1
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Johnston J, Taylor J, Nahata S, Gatica-Gomez A, Anderson YL, Kiger S, Pham T, Karimi K, Lacar JF, Carter NS, Roberts SC. Putrescine Depletion in Leishmania donovani Parasites Causes Immediate Proliferation Arrest Followed by an Apoptosis-like Cell Death. Pathogens 2025; 14:137. [PMID: 40005515 PMCID: PMC11858418 DOI: 10.3390/pathogens14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
The polyamine pathway in Leishmania parasites has emerged as a promising target for therapeutic intervention, yet the functions of polyamines in parasites remain largely unexplored. Ornithine decarboxylase (ODC) and spermidine synthase (SPDSYN) catalyze the sequential conversion of ornithine to putrescine and spermidine. We previously found that Leishmania donovani Δodc and Δspdsyn mutants exhibit markedly reduced growth in vitro and diminished infectivity in mice, with the effect being most pronounced in putrescine-depleted Δodc mutants. Here, we report that, in polyamine-free media, ∆odc mutants arrested proliferation and replication, while ∆spdsyn mutants showed a slow growth and replication phenotype. Starved ∆odc parasites also exhibited a marked reduction in metabolism, which was not observed in the starved ∆spdsyn cells. In contrast, both mutants displayed mitochondrial membrane hyperpolarization. Hallmarks of apoptosis, specifically DNA fragmentation and membrane modifications, were observed in Δodc mutants incubated in polyamine-free media. These results show that putrescine depletion had an immediate detrimental effect on cell growth, replication, and mitochondrial metabolism and caused an apoptosis-like death phenotype. Our findings establish ODC as the most promising therapeutic target within the polyamine biosynthetic pathway for treating leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sigrid C. Roberts
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (J.J.); (J.T.); (S.N.); (A.G.-G.); (Y.L.A.); (S.K.); (T.P.); (K.K.); (J.-F.L.); (N.S.C.)
| |
Collapse
|
3
|
Pérez-Pertejo Y, García-Estrada C, Martínez-Valladares M, Murugesan S, Reguera RM, Balaña-Fouce R. Polyamine Metabolism for Drug Intervention in Trypanosomatids. Pathogens 2024; 13:79. [PMID: 38251386 PMCID: PMC10820115 DOI: 10.3390/pathogens13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Neglected tropical diseases transmitted by trypanosomatids include three major human scourges that globally affect the world's poorest people: African trypanosomiasis or sleeping sickness, American trypanosomiasis or Chagas disease and different types of leishmaniasis. Different metabolic pathways have been targeted to find antitrypanosomatid drugs, including polyamine metabolism. Since their discovery, the naturally occurring polyamines, putrescine, spermidine and spermine, have been considered important metabolites involved in cell growth. With a complex metabolism involving biosynthesis, catabolism and interconversion, the synthesis of putrescine and spermidine was targeted by thousands of compounds in an effort to produce cell growth blockade in tumor and infectious processes with limited success. However, the discovery of eflornithine (DFMO) as a curative drug against sleeping sickness encouraged researchers to develop new molecules against these diseases. Polyamine synthesis inhibitors have also provided insight into the peculiarities of this pathway between the host and the parasite, and also among different trypanosomatid species, thus allowing the search for new specific chemical entities aimed to treat these diseases and leading to the investigation of target-based scaffolds. The main molecular targets include the enzymes involved in polyamine biosynthesis (ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine synthase), enzymes participating in their uptake from the environment, and the enzymes involved in the redox balance of the parasite. In this review, we summarize the research behind polyamine-based treatments, the current trends, and the main challenges in this field.
Collapse
Affiliation(s)
- Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India;
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| |
Collapse
|
4
|
Santiago-Silva KMD, Bortoleti BTDS, Brito TDO, Costa IC, Lima CHDS, Macedo F, Miranda-Sapla MM, Pavanelli WR, Bispo MDLF. Exploring the antileishmanial activity of N1, N2-disubstituted-benzoylguanidines: synthesis and molecular modeling studies. J Biomol Struct Dyn 2022; 40:11495-11510. [PMID: 34355671 DOI: 10.1080/07391102.2021.1959403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this report, we describe the synthesis and evaluation of nine N1,N2-disubstituted-benzoylguanidines against promastigotes and amastigotes forms of Leishmania amazonensis. The derivatives 2g and 2i showed low IC50 values against promastigote form (90.8 ± 0.05 µM and 68.4 ± 0.03 µM, respectively), low cytotoxicity profile (CC50 396 ± 0.02 µM and 857.9 ± 0.06 µM) for peritoneal macrophages cells and SI of 5.5 and 12.5, respectively. Investigations about the mechanism of action of 2g and 2i showed that both compounds cause mitochondrial depolarization, increase in ROS levels, and generation of autophagic vacuoles on free promastigotes forms. These compounds were also capable of reducing the number of infected macrophages with amastigotes forms (59.5% ± 0.08% and 98.1% ± 0.46%) and the number of amastigotes/macrophages (79.80% ± 0.05% and 96.0% ± 0.16%), through increasing induction of microbicide molecule NO. Additionally, ADMET-Tox in silico predictions showed drug-like features and free of toxicological risks. The molecular docking studies with arginase and gp63 showed that relevant intermolecular interactions could explain the experimental results. Therefore, these results reinforce that benzoylguanidines could be a starting scaffold for the search for new antileishmanial drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaio Maciel de Santiago-Silva
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Tiago de Oliveira Brito
- Laboratório de Pesquisa em Moléculas Bioativas (LPMBA), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon Costa
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Fernando Macedo
- Laboratório de Pesquisa em Moléculas Bioativas (LPMBA), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcelle de Lima Ferreira Bispo
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
5
|
Almeida-Silva J, Menezes DS, Fernandes JMP, Almeida MC, Vasco-Dos-Santos DR, Saraiva RM, Viçosa AL, Perez SAC, Andrade SG, Suarez-Fontes AM, Vannier-Santos MA. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: Searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front Cell Infect Microbiol 2022; 12:926699. [PMID: 35967878 PMCID: PMC9372510 DOI: 10.3389/fcimb.2022.926699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chagas disease (CD) affects at least 6 million people in 21 South American countries besides several thousand in other nations all over the world. It is estimated that at least 14,000 people die every year of CD. Since vaccines are not available, chemotherapy remains of pivotal relevance. About 30% of the treated patients cannot complete the therapy because of severe adverse reactions. Thus, the search for novel drugs is required. Here we tested the benznidazole (BZ) combination with the repositioned drug disulfiram (DSF) and its derivative diethyldithiocarbamate (DETC) upon Trypanosoma cruzi in vitro and in vivo. DETC-BZ combination was synergistic diminishing epimastigote proliferation and enhancing selective indexes up to over 10-fold. DETC was effective upon amastigotes of the BZ- partially resistant Y and the BZ-resistant Colombiana strains. The combination reduced proliferation even using low concentrations (e.g., 2.5 µM). Scanning electron microscopy revealed membrane discontinuities and cell body volume reduction. Transmission electron microscopy revealed remarkable enlargement of endoplasmic reticulum cisternae besides, dilated mitochondria with decreased electron density and disorganized kinetoplast DNA. At advanced stages, the cytoplasm vacuolation apparently impaired compartmentation. The fluorescent probe H2-DCFDA indicates the increased production of reactive oxygen species associated with enhanced lipid peroxidation in parasites incubated with DETC. The biochemical measurement indicates the downmodulation of thiol expression. DETC inhibited superoxide dismutase activity on parasites was more pronounced than in infected mice. In order to approach the DETC effects on intracellular infection, peritoneal macrophages were infected with Colombiana trypomastigotes. DETC addition diminished parasite numbers and the DETC-BZ combination was effective, despite the low concentrations used. In the murine infection, the combination significantly enhanced animal survival, decreasing parasitemia over BZ. Histopathology revealed that low doses of BZ-treated animals presented myocardial amastigote, not observed in combination-treated animals. The picrosirius collagen staining showed reduced myocardial fibrosis. Aminotransferase de aspartate, Aminotransferase de alanine, Creatine kinase, and urea plasma levels demonstrated that the combination was non-toxic. As DSF and DETC can reduce the toxicity of other drugs and resistance phenotypes, such a combination may be safe and effective.
