1
|
Lee C, Klockgether J, Fischer S, Trcek J, Tümmler B, Römling U. Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol Rev 2021; 44:740-762. [PMID: 32990729 PMCID: PMC7685784 DOI: 10.1093/femsre/fuaa029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
The environmental species Pseudomonas aeruginosa thrives in a variety of habitats. Within the epidemic population structure of P. aeruginosa, occassionally highly successful clones that are equally capable to succeed in the environment and the human host arise. Framed by a highly conserved core genome, individual members of successful clones are characterized by a high variability in their accessory genome. The abundance of successful clones might be funded in specific features of the core genome or, although not mutually exclusive, in the variability of the accessory genome. In clone C, one of the most predominant clones, the plasmid pKLC102 and the PACGI-1 genomic island are two ubiquitous accessory genetic elements. The conserved transmissible locus of protein quality control (TLPQC) at the border of PACGI-1 is a unique horizontally transferred compository element, which codes predominantly for stress-related cargo gene products such as involved in protein homeostasis. As a hallmark, most TLPQC xenologues possess a core genome equivalent. With elevated temperature tolerance as a characteristic of clone C strains, the unique P. aeruginosa and clone C specific disaggregase ClpG is a major contributor to tolerance. As other successful clones, such as PA14, do not encode the TLPQC locus, ubiquitous denominators of success, if existing, need to be identified.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jens Klockgether
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Sebastian Fischer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Janja Trcek
- Faculty of Natural Sciences and Mathematics, Department of Biology, University of Maribor, Maribor, 2000, Slovenia
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
2
|
Kamal SM, Rybtke ML, Nimtz M, Sperlein S, Giske C, Trček J, Deschamps J, Briandet R, Dini L, Jänsch L, Tolker-Nielsen T, Lee C, Römling U. Two FtsH Proteases Contribute to Fitness and Adaptation of Pseudomonas aeruginosa Clone C Strains. Front Microbiol 2019; 10:1372. [PMID: 31338071 PMCID: PMC6629908 DOI: 10.3389/fmicb.2019.01372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is an environmental bacterium and a nosocomial pathogen with clone C one of the most prevalent clonal groups. The P. aeruginosa clone C specific genomic island PACGI-1 harbors a xenolog of ftsH encoding a functionally diverse membrane-spanning ATP-dependent metalloprotease on the core genome. In the aquatic isolate P. aeruginosa SG17M, the core genome copy ftsH1 significantly affects growth and dominantly mediates a broad range of phenotypes, such as secretion of secondary metabolites, swimming and twitching motility and resistance to aminoglycosides, while the PACGI-1 xenolog ftsH2 backs up the phenotypes in the ftsH1 mutant background. The two proteins, with conserved motifs for disaggregase and protease activity present in FtsH1 and FtsH2, have the ability to form homo- and hetero-oligomers with ftsH2 distinctively expressed in the late stationary phase of growth. However, mainly FtsH1 degrades a major substrate, the heat shock transcription factor RpoH. Pull-down experiments with substrate trap-variants inactive in proteolytic activity indicate both FtsH1 and FtsH2 to interact with the inhibitory protein HflC, while the phenazine biosynthesis protein PhzC was identified as a substrate of FtsH1. In summary, as an exception in P. aeruginosa, clone C harbors two copies of the ftsH metallo-protease, which cumulatively are required for the expression of a diversity of phenotypes.
Collapse
Affiliation(s)
- Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, New Cairo, Egypt
| | - Morten Levin Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manfred Nimtz
- Department of Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Sperlein
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Julien Deschamps
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Lothar Jänsch
- Department of Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Juhas M. Type IV secretion systems and genomic islands-mediated horizontal gene transfer in Pseudomonas and Haemophilus. Microbiol Res 2014; 170:10-7. [PMID: 25183653 DOI: 10.1016/j.micres.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
Bacterial secretion systems, such as type IV secretion systems (T4SSs) are multi-subunit machines transferring macromolecules across membranes. Besides proteins, T4SSs also transfer nucleoprotein complexes, thus having a significant impact on the evolution of bacterial species. By T4SS-mediated horizontal gene transfer bacteria can acquire a broad spectrum of fitness genes allowing them to thrive in the wide variety of environments. Furthermore, acquisition of antibiotic-resistance and virulence genes can lead to the emergence of novel 'superbugs'. This review provides an update on the investigation of T4SSs. It highlights the role T4SSs play in the horizontal gene transfer, particularly in the evolution of catabolic pathways, antibiotic-resistance and virulence in Haemophilus and Pseudomonas.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK.
