantly, our study suggested that TtHSF2 and its alternative splicing variants are vital for copper-induced production of laccases in T. trogii S0301.
Collapse
|
2
|
Nguyen H, Rineau F, Vangronsveld J, Cuypers A, Colpaert JV, Ruytinx J. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa
and SlMTb
genes in the ectomycorrhizal fungus Suillus luteus. Environ Microbiol 2017; 19:2577-2587. [DOI: 10.1111/1462-2920.13729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Hoai Nguyen
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - François Rineau
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Jan V. Colpaert
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Joske Ruytinx
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| |
Collapse
|
3
|
An H, Wei D, Xiao T. Transcriptional profiles of laccase genes in the brown rot fungus Postia placenta MAD-R-698. J Microbiol 2015; 53:606-15. [DOI: 10.1007/s12275-015-4705-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
4
|
Vasina DV, Mustafaev ON, Moiseenko KV, Sadovskaya NS, Glazunova OA, Tyurin АА, Fedorova TV, Pavlov AR, Tyazhelova TV, Goldenkova-Pavlova IV, Koroleva OV. The Trametes hirsuta 072 laccase multigene family: Genes identification and transcriptional analysis under copper ions induction. Biochimie 2015. [PMID: 26196690 DOI: 10.1016/j.biochi.2015.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Laccases, blue copper-containing oxidases, ≿ an play an important role in a variety of natural processes. The majority of fungal laccases are encoded by multigene families that express closely related proteins with distinct functions. Currently, only the properties of major gene products of the fungal laccase families have been described. Our study is focused on identification and characterization of laccase genes, which are transcribed in basidiomycete Trametes hirsuta 072, an efficient lignin degrader, in a liquid medium, both without and with induction of laccase transcription by copper ions. We carried out production of cDNA libraries from total fungal RNA, followed by suppression subtractive hybridization and mirror orientation selection procedures, and then used Next Generation Sequencing to identify low abundance and differentially expressed laccase transcripts. This approach resulted in description of five laccase genes of the fungal family, which, according to the phylogenetic analysis, belong to distinct clusters within the Trametes genus. Further analysis established similarity of physical, chemical, and catalytic properties between laccases inside each cluster. Structural modeling suggested importance of the sequence differences in the clusters for laccase substrate specificity and catalytic efficiency. The implications of the laccase variations for the fungal physiology are discussed.
Collapse
Affiliation(s)
- Daria V Vasina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospekt, 33, build. 2, Moscow 119071, Russia.
| | - Orkhan N Mustafaev
- Institute of Plant Physiology, Russian Academy of Sciences, st. Botanicheskaya, 35, Moscow 127276, Russia
| | - Konstantin V Moiseenko
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospekt, 33, build. 2, Moscow 119071, Russia
| | - Natalia S Sadovskaya
- Institute of Plant Physiology, Russian Academy of Sciences, st. Botanicheskaya, 35, Moscow 127276, Russia
| | - Olga A Glazunova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospekt, 33, build. 2, Moscow 119071, Russia
| | - Аlexander А Tyurin
- Institute of Plant Physiology, Russian Academy of Sciences, st. Botanicheskaya, 35, Moscow 127276, Russia
| | - Tatiana V Fedorova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospekt, 33, build. 2, Moscow 119071, Russia
| | - Andrey R Pavlov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospekt, 33, build. 2, Moscow 119071, Russia
| | - Tatiana V Tyazhelova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospekt, 33, build. 2, Moscow 119071, Russia
| | - Irina V Goldenkova-Pavlova
- Institute of Plant Physiology, Russian Academy of Sciences, st. Botanicheskaya, 35, Moscow 127276, Russia
| | - Olga V Koroleva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospekt, 33, build. 2, Moscow 119071, Russia
| |
Collapse
|
5
|
Microbial enzyme systems for lignin degradation and their transcriptional regulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1336-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 2012; 97:939-55. [DOI: 10.1007/s00253-012-4615-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
7
|
Effective induction of pblac1 laccase by copper ion in Polyporus brumalis ibrc05015. Fungal Biol 2012; 117:52-61. [PMID: 23332833 DOI: 10.1016/j.funbio.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/06/2012] [Accepted: 11/23/2012] [Indexed: 11/24/2022]
Abstract
Polyporus brumalis ibrc05015 is a strain capable of high laccase (Lac) production. Among several inducers, 0.25 mM copper was most effective for Lac production. One of the Lacs induced by copper was PbLac1, and its transcription was induced within 60 min after copper addition. The promoter region of pblac1 contained six putative metal response elements and one Ace1 consensus cis-element. We cloned the P. brumalis PbAce1 transcription factor, a homologue of Saccharomyces cerevisiae transcription factor Ace1, which regulates metallothionein genes in response to excess copper. PbAce1 complemented the function of Ace1 in an S. cerevisiae Δace strain. The conserved N-terminal copper-fist DNA binding domain of PbAce1 was required for complementation. In the PbAce1 complemented Δace1 strain, the pblac1 promoter was constitutively expressed at a high level, independent of copper concentration. PbAce1 has two Cys-rich repeat motifs (PbC1 and PbC2), which are similar to the Cys-rich repeat domain in metallothionein proteins, and are uniquely conserved in the C-terminal domain of basidiomycetous Ace1 sequences. These C-terminal domains could be involved in copper sensing and concentration-dependent Lac production in basidiomycetous fungi.