Collapse
Affiliation(s)
- Juliana Almeida-Silva
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Diego Silva Menezes
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Juan Mateus Pereira Fernandes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Márcio Cerqueira Almeida
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Deyvison Rhuan Vasco-Dos-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Roberto Magalhães Saraiva
- Laboratory of Clinical Research on Chagas Disease, Evandro Chagas Infectious Disease Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Alessandra Lifsitch Viçosa
- Experimental Pharmacotechnics Laboratory, Department of Galenic Innovation, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sandra Aurora Chavez Perez
- Project Management Technical Assistance, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sônia Gumes Andrade
- Experimental Chagas Disease Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Ana Márcia Suarez-Fontes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcos André Vannier-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022; 117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomatids are mainly responsible for heterogeneous parasitic diseases: Leishmaniasis, Sleeping sickness, and Chagas disease and control of these diseases implicates serious challenges due to the emergence of drug resistance. Redox-active biomolecules are the endogenous substances in organisms, which play important role in the regulation of redox homeostasis. The redox-active substances like glutathione, trypanothione, cysteine, cysteine persulfides, etc., and other inorganic intermediates (hydrogen peroxide, nitric oxide) are very useful as defence mechanism. In the present review, the suitability of trypanothione and other essential thiol molecules of trypanosomatids as drug targets are described in Leishmania and Trypanosoma. We have explored the role of tryparedoxin, tryparedoxin peroxidase, ascorbate peroxidase, superoxide dismutase, and glutaredoxins in the anti-oxidant mechanism and drug resistance. Up-regulation of some proteins in trypanothione metabolism helps the parasites in survival against drug pressure (sodium stibogluconate, Amphotericin B, etc.) and oxidative stress. These molecules accept electrons from the reduced trypanothione and donate their electrons to other proteins, and these proteins reduce toxic molecules, neutralize reactive oxygen, or nitrogen species; and help parasites to cope with oxidative stress. Thus, a better understanding of the role of these molecules in drug resistance and redox homeostasis will help to target metabolic pathway proteins to combat Leishmaniasis and trypanosomiases.
Collapse
Affiliation(s)
- Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India; Department of Botany, Araria College, Purnea University, Purnia, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| |
Collapse
|
7
|
Carter NS, Kawasaki Y, Nahata SS, Elikaee S, Rajab S, Salam L, Alabdulal MY, Broessel KK, Foroghi F, Abbas A, Poormohamadian R, Roberts SC. Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Med Sci (Basel) 2022; 10:24. [PMID: 35645240 PMCID: PMC9149861 DOI: 10.3390/medsci10020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans and domestic animals worldwide. The need for new therapeutic strategies is urgent because no vaccine is available, and treatment options are limited due to a lack of specificity and the emergence of drug resistance. Polyamines are metabolites that play a central role in rapidly proliferating cells, and recent studies have highlighted their critical nature in Leishmania. Numerous studies using a variety of inhibitors as well as gene deletion mutants have elucidated the pathway and routes of transport, revealing unique aspects of polyamine metabolism in Leishmania parasites. These studies have also shed light on the significance of polyamines for parasite proliferation, infectivity, and host-parasite interactions. This comprehensive review article focuses on the main polyamine biosynthetic enzymes: ornithine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase, and it emphasizes recent discoveries that advance these enzymes as potential therapeutic targets against Leishmania parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sigrid C. Roberts
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR 97123, USA; (N.S.C.); (Y.K.); (S.S.N.); (S.E.); (S.R.); (L.S.); (M.Y.A.); (K.K.B.); (F.F.); (A.A.); (R.P.)
| |
Collapse
|
8
|
Vicente-Barrueco A, Román ÁC, Ruiz-Téllez T, Centeno F. In Silico Research of New Therapeutics Rotenoids Derivatives against Leishmania amazonensis Infection. BIOLOGY 2022; 11:biology11010133. [PMID: 35053132 PMCID: PMC8772715 DOI: 10.3390/biology11010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Yearly, 1,500,000 cases of leishmaniasis are diagnosed, causing thousands of deaths. To advance in its therapy, we present an interdisciplinary protocol that unifies ethnobotanical knowledge of natural compounds and the latest bioinformatics advances to respond to an orphan disease such as leishmaniasis and specifically the one caused by Leishmania amazonensis. The use of ethnobotanical information serves as a basis for the development of new drugs, a field in which computer-aided drug design (CADD) has been a revolution. Taking this information from Amazonian communities, located in the area with a high prevalence of this disease, a protocol has been designed to verify new leads. Moreover, a method has been developed that allows the evaluation of lead molecules, and the improvement of their affinity and specificity against therapeutic targets. Through this approach, deguelin has been identified as a good lead to treat the infection due to its potential as an ornithine decarboxylase (ODC) inhibitor, a key enzyme in Leishmania development. Using an in silico-generated combinatorial library followed by docking approaches, we have found deguelin derivatives with better affinity and specificity against ODC than the original compound, suggesting that this approach could be adapted for developing new drugs against leishmaniasis.