| |
Collapse
|
4
|
Cramer N, Klockgether J, Wrasman K, Schmidt M, Davenport CF, Tümmler B. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ Microbiol 2011; 13:1690-704. [PMID: 21492363 DOI: 10.1111/j.1462-2920.2011.02483.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clones C and PA14 are the worldwide most abundant clonal complexes in the Pseudomonas aeruginosa population. The microevolution of clones C and PA14 was investigated in serial cystic fibrosis (CF) airway isolates collected over 20 years since the onset of colonization. Intraclonal evolution in CF lungs was resolved by genome sequencing of first, intermediate and late isolates and subsequent multimarker SNP genotyping of the whole strain panel. Mapping of sequence reads onto the P. aeruginosa PA14 reference genome unravelled an intraclonal and interclonal sequence diversity of 0.0035% and 0.68% respectively. Clone PA14 diversified into three branches in the patient's lungs, and the PA14 population acquired 15 nucleotide substitutions and a large deletion during the observation period. The clone C genome remained invariant during the first 3 years in CF lungs; however, 15 years later 947 transitions and 12 transversions were detected in a clone C mutL mutant strain. Key mutations occurred in retS, RNA polymerase, multidrug transporter, virulence and denitrification genes. Late clone C and PA14 persistors in the CF lungs were compromised in growth and cytotoxicity, but their mutation frequency was normal even in mutL mutant clades.
Collapse
Affiliation(s)
- Nina Cramer
- Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Tielen P, Narten M, Rosin N, Biegler I, Haddad I, Hogardt M, Neubauer R, Schobert M, Wiehlmann L, Jahn D. Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int J Med Microbiol 2011; 301:282-92. [DOI: 10.1016/j.ijmm.2010.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/27/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022] Open
|
6
|
Abstract
Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable "core genome" and a highly variable "accessory genome." Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.
Collapse
|
7
|
Gaillard M, Pradervand N, Minoia M, Sentchilo V, Johnson DR, van der Meer JR. Transcriptome analysis of the mobile genome ICEclc in Pseudomonas knackmussii B13. BMC Microbiol 2010; 10:153. [PMID: 20504315 PMCID: PMC2892462 DOI: 10.1186/1471-2180-10-153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/26/2010] [Indexed: 11/28/2022] Open
Abstract
Background Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol. Results Here we study the transcriptional organization of the ICEclc core region. By northern hybridizations, reverse-transcriptase polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends (5'-RACE) fifteen transcripts were mapped in the core region. The occurrence and location of those transcripts were further confirmed by hybridizing labeled cDNA to a semi-tiling micro-array probing both strands of the ICEclc core region. Dot blot and semi-tiling array hybridizations demonstrated most of the core transcripts to be upregulated during stationary phase on 3-chlorobenzoate, but not on succinate or glucose. Conclusions The transcription analysis of the ICEclc core region provides detailed insights in the mode of regulatory organization and will help to further understand the complex mode of behavior of this class of mobile elements. We conclude that ICEclc core transcription is concerted at a global level, more reminiscent of a phage program than of plasmid conjugation.
Collapse
Affiliation(s)
- Muriel Gaillard
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Pseudomonas aeruginosa PAO1 is the most commonly used strain for research on this ubiquitous and metabolically versatile opportunistic pathogen. Strain PAO1, a derivative of the original Australian PAO isolate, has been distributed worldwide to laboratories and strain collections. Over decades discordant phenotypes of PAO1 sublines have emerged. Taking the existing PAO1-UW genome sequence (named after the University of Washington, which led the sequencing project) as a blueprint, the genome sequences of reference strains MPAO1 and PAO1-DSM (stored at the German Collection for Microorganisms and Cell Cultures [DSMZ]) were resolved by physical mapping and deep short read sequencing-by-synthesis. MPAO1 has been the source of near-saturation libraries of transposon insertion mutants, and PAO1-DSM is identical in its SpeI-DpnI restriction map with the original isolate. The major genomic differences of MPAO1 and PAO1-DSM in comparison to PAO1-UW are the lack of a large inversion, a duplication of a mobile 12-kb prophage region carrying a distinct integrase and protein phosphatases or kinases, deletions of 3 to 1,006 bp in size, and at least 39 single-nucleotide substitutions, 17 of which affect protein sequences. The PAO1 sublines differed in their ability to cope with nutrient limitation and their virulence in an acute murine airway infection model. Subline PAO1-DSM outnumbered the two other sublines in late stationary growth phase. In conclusion, P. aeruginosa PAO1 shows an ongoing microevolution of genotype and phenotype that jeopardizes the reproducibility of research. High-throughput genome resequencing will resolve more cases and could become a proper quality control for strain collections.
Collapse
|
9
|
Van Houdt R, Monchy S, Leys N, Mergeay M. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie van Leeuwenhoek 2009; 96:205-26. [DOI: 10.1007/s10482-009-9345-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|