Collapse
|
8
|
Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 2012; 30:1447-57. [DOI: 10.1016/j.biotechadv.2012.03.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/25/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|
9
|
Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ. Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol 2012. [PMID: 23199732 DOI: 10.1016/j.enzmictec.2012.10.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive research efforts have been dedicated to characterizing expression of laccases and peroxidases and their regulation in numerous fungal species. Much attention has been brought to these enzymes broad substrate specificity resulting in oxidation of a variety of organic compounds which brings about possibilities of their utilization in biotechnological and environmental applications. Research attempts have resulted in increased production of both laccases and peroxidases by the aid of heterologous and homologous expression. Through analysis of promoter regions, protein expression patterns and culture conditions manipulations it was possible to compare and identify common pathways of these enzymes' production and secretion. Although laccase and peroxidase proteins have been crystallized and thoroughly analyzed, there are still a lot of questions remaining about their evolutionary origin and the physiological functions. This review describes the present understanding of promoter sequences and correlation between the observed regulatory effects on laccase, manganese peroxidase and lignin peroxidase genes transcript levels and the presence of specific response elements.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland.
| | | | | | | | | |
Collapse
|
10
|
Canessa P, Muñoz-Guzmán F, Vicuña R, Larrondo LF. Characterization of PIR1, a GATA family transcription factor involved in iron responses in the white-rot fungus Phanerochaete chrysosporium. Fungal Genet Biol 2012; 49:626-34. [DOI: 10.1016/j.fgb.2012.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 01/19/2023]
|
11
|
MacDonald J, Suzuki H, Master ER. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 2012; 94:339-51. [PMID: 22391967 DOI: 10.1007/s00253-012-3937-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
As white-rot basidiomycetes, Phanerochaete species are critical to the cycling of carbon sequestered as woody biomass, and are predicted to encode many enzymes that can be harnessed to promote the conversion of lignocellulose to sugars for fermentation to fuels and chemicals. Advances in genomic, transcriptomic, and proteomic technologies have enabled detailed analyses of different Phanerochaete species and have revealed numerous enzyme families required for lignocellulose utilization, as well as insight into the regulation of corresponding genes. Recent studies of Phanerochaete are also exemplified by molecular analyses following cultivation on different wood preparations, and show substrate-dependent responses that were difficult to predict using model compounds or isolated plant polysaccharides. The aim of this mini-review is to synthesize results from studies that have applied recent advances in molecular tools to evaluate the expression and regulation of proteins that contribute to lignocellulose conversion in Phanerochaete species. The identification of proteins with as yet unknown function are also highlighted and noted as important targets for future investigation of white-rot decay.
Collapse
Affiliation(s)
- Jacqueline MacDonald
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
12
|
Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V. Induction and transcriptional regulation of laccases in fungi. Curr Genomics 2011; 12:104-12. [PMID: 21966248 PMCID: PMC3129044 DOI: 10.2174/138920211795564331] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/01/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Fungal laccases are phenol oxidases widely studied for their use in several industrial applications, including pulp bleaching in paper industry, dye decolourisation, detoxification of environmental pollutants and revalorization of wastes and wastewaters. The main difficulty in using these enzymes at industrial scale ensues from their production costs. Elucidation of the components and the mechanisms involved in regulation of laccase gene expression is crucial for increasing the productivity of native laccases in fungi. Laccase gene transcription is regulated by metal ions, various aromatic compounds related to lignin or lignin derivatives, nitrogen and carbon sources. In this manuscript, most of the published results on fungal laccase induction, as well as analyses of both the sequences and putative functions of laccase gene promoters are reviewed. Analyses of promoter sequences allow defining a correlation between the observed regulatory effects on laccase gene transcription and the presence of specific responsive elements, and postulating, in some cases, a mechanism for their functioning. Only few reports have investigated the molecular mechanisms underlying laccase regulation by different stimuli. The reported analyses suggest the existence of a complex picture of laccase regulation phenomena acting through a variety of cis acting elements. However, the general mechanisms for laccase transcriptional regulation are far from being unravelled yet.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincenza Faraco
- University of Naples “Federico II”, Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
13
|
Kües U, Rühl M. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Curr Genomics 2011; 12:72-94. [PMID: 21966246 PMCID: PMC3129051 DOI: 10.2174/138920211795564377] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Genome analyses revealed in various basidiomycetes the existence of multiple genes for blue multi-copper oxidases (MCOs). Whole genomes are now available from saprotrophs, white rot and brown rot species, plant and animal pathogens and ectomycorrhizal species. Total numbers (from 1 to 17) and types of mco genes differ between analyzed species with no easy to recognize connection of gene distribution to fungal life styles. Types of mco genes might be present in one and absent in another fungus. Distinct types of genes have been multiplied at speciation in different organisms. Phylogenetic analysis defined different subfamilies of laccases sensu stricto (specific to Agaricomycetes), classical Fe2+-oxidizing Fet3-like ferroxidases, potential ferroxidases/laccases exhibiting either one or both of these enzymatic functions, enzymes clustering with pigment MCOs and putative ascorbate oxidases. Biochemically best described are laccases sensu stricto due to their proposed roles in degradation of wood, straw and plant litter and due to the large interest in these enzymes in biotechnology. However, biological functions of laccases and other MCOs are generally little addressed. Functions in substrate degradation, symbiontic and pathogenic intercations, development, pigmentation and copper homeostasis have been put forward. Evidences for biological functions are in most instances rather circumstantial by correlations of expression. Multiple factors impede research on biological functions such as difficulties of defining suitable biological systems for molecular research, the broad and overlapping substrate spectrum multi-copper oxidases usually possess, the low existent knowledge on their natural substrates, difficulties imposed by low expression or expression of multiple enzymes, and difficulties in expressing enzymes heterologously.