Collapse
Affiliation(s)
- Adrián Vicente-Barrueco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Ángel Carlos Román
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
- Correspondence: (Á.C.R.); (F.C.)
| | - Trinidad Ruiz-Téllez
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Francisco Centeno
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
- Correspondence: (Á.C.R.); (F.C.)
| |
Collapse
|
9
|
Torres Suarez E, Granados-Falla DS, Robledo SM, Murillo J, Upegui Y, Delgado G. Antileishmanial activity of synthetic analogs of the naturally occurring quinolone alkaloid N-methyl-8-methoxyflindersin. PLoS One 2020; 15:e0243392. [PMID: 33370295 PMCID: PMC7769561 DOI: 10.1371/journal.pone.0243392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Leishmaniasis is a neglected, parasitic tropical disease caused by an intracellular protozoan from the genus Leishmania. Quinoline alkaloids, secondary metabolites found in plants from the Rutaceae family, have antiparasitic activity against Leishmania sp. N-methyl-8-methoxyflindersin (1), isolated from the leaves of Raputia heptaphylla and also known as 7-methoxy-2,2-dimethyl-2H,5H,6H-pyran[3,2-c]quinolin-5-one, shows antiparasitic activity against Leishmania promastigotes and amastigotes. This study used in silico tools to identify synthetic quinoline alkaloids having structure similar to that of compound 1 and then tested these quinoline alkaloids for their in vitro antiparasitic activity against Leishmania (Viannia) panamensis, in vivo therapeutic response in hamsters suffering from experimental cutaneous leishmaniasis (CL), and ex vivo immunomodulatory potential in healthy donors' human peripheral blood (monocyte)-derived macrophages (hMDMs). Compounds 1 (natural), 2 (synthetic), and 8 (synthetic) were effective against intracellular promastigotes (9.9, 3.4, and 1.6 μg/mL medial effective concentration [EC50], respectively) and amastigotes (5.07, 7.94, and 1.91 μg/mL EC50, respectively). Compound 1 increased nitric oxide production in infected hMDMs and triggered necrosis-related ultrastructural alterations in intracellular amastigotes, while compound 2 stimulated oxidative breakdown in hMDMs and caused ultrastructural alterations in the parasite 4 h posttreatment, and compound 8 failed to induce macrophage modulation but selectively induced apoptosis of infected hMDMs and alterations in the intracellular parasite ultrastructure. In addition, synthetic compounds 2 and 8 improved the health of hamsters suffering from experimental CL, without evidence of treatment-associated adverse toxic effects. Therefore, synthetic compounds 2 and 8 are potential therapeutic candidates for topical treatment of CL.
Collapse
Affiliation(s)
- Elaine Torres Suarez
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana Susana Granados-Falla
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
- Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Sara María Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Javier Murillo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gabriela Delgado
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Histone deacetylases inhibitors as new potential drugs against Leishmania braziliensis, the main causative agent of new world tegumentary leishmaniasis. Biochem Pharmacol 2020; 180:114191. [PMID: 32777278 DOI: 10.1016/j.bcp.2020.114191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds were evaluated in relation to the toxicity to the host cell macrophage and to the leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi showed significant leishmanicidal effects and the top 5 compounds showed effective concentrations (EC50) in the range of 4.38 to 10.21 μM and selectivity indexes (SI) from of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An altered chromatin condensation pattern and cellular disorganization of intracellular amastigotes was also observed. A tight connection between the mitochondrion and nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, the direct effect of HDACi against the promastigotes showed apoptosis as the main mechanism of cell death. The FC results corroborate the TEM analyses indicating that the HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The production of nitric oxide by the infected macrophages was not altered after treatment with the top 5 compounds. Taken together, our results evidenced new HDACi as promising agents for the development of new treatments for American Tegumentary Leishmaniasis caused by L. braziliensis.
Collapse
|
11
|
Lopes DDS, Dos Santos UR, Dos Anjos DO, da Silva Júnior LJC, de Paula VF, Vannier-Santos MA, Silva-Jardim I, Castro-Gomes T, Pirovani CP, Lima-Santos J. Ethanolic Extract of the Fungus Trichoderma asperelloides Induces Ultrastructural Effects and Death on Leishmania amazonensis. Front Cell Infect Microbiol 2020; 10:306. [PMID: 32760675 PMCID: PMC7373754 DOI: 10.3389/fcimb.2020.00306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
The Trichoderma genus comprises several species of fungi whose diversity of secondary metabolites represents a source of potential molecules with medical application. Because of increased pathogen resistance and demand for lower production costs, the search for new pharmacologically active molecules effective against pathogens has become more intense. This is particularly evident in the case of American cutaneous leishmaniasis due to the high toxicity of current treatments, parenteral administration, and increasing rate of refractory cases. We have previously shown that a fungus from genus Trichoderma can be used for treating cerebral malaria in mouse models and inhibit biofilm formation. Here, we evaluated the effect of the ethanolic extract of Trichoderma asperelloides (Ext-Ta) and its fractions on promastigotes and amastigotes of Leishmania amazonensis, a major causative agent of cutaneous leishmaniasis in the New World. Ext-Ta displayed leishmanicidal action on L. amazonensis parasites, and its pharmacological activity was associated with the low-molecular-weight fraction (LMWF) of Ext-Ta. Ultrastructural analysis demonstrated morphological alterations in the mitochondria and the flagellar pocket of promastigotes, with increased lipid body and acidocalcisome formation, microtubule disorganization of the cytoplasm, and intense vacuolization of the cytoplasm when amastigotes were present. We suggest the antiparasitic activity of Trichoderma fungi as a promising tool for developing chemotherapeutic leishmanicidal agents.
Collapse
Affiliation(s)
- Danielle de Sousa Lopes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz-UESC, Ilhéus, Brazil
| | | | | | | | | | - Marcos André Vannier-Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Izaltina Silva-Jardim
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz-UESC, Ilhéus, Brazil
| | - Thiago Castro-Gomes
- Laboratório de Biologia Celular e Parasitos Intracelulares, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | | | - Jane Lima-Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz-UESC, Ilhéus, Brazil
| |
Collapse
|
12
|
Crizanto de Lima E, Castelo-Branco FS, Maquiaveli CC, Farias AB, Rennó MN, Boechat N, Silva ER. Phenylhydrazides as inhibitors of Leishmania amazonensis arginase and antileishmanial activity. Bioorg Med Chem 2019; 27:3853-3859. [PMID: 31311700 DOI: 10.1016/j.bmc.2019.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023]
Abstract
Searching for new substances with antileishmanial activity, we synthesized and evaluated a series of α,α-difluorohydrazide and α,α-difluoramides against Leishmania amazonensis arginase (LaArg). Four α,α-difluorohydrazide derivatives showed activity against LaArg with Ki in the range of 1.3-26 μM. The study of the kinetics of LaArg inhibition showed that these substances might act via different inhibitory mechanisms or even by a combination of these. The compounds were tested against L. amazonensis promastigotes and the best result was obtained to the compound 4 (EC50 of 12.7 ± 0.3 μM). In addition, in order to obtain further insight into the binding mode of such compounds, molecular docking studies were performed to obtain additional validation of experimental results. Considering these results, it is possible to conclude that α,α-difluorohydrazide derivatives are a promising scaffold in the development of new substances against the etiological agent of leishmaniasis by targeting LaArg.
Collapse
Affiliation(s)
- Evanoel Crizanto de Lima
- Laboratório de Catálise e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro Campus Macaé Professor Aloísio Teixeira, Estrada do Imburo s/n - Ajuda de Baixo, Macaé, RJ CEP 27979-000, Brazil
| | - Frederico S Castelo-Branco
- Departamento de Sintese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ, Rio de Janeiro, RJ 21041-250, Brazil
| | - Claudia C Maquiaveli
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Farmacologia e Bioquímica (LFBq), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - André B Farias
- Instituto de Biodiversidade e Sustentabilidade NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil
| | - Magdalena N Rennó
- Instituto de Biodiversidade e Sustentabilidade NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil
| | - Nubia Boechat
- Departamento de Sintese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ, Rio de Janeiro, RJ 21041-250, Brazil.
| | - Edson R Silva
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Farmacologia e Bioquímica (LFBq), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil.
| |
Collapse
|
13
|
Wanderley JLM, Deolindo P, Carlsen E, Portugal AB, DaMatta RA, Barcinski MA, Soong L. CD4 + T Cell-Dependent Macrophage Activation Modulates Sustained PS Exposure on Intracellular Amastigotes of Leishmania amazonensis. Front Cell Infect Microbiol 2019; 9:105. [PMID: 31032234 PMCID: PMC6473175 DOI: 10.3389/fcimb.2019.00105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/26/2019] [Indexed: 01/16/2023] Open
Abstract
Leishmania amazonensis amastigotes can make use of surface-exposed phosphatidylserine (PS) molecules to promote infection and non-classical activation of macrophages (MΦ), leading to uncontrolled intracellular proliferation of the parasites. This mechanism was quoted as apoptotic mimicry. Moreover, the amount of PS molecules exposed on the surface of amastigotes correlates with the susceptibility of the host. In this study, we tested whether host cellular responses influence PS expression on intracellular amastigotes. We found that the level of PS exposure on intracellular amastigotes was modulated by CD4+ T cell and MΦ activation status in vitro and in vivo. L. amazonensis infection generated a Th1/Th2-mixed cytokine profile, providing the optimal MΦ stimulation that favored PS exposure on intracellular amastigotes. Maintenance of PS exposed on the parasite was dependent on low, but sustained, levels of nitric oxide and polyamine production. Amastigotes obtained from lymphopenic nude mice did not expose PS on their surface, and adoptive transfer of CD4+ T cells reversed this phenotype. In addition, histopathological analysis of mice treated with anti-PS antibodies showed increased inflammation and similarities to nude mouse lesions. Collectively, our data confirm the role of pathogenic CD4+ T cells for disease progression and point to PS as a critical parasite strategy to subvert host immune responses.
Collapse
Affiliation(s)
- Joao Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Unidade de Pesquisa Integrada em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Poliana Deolindo
- Laboratório de Biologia Molecular de Parasitas e Vetores, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eric Carlsen
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Arieli Bernardo Portugal
- Laboratório de Imunoparasitologia, Unidade de Pesquisa Integrada em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Marcello Andre Barcinski
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lynn Soong
- Department of Microbiology and Immunology, Center for Tropical Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
14
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
15
|
Reigada C, Phanstiel O, Miranda MR, Pereira CA. Targeting polyamine transport in Trypanosoma cruzi. Eur J Med Chem 2018; 147:1-6. [DOI: 10.1016/j.ejmech.2018.01.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/26/2018] [Indexed: 02/05/2023]
|
16
|
Polyamine-based analogs and conjugates as antikinetoplastid agents. Eur J Med Chem 2017; 139:982-1015. [DOI: 10.1016/j.ejmech.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
|
17
|
Dos Anjos DO, Sobral Alves ES, Gonçalves VT, Fontes SS, Nogueira ML, Suarez-Fontes AM, Neves da Costa JB, Rios-Santos F, Vannier-Santos MA. Effects of a novel β-lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis. Int J Parasitol Drugs Drug Resist 2016; 6:207-219. [PMID: 27770751 PMCID: PMC5078628 DOI: 10.1016/j.ijpddr.2016.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β-lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s) underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β-lapachone derivative affected the T. cruzi morphology and surface topography. General plasma membrane waving and blebbing particularly on the cytostome region were observed in the R72-treated parasites. Transmission electron microscopy observations confirmed the surface damage at the cytostome opening vicinity. We also observed ultrastructural evidence of the autophagic mechanism termed macroautophagy. Some of the autophagosomes involved large portions of the parasite cytoplasm and their fusion/confluence may lead to necrotic parasite death. The remarkably enhanced frequency of autophagy triggering was confirmed by quantitating monodansylcadaverine labeling. Some cells displayed evidence of chromatin pycnosis and nuclear fragmentation were detected. This latter phenomenon was also indicated by DAPI staining of R72-treated cells. The apoptotis induction was suggested to take place in circa one-third of the parasites assessed by annexin V labeling measured by flow cytometry. TUNEL staining corroborated the apoptosis induction. Propidium iodide labeling indicate that at least 10% of the R72-treated parasites suffered necrosis within 24 h. The present data indicate that the β-lapachone derivative R72 selectively triggers T. cruzi cell death, involving both apoptosis and autophagy-induced necrosis.
Collapse
Affiliation(s)
- Danielle Oliveira Dos Anjos
- Lab. Biologia Parasitária, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz - FIOCRUZ, Brazil; Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz UESC, Brazil
| | | | | | - Sheila Suarez Fontes
- Lab. Biologia Parasitária, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz - FIOCRUZ, Brazil
| | - Mateus Lima Nogueira
- Lab. Biologia Parasitária, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz - FIOCRUZ, Brazil
| | | | | | | | | |
Collapse
|
18
|
Screening of potential targets in Plasmodium falciparum using stage-specific metabolic network analysis. Mol Divers 2015; 19:991-1002. [PMID: 26303382 DOI: 10.1007/s11030-015-9632-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/12/2015] [Indexed: 01/29/2023]
Abstract
The Apicomplexa parasite Plasmodium is a major cause of death in developing countries which are less equipped to bring new medicines to the market. Currently available drugs used for treatment of malaria are limited either by inadequate efficacy, toxicity and/or increased resistance. Availability of the genome sequence, microarray data and metabolic profile of Plasmodium parasite offers an opportunity for the identification of stage-specific genes important to the organism's lifecycle. In this study, microarray data were analysed for differential expression and overlapped onto metabolic pathways to identify differentially regulated pathways essential for transition to successive erythrocytic stages. The results obtained indicate that S-adenosylmethionine decarboxylase/ornithine decarboxylase, a bifunctional enzyme required for polyamine synthesis, is important for the Plasmodium cell growth in the absence of exogenous polyamines. S-adenosylmethionine decarboxylase/ornithine decarboxylase is a valuable target for designing therapeutically useful inhibitors. One such inhibitor, [Formula: see text]-difluoromethyl ornithine, is currently in use for the treatment of African sleeping sickness caused by Trypanosoma brucei. Structural studies of ornithine decarboxylase along with known inhibitors and their analogues were carried out to screen drug databases for more effective and less toxic compounds.