Collapse
Affiliation(s)
- Ursula Kües
- University of Goettingen, Büsgen-Institute, Division of Molecular Wood Biotechnology and Technical Mycology, Büsgenweg 2, 37077 Goettingen, Germany
| | | |
Collapse
|
14
|
Mancilla RA, Canessa P, Manubens A, Vicuña R. Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora. Fungal Genet Biol 2010; 47:656-61. [PMID: 20434578 DOI: 10.1016/j.fgb.2010.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/26/2010] [Accepted: 04/18/2010] [Indexed: 11/17/2022]
Abstract
The ligninolytic machinery of the widely used model fungus Ceriporiopsis subvermispora includes the enzymes manganese-peroxidase (MnP) and laccase (Lcs). In this work the effect of Mn(II) on the secretion of MnP was studied. Cultures grown in the absence of Mn(II) showed high levels of mnp transcripts. However, almost no MnP enzyme was detected in the extracellular medium, either by enzymatic activity assays or Western blot hybridizations. In the corresponding mycelia, immuno-electron microscopy experiments showed high levels of MnP enzyme within intracellular compartments. These results suggest that in addition to its well-known effect on transcription regulation of mnp genes, manganese influences secretion of MnP to the extracellular medium. Experiments carried out in the presence of cycloheximide confirmed that the metal is required to secrete MnP already synthesized and retained within the cell.
Collapse
Affiliation(s)
- Rodrigo A Mancilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | | | | | | |
Collapse
|
15
|
Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao JJ, Hou XL, Yao QH. Yeast copper-dependent transcription factor ACE1 enhanced copper stress tolerance in Arabidopsis. BMB Rep 2009; 42:752-7. [PMID: 19944018 DOI: 10.5483/bmbrep.2009.42.11.752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper is essential but toxic in excess for aerobic organisms. Yeast transcription factor ACE1 functions as a sensor for copper and an inducer for the transcription of CUP1. In addition, ACE1 can activate the transcription of superoxide dismutase gene (sod1) in response to copper. In this study, we introduced the yeast ACE1 into Arabidopsis and analyzed its function in plant. Under high copper stress, the transgenic plants over-expressing ACE1 showed higher survival rate than the wild-type. We also found that over-expression of ACE1 in Arabidopsis increased the activities of SOD and POD, which were beneficial to the cell in copper buffering. Excess copper would suppress the expression of chlorophyll biosynthetic genes in Arabidopsis, RT-PCR analysis revealed that over-expression of ACE1 decrease the suppression. Together, our results indicate that ACE1 may play an important role in response to copper stress in Arabidopsis.
Collapse
Affiliation(s)
- Jing Xu
- Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nakagawa Y, Kikuchi S, Sakamoto Y, Yano A. Identification and characterization of CcCTR1, a copper uptake transporter-like gene, in Coprinopsis cinerea. Microbiol Res 2009; 165:276-87. [PMID: 19716688 DOI: 10.1016/j.micres.2009.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 11/16/2022]
Abstract
Copper (Cu) is an essential element for the physiological function of organisms. In basidiomycetes, Cu is necessary for the production of phenol oxidase enzymes such as laccase and tyrosinase. We isolated and characterized two genes, CcCTR1 and -2, from the model basidiomycete Coprinopsis cinerea. CcCTR1 and -2 showed similarity to the Cu transporter CTR1 in Saccharomyces cerevisiae. Both CcCTRs had a MLxxM motif that is conserved in other CTR homologs. The addition of Cu to a liquid culture of C. cinerea decreased the mRNA accumulation of CcCTR1 and -2. Heterologous expression of CcCTR1 in S. cerevisiae increased Cu sensitivity, suggesting that CcCTR1 is a Cu uptake transporter. Together, these results suggest that CcCTR1 plays an important role in Cu accumulation in C. cinerea.
Collapse
Affiliation(s)
- Yuko Nakagawa
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan.
| | | | | | | |
Collapse
|