Collapse
|
19
|
Liao Z, ZhangGuan X, Zhu Z, Yao X, Yang Y, Jiang Y, Cao Y. Enhancement of the antibiofilm activity of amphotericin B by polyamine biosynthesis inhibitors. Int J Antimicrob Agents 2015; 46:45-52. [PMID: 25937097 DOI: 10.1016/j.ijantimicag.2015.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the effect of polyamine biosynthesis inhibitors on the activity of amphotericin B (AmB) against Candida albicans biofilms and to clarify the underlying mechanisms. The antibiofilm activity of AmB was significantly enhanced when used in combination with the polyamine biosynthesis inhibitors 1,4-diamino-2-butanone (DAB) and α-difluoromethylornithine (DFMO). Further study showed that DAB and DFMO also enhanced the antibiofilm activity of several other antifungal agents. Moreover, the combination of AmB and polyamine biosynthesis inhibitors resulted in an increase in intracellular levels of reactive oxygen species. In addition, caspase activity and transcription of the caspase-encoding gene CaMCA1 were greatly increased upon combined treatment with polyamine biosynthesis inhibitors and AmB. Consistently, the biofilm formed by a Δcamca1 mutant exhibited greater viability and lower caspase activity than that of the wild-type strain upon combined treatment. These data provide useful information for the development of new strategies to enhance the antibiofilm activities of antifungal agents.
Collapse
Affiliation(s)
- ZeBin Liao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - XuanZi ZhangGuan
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - XiangWen Yao
- Pharmacy Department, General Hospital of Jiangsu Armed Police, No. 8 Jiangdu South Road, Yangzhou 225000, China
| | - Yu Yang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - YuanYing Jiang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - YingYing Cao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
20
|
Sangshetti JN, Kalam Khan FA, Kulkarni AA, Arote R, Patil RH. Antileishmanial drug discovery: comprehensive review of the last 10 years. RSC Adv 2015. [DOI: 10.1039/c5ra02669e] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the current aspects of leishmaniasis including marketed drugs, new antileishmanial agents, and possible drug targets of antileishmanial agents.
Collapse
Affiliation(s)
| | | | | | - Rohidas Arote
- Department of Molecular Genetics
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| | - Rajendra H. Patil
- Department of Biotechnology
- Savitribai Phule Pune University
- Pune 411007
- India
| |
Collapse
|
21
|
Induction of mitochondrial dysfunction and oxidative stress in Leishmania donovani by orally active clerodane diterpene. Antimicrob Agents Chemother 2014; 58:5916-28. [PMID: 25070112 DOI: 10.1128/aac.02459-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was performed to investigate the mechanistic aspects of cell death induced by a clerodane diterpene (K-09) in Leishmania donovani promastigotes that was previously demonstrated to be safe and orally active against visceral leishmaniasis (VL). K-09 caused depolarization of the mitochondrion and the generation of reactive oxygen species, triggering an apoptotic response in L. donovani promastigotes. Mitochondrial dysfunction subsequently resulted in the release of cytochrome c into the cytosol, impairing ATP production. Oxidative stress caused the depletion of reduced glutathione, while pretreatment with antioxidant N-acetyl cysteine (NAC) was able to abrogate oxidative stress. However, NAC failed to restore the mitochondrial membrane potential or intracellular calcium homeostasis after K-09 treatment, suggesting that the generation of oxidative stress is a downstream event relative to the other events. Caspase-3/-7-like protease activity and genomic DNA fragmentation were observed. Electron microscopy studies revealed gross morphological alterations typical of apoptosis, including severe mitochondrial damage, pyknosis of the nucleus, structural disruption of the mitochondrion-kinetoplast complex, flagellar pocket alterations, and the displacement of organelles. Moreover, an increased number of lipid droplets was detected after K-09 treatment, which is suggestive of altered lipid metabolism. Our results indicate that K-09 induces mitochondrial dysfunction and oxidative stress-mediated apoptotic cell death in L. donovani promastigotes, sharing many features with metazoan apoptosis. These mechanistic insights provide a basis for further investigation toward the development of K-09 as a potential drug candidate for VL.
Collapse
|
22
|
Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK. Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 2013; 22:18-45. [PMID: 24355247 DOI: 10.1016/j.bmc.2013.11.048] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 11/16/2022]
Abstract
The growing incidence of parasitic resistance against generic pentavalent antimonials, specifically for visceral disease in Indian subcontinent, is a serious issue in Leishmania control. Notwithstanding the two treatment alternatives, that is amphotericin B and miltefosine are being effectively used but their high cost and therapeutic complications limit their use in endemic areas. In the absence of a vaccine candidate, identification, and characterization of novel drugs and targets is a major requirement of leishmanial research. This review describes current drug regimens, putative drug targets, numerous natural products that have shown promising antileishmanial activity alongwith some key issues and strategies for future research to control leishmaniasis worldwide.
Collapse
Affiliation(s)
- Nisha Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surabhi Bajpai
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh K Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Vinod K Tiwari
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
23
|
Yasinzai M, Khan M, Nadhman A, Shahnaz G. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives. Future Med Chem 2013; 5:1877-1888. [PMID: 24144417 DOI: 10.4155/fmc.13.143] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.
Collapse
Affiliation(s)
- Masoom Yasinzai
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | |
Collapse
|
24
|
Yamanaka CN, Giordani RB, Rezende CO, Eger I, Kessler RL, Tonini ML, de Moraes MH, Araújo DP, Zuanazzi JA, de Almeida MV, Steindel M. Assessment of Leishmanicidal and Trypanocidal Activities of Aliphatic Diamine Derivatives. Chem Biol Drug Des 2013; 82:697-704. [DOI: 10.1111/cbdd.12191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/30/2013] [Accepted: 07/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Celina N. Yamanaka
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Cx. postal 476 Florianópolis SC 88.040-970 Brazil
| | - Raquel B. Giordani
- Departamento de Farmácia; Universidade Federal do Rio Grande do Norte; Rua General Gustavo Cordeiro de Farias/Sn Natal RN 59010-180 Brazil
| | - Celso O. Rezende
- Departamento de Química; Universidade Federal de Juiz de Fora; Campus Martelos Juiz de Fora MG 36036-330 Brazil
| | - Iriane Eger
- Laboratório de Biologia Celular; Instituto Carlos Chagas/Fiocruz; Curitiba PR 81.350-010 Brazil
- Centro de Ciências da Saúde; Universidade do Vale do Itajaí; Itajaí SC 88.302-202 Brazil
| | - Rafael L. Kessler
- Laboratório de Biologia Celular; Instituto Carlos Chagas/Fiocruz; Curitiba PR 81.350-010 Brazil
| | - Maiko L. Tonini
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Cx. postal 476 Florianópolis SC 88.040-970 Brazil
| | - Milene H. de Moraes
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Cx. postal 476 Florianópolis SC 88.040-970 Brazil
| | - Debora P. Araújo
- Departamento de Química; Universidade Federal de Juiz de Fora; Campus Martelos Juiz de Fora MG 36036-330 Brazil
| | - Jose A. Zuanazzi
- Faculdade de Farmácia; Universidade Federal do Rio Grande do Sul; Av. Ipiranga 2752 Porto Alegre RS 90610-000 Brazil
| | - Mauro V. de Almeida
- Departamento de Química; Universidade Federal de Juiz de Fora; Campus Martelos Juiz de Fora MG 36036-330 Brazil
| | - Mario Steindel
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Cx. postal 476 Florianópolis SC 88.040-970 Brazil
| |
Collapse
|
25
|
Soares CO, Boiani M, Marnett LJ, Bechara EJH. Cytotoxicity of 1,4-diamino-2-butanone, a putrescine analogue, to RKO cells: mechanism and redox imbalance. Free Radic Res 2013; 47:672-82. [PMID: 23758064 DOI: 10.3109/10715762.2013.814126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
α-Aminocarbonyl metabolites (e.g., 5-aminolevulinic acid and aminoacetone) and the wide spectrum microbicide 1,4-diamino-2-butanone (DAB) have been shown to exhibit pro-oxidant properties. In vitro, these compounds undergo phosphate-catalyzed enolization at physiological pH and subsequent superoxide radical-propagated aerobic oxidation, yielding a reactive α-oxoaldehyde and H2O2. DAB cytotoxicity to pathogenic microorganisms has been attributed to the inhibition of polyamine biosynthesis. However, the role played in cell death by reactive DAB oxidation products is still poorly understood. This work aims to clarify the mechanism of DAB-promoted pro-oxidant action on mammalian cells. DAB (0.05-10 mM) treatment of RKO cells derived from human colon carcinoma led to a decrease in cell viability (IC50 ca. 0.3 mM DAB, 24 h incubation). Pre-addition of either catalase (5 μM) or aminoguanidine (20 mM) was observed to partially inhibit the toxic effects of DAB to the cells, while N-acetyl-L-cysteine (NAC, 5 mM) or reduced glutathione (GSH, 5 mM) provided almost complete protection against DAB. Changes in redox balance and stress response pathways were indicated by the increased expression of HO-1, NQO1 and xCT. Moreover, the observation of caspase 3 and PARP cleavage products is consistent with DAB-triggered apoptosis in RKO cells, which was corroborated by the partial protection afforded by the pan-caspase inhibitor z-VAD-FMK. Finally, DAB treatment disrupted the cell cycle in response to increased p53 and activation of ATM. Altogether, these data support the hypothesis that DAB exerts cytotoxicity via a mechanism involving not only polyamine biosynthesis but also by DAB oxidation products.
Collapse
Affiliation(s)
- C O Soares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
26
|
Díaz E, Köhidai L, Ríos A, Vanegas O, Silva A, Szabó R, Mező G, Hudecz F, Ponte-Sucre A. Leishmania braziliensis: cytotoxic, cytostatic and chemotactic effects of poly-lysine-methotrexate-conjugates. Exp Parasitol 2013; 135:134-41. [PMID: 23816643 DOI: 10.1016/j.exppara.2013.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Chemotactic responses play a significant role during Leishmania differentiation, as well as in the course of parasite-host-cell interaction, a process that precedes a successful infection. The present study uses the modified "two-chamber capillary assay" to quantitatively evaluate the chemotactic properties and the toxic activities of methotrexate containing branched chain polymeric polypeptide conjugates in Leishmania. Our results demonstrate that this methodology quantitatively determines the taxis of Leishmania towards/against gradients of compounds. They also demonstrate that chemotaxis produced by the polypeptide-methotrexate conjugates depends on specific chemical characteristics. For example, the N-terminal amino acid (Ser or Glu) location at the branch significantly influences the elicited chemotaxis. Furthermore, the use of different attachment sites in the methotrexate conjugates (α- or γ-carboxylic groups) affect their chemotactic activity. Specific cytotoxic activities and cytostatic effects of the conjugates on parasites and on murine and human cells of the macrophage/monocyte system respectively, suggest that these ligands may be used as a group of anti-Leishmania substances acting selectively on Leishmania and different hosts.
Collapse
Affiliation(s)
- Emilia Díaz
- Laboratorio de Fisiología Molecular, Instituto de Medicina Experimental, Escuela Luis Razetti, Facultad de Medicina, Universidad Central de Venezuela, Venezuela
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cruz EDM, da Silva ER, Maquiaveli CDC, Alves ESS, Lucon JF, dos Reis MBG, de Toledo CEM, Cruz FG, Vannier-Santos MA. Leishmanicidal activity of Cecropia pachystachya flavonoids: arginase inhibition and altered mitochondrial DNA arrangement. PHYTOCHEMISTRY 2013; 89:71-77. [PMID: 23453911 DOI: 10.1016/j.phytochem.2013.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 01/12/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
The plant Cecropia pachystachya Trécul is widely used in Brazilian ethnomedicine to treat hypertension, asthma, and diabetes. Arginase is an enzyme with levels that are elevated in these disorders, and it is central to Leishmania polyamine biosynthesis. The aims of this study were to evaluate antileishmanial activity and inhibition of the arginase enzyme by C. pachystachya extracts, and to study changes in cellular organization using electron microscopy. The ethanol extract of C. pachystachya was tested on Leishmania (Leishmania) amazonensis promastigote survival/proliferation and arginase activity in vitro. Qualitative ultrastructural analysis was also used to observe changes in cell organization. The major bioactive molecules of the ethanol extract were characterized using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The ethyl acetate fraction of the ethanol extract diminished promastigote axenic growth/survival, inhibited arginase activity, and altered a mitochondrial kinetoplast DNA (K-DNA) array. The bioactive compounds of C. pachystachya were characterized as glucoside flavonoids. Orientin (9) (luteolin-8-C-glucoside) was the main component of the methanol-soluble ethyl acetate fraction obtained from the ethanol extract and is an arginase inhibitor (IC50 15.9 μM). The ethyl acetate fraction was not cytotoxic to splenocytes at a concentration of 200 μg/mL. In conclusion, C. pachystachya contains bioactive compounds that reduce the growth of L. (L.) amazonensis promastigotes, altering mitochondrial K-DNA arrangement and inhibiting arginase.
Collapse
Affiliation(s)
- Ebenézer de Mello Cruz
- Fundação Oswaldo Cruz, Centro de Pesquisa Gonçalo Moniz, CPqGM-FIOCRUZ, Laboratório de Biologia Parasitária, Rua Waldemar Falcão 121, Candeal, CEP 40296-710 Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Soares CO, Colli W, Bechara EJ, Alves MJM. 1,4-Diamino-2-butanone, a putrescine analogue, promotes redox imbalance in Trypanosoma cruzi and mammalian cells. Arch Biochem Biophys 2012; 528:103-10. [DOI: 10.1016/j.abb.2012.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
|
29
|
Lizzi F, Veronesi G, Belluti F, Bergamini C, López-Sánchez A, Kaiser M, Brun R, Krauth-Siegel RL, Hall DG, Rivas L, Bolognesi ML. Conjugation of Quinones with Natural Polyamines: Toward an Expanded Antitrypanosomatid Profile. J Med Chem 2012; 55:10490-500. [DOI: 10.1021/jm301112z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Federica Lizzi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Giacomo Veronesi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Almudena López-Sánchez
- Physico-Chemical
Biology, Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - R. Luise Krauth-Siegel
- Biochemistry Center (BZH), Heidelberg University, Im, Neuenheimer Feld 328, 69120
Heidelberg, Germany
| | - Dennis G. Hall
- Department
of Chemistry, University of Alberta, Edmonton,
Alberta, T6G 2G2,
Canada
| | - Luis Rivas
- Physico-Chemical
Biology, Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| |
Collapse
|
30
|
Singh N, Kumar M, Singh RK. Leishmaniasis: current status of available drugs and new potential drug targets. ASIAN PAC J TROP MED 2012; 5:485-97. [PMID: 22575984 DOI: 10.1016/s1995-7645(12)60084-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/15/2012] [Accepted: 04/15/2012] [Indexed: 02/06/2023] Open
Abstract
The control of Leishmania infection relies primarily on chemotherapy till date. Resistance to pentavalent antimonials, which have been the recommended drugs to treat cutaneous and visceral leishmaniasis, is now widespread in Indian subcontinents. New drug formulations like amphotericin B, its lipid formulations, and miltefosine have shown great efficacy to treat leishmaniasis but their high cost and therapeutic complications limit their usefulness. In addition, irregular and inappropriate uses of these second line drugs in endemic regions like state of Bihar, India threaten resistance development in the parasite. In context to the limited drug options and unavailability of either preventive or prophylactic candidates, there is a pressing need to develop true antileishmanial drugs to reduce the disease burden of this debilitating endemic disease. Notwithstanding significant progress of leishmanial research during last few decades, identification and characterization of novel drugs and drug targets are far from satisfactory. This review will initially describe current drug regimens and later will provide an overview on few important biochemical and enzymatic machineries that could be utilized as putative drug targets for generation of true antileishmanial drugs.
Collapse
Affiliation(s)
- Nisha Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
31
|
The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp Parasitol 2012; 130:183-8. [DOI: 10.1016/j.exppara.2012.01.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/24/2011] [Accepted: 01/19/2012] [Indexed: 01/26/2023]
|
32
|
In vitro leishmanicidal activity of N-dodecyl-1,2-ethanediamine. Biomed Pharmacother 2012; 66:180-6. [PMID: 22440898 DOI: 10.1016/j.biopha.2011.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022] Open
Abstract
Polyamine biosynthesis and inhibition in parasites have been an attractive chemotherapeutic approach in the design of novel antiparasitic drugs. We study in this work the effect of N-dodecyl-1,2-ethylenediamine (NDDE) on the morphology and replication of Leishmania using macrophages cultured from the peritoneal exudate of mice infected in vitro with three species of Leishmania: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) brasiliensis and Leishmania (Leishmania) chagasi. The results showed that NDDE inhibited Leishmania amastigotes multiplication into inflammatory peritoneal cells in concentrations which were not toxic to mammalian cells (0.5-1μg/mL). An intracellular disorganization of the promastigote forms was observed by transmission electron microscopy after 3 to 24h of treatment with 1μg/mL NDDE, suggesting that this compound affects the viability of the parasite by an autophagy pathway.
Collapse
|
33
|
Pinheiro AC, Rocha MN, Nogueira PM, Nogueira TC, Jasmim LF, de Souza MV, Soares RP. Synthesis, cytotoxicity, and in vitro antileishmanial activity of mono-t-butyloxycarbonyl-protected diamines. Diagn Microbiol Infect Dis 2011; 71:273-8. [DOI: 10.1016/j.diagmicrobio.2011.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022]
|
34
|
Abstract
New drugs are urgently needed for the treatment of tropical and subtropical parasitic diseases, such as African sleeping sickness, Chagas' disease, leishmaniasis and malaria. Enzymes in polyamine biosynthesis and thiol metabolism, as well as polyamine transporters, are potential drug targets within these organisms. In the present review, the current knowledge of unique properties of polyamine metabolism in these parasites is outlined. These properties include prozyme regulation of AdoMetDC (S-adenosylmethionine decarboxylase) activity in trypanosomatids, co-expression of ODC (ornithine decarboxylase) and AdoMetDC activities in a single protein in plasmodia, and formation of trypanothione, a unique compound linking polyamine and thiol metabolism in trypanosomatids. Particularly interesting features within polyamine metabolism in these parasites are highlighted for their potential in selective therapeutic strategies.
Collapse
|
35
|
Soares CO, Alves MJM, Bechara EJH. 1,4-Diamino-2-butanone, a wide-spectrum microbicide, yields reactive species by metal-catalyzed oxidation. Free Radic Biol Med 2011; 50:1760-70. [PMID: 21466850 DOI: 10.1016/j.freeradbiomed.2011.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
The α-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB's cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37°C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other α-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml-1) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(•), and those with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(•) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 μM) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity.
Collapse
Affiliation(s)
- Chrislaine O Soares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | |
Collapse
|
36
|
Khouri R, Novais F, Santana G, de Oliveira CI, Vannier dos Santos MA, Barral A, Barral-Netto M, Van Weyenbergh J. DETC induces Leishmania parasite killing in human in vitro and murine in vivo models: a promising therapeutic alternative in Leishmaniasis. PLoS One 2010; 5:e14394. [PMID: 21200432 PMCID: PMC3006171 DOI: 10.1371/journal.pone.0014394] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/29/2010] [Indexed: 11/26/2022] Open
Abstract
Background Chemotherapy remains the primary tool for treatment and control of human leishmaniasis. However, currently available drugs present serious problems regarding side-effects, variable efficacy, and cost. Affordable and less toxic drugs are urgently needed for leishmaniasis. Methodology/Principal Findings We demonstrate, by microscopy and viability assays, that superoxide dismutase inhibitor diethyldithiocarbamate (DETC) dose-dependently induces parasite killing (p<0.001) and is able to “sterilize” Leishmania amazonensis infection at 2 mM in human macrophages in vitro. We also show that DETC-induced superoxide production (p<0.001) and parasite destruction (p<0.05) were reverted by the addition of the antioxidant N-acetylcysteine, indicating that DETC-induced killing occurs through oxidative damage. Furthermore, ultrastructural analysis by electron microscopy demonstrates a rapid and highly selective destruction of amastigotes in the phagosome upon DETC treatment, without any apparent damage to the host cell, including its mitochondria. In addition, DETC significantly induced parasite killing in Leishmania promastigotes in axenic culture. In murine macrophages infected with Leishmania braziliensis, DETC significantly induced in vitro superoxide production (p = 0.0049) and parasite killing (p = 0.0043). In vivo treatment with DETC in BALB/C mice infected with Leishmania braziliensis caused a significant decrease in lesion size (p<0.0001), paralleled by a 100-fold decrease (p = 0.0087) in parasite burden. Conclusions/Significance Due to its strong leishmanicidal effect in human macrophages in vitro, its in vivo effectiveness in a murine model, and its previously demonstrated in vivo safety profile in HIV treatment, DETC treatment might be considered as a valuable therapeutic option in human leishmaniasis, including HIV/Leishmania co-infection.
Collapse
Affiliation(s)
- Ricardo Khouri
- LIMI, LIP, LBP, Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil
| | - Fernanda Novais
- LIMI, LIP, LBP, Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil
| | - Gisélia Santana
- LIMI, LIP, LBP, Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil
| | - Camila Indiani de Oliveira
- LIMI, LIP, LBP, Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil
| | | | - Aldina Barral
- LIMI, LIP, LBP, Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Manoel Barral-Netto
- LIMI, LIP, LBP, Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Johan Van Weyenbergh
- LIMI, LIP, LBP, Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
37
|
Giordani RB, Araújo DP, Duarte M, Zuanazzi JA, Tasca T, De Almeida MV. Anti-protozoal activity of diamine derivatives. Biomed Pharmacother 2010; 65:60-2. [PMID: 21186095 DOI: 10.1016/j.biopha.2010.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/12/2010] [Indexed: 11/26/2022] Open
Abstract
Ten N-monoalkylated diamines were synthesized and evaluated for in vitro activities against Trichomonas vaginalis and Giardia lamblia. Several compounds displayed a good inhibition of parasite growth, with MIC less or equal to 20μg/mL. N-hexadecil-1,4-butanediamine was found to be the most active compound in vitro against T. vaginalis with MIC of 2.5μg/mL, twice more active in comparison to the reference drug metronidazole (MTZ). Seven of the studied compounds showed a better anti-G. lamblia activity than MTZ.
Collapse
Affiliation(s)
- R B Giordani
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Colotti G, Ilari A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids 2010; 40:269-85. [PMID: 20512387 DOI: 10.1007/s00726-010-0630-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/13/2010] [Indexed: 12/20/2022]
Abstract
Polyamines (PAs) are essential metabolites in eukaryotes, participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. The PAs are synthesized by a metabolic process which involves arginase (ARG), which catalyzes the enzymatic hydrolysis of L-arginine (L-Arg) to L-ornithine and urea, and ornithine decarboxylase (ODC), which catalyzes the enzymatic decarboxylation of L-ornithine in putrescine. The S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the irreversible decarboxylation of S-adenosylmethionine (AdoMet), generating the decarboxylated S-adenosylmethionine (dAdoMet), which is a substrate, together with putrescine, for spermidine synthase (SpdS). Leishmania parasites and all the other members of the trypanosomatid family depend on spermidine for growth and survival. They can synthesize PAs and polyamine precursors, and also scavenge them from the microenvironment, using specific transporters. In addition, Trypanosomatids have a unique thiol-based metabolism, in which trypanothione (N1-N8-bis(glutathionyl)spermidine, T(SH)(2)) and trypanothione reductase (TR) replace many of the antioxidant and metabolic functions of the glutathione/glutathione reductase (GR) and thioredoxin/thioredoxin reductase (TrxR) systems present in the host. Trypanothione synthetase (TryS) and TR are necessary for the protozoa survival. Consequently, enzymes involved in spermidine synthesis and its utilization, i.e. ARG, ODC, AdoMetDC, SpdS and, in particular, TryS and TR, are promising targets for drug development.
Collapse
Affiliation(s)
- Gianni Colotti
- Institute of Biology and Molecular Pathology, CNR, c/o Department of Biochemical Sciences, University Sapienza, P.le A. Moro 5, 00185, Rome, Italy.
| | | |
Collapse
|
39
|
Baptista AF, Goes BT, Menezes D, Gomes FCA, Zugaib J, Stipursky J, Gomes JRS, Oliveira JÃT, Vannier-Santos MA, Martinez AMB. PEMF fails to enhance nerve regeneration after sciatic nerve crush lesion. J Peripher Nerv Syst 2009; 14:285-93. [DOI: 10.1111/j.1529-8027.2009.00240.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Menna-Barreto RFS, Goncalves RLS, Costa EM, Silva RSF, Pinto AV, Oliveira MF, de Castro SL. The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radic Biol Med 2009; 47:644-53. [PMID: 19501647 DOI: 10.1016/j.freeradbiomed.2009.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/27/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
Despite ongoing efforts, the current treatment for Chagas disease is still unsatisfactory, mainly because of the severe side effects and variable efficacy of the available nitroheterocycles. Our group has been assaying natural quinones isolated from Brazilian flora, and their derivatives, as alternative chemotherapeutic agents against Trypanosoma cruzi. From C-allyl lawsone three naphthofuranquinones were synthesized, which were active against trypomastigotes and epimastigotes. Here, we further investigated the activity and the mechanisms of action of these quinones. They exhibited powerful effects on intracellular amastigotes, presenting low toxicity to the host cells. Ultrastructural analyses of treated epimastigotes and trypomastigotes indicated a potent effect of the three naphthofuranquinones on the parasite mitochondrion, which appeared drastically swollen and with a washed-out matrix profile. Fluorescence-activated cell sorting analysis of rhodamine 123-stained T. cruzi showed that the three naphthofuranquinones caused a potent dose-dependent collapse of the mitochondrial membrane potential, especially in the epimastigote form. Naphthofuranquinones also decreased specifically mitochondrial complex I-III activity in both epimastigotes and trypomastigotes, parallel to a reduction in succinate-induced oxygen consumption. Mitochondrial hydrogen peroxide formation was also increased in epimastigotes after treatment with the naphthofuranquinones. Our results indicate that the trypanocidal action of the naphthofuranquinones is associated with mitochondrial dysfunction, leading to increased reactive oxygen species generation and parasite death.
Collapse
Affiliation(s)
- Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Regulation of gene expression by PrrA in Rhodobacter sphaeroides 2.4.1: role of polyamines and DNA topology. J Bacteriol 2009; 191:4341-52. [PMID: 19411327 DOI: 10.1128/jb.00243-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the present study, we show in vitro binding of PrrA, a global regulator in Rhodobacter sphaeroides 2.4.1, to the PrrA site 2, within the RSP3361 locus. Specific binding, as shown by competition experiments, requires the phosphorylation of PrrA. The binding affinity of PrrA for site 2 was found to increase 4- to 10-fold when spermidine was added to the binding reaction. The presence of extracellular concentrations of spermidine in growing cultures of R. sphaeroides gave rise to a twofold increase in the expression of the photosynthesis genes pucB and pufB, as well as the RSP3361 gene, under aerobic growth conditions, as shown by the use of lacZ transcriptional fusions, and led to the production of light-harvesting spectral complexes. In addition, we show that negative supercoiling positively regulates the expression of the RSP3361 gene, as well as pucB. We show the importance of supercoiling through an evaluation of the regulation of gene expression in situ by supercoiling, in the case of the former gene, as well as using the DNA gyrase inhibitor novobiocin. We propose that polyamines and DNA supercoiling act synergistically to regulate expression of the RSP3361 gene, partly by affecting the affinity of PrrA binding to the PrrA site 2 within the RSP3361 gene.
Collapse
|