1
|
Tafoya C, Ching B, Garcia E, Lee A, Acevedo M, Bass K, Chau E, Lin H, Mamora K, Reeves M, Vaca M, van Iderstein W, Velasco L, Williams V, Yonemoto G, Yonemoto T, Heller DM, Diaz A. Genome-wide screen overexpressing mycobacteriophage Amelie genes identifies multiple inhibitors of mycobacterial growth. G3 (BETHESDA, MD.) 2025; 15:jkae285. [PMID: 39657018 PMCID: PMC11797047 DOI: 10.1093/g3journal/jkae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
The genome sequences of thousands of bacteriophages have been determined and functions for many of the encoded genes have been assigned based on homology to characterized sequences. However, functions have not been assigned to more than two-thirds of the identified phage genes as they have no recognizable sequence features. Recent genome-wide overexpression screens have begun to identify bacteriophage genes that encode proteins that reduce or inhibit bacterial growth. This study describes the construction of a plasmid-based overexpression library of 76 genes encoded by Cluster K1 mycobacteriophage Amelie, which is genetically similar to cluster K phages Waterfoul and Hammy recently described in similar screens and closely related to phages that infect clinically important mycobacteria. Twenty-six out of the 76 genes evaluated in our screen, encompassing 34% of the genome, reduced growth of the host Mycobacterium smegmatis to various degrees. More than one-third of these 26 toxic genes have no known function, and 10 of the 26 genes almost completely abolished host growth upon overexpression. Notably, while several of the toxic genes identified in Amelie shared homologs with other Cluster K phages recently screened, this study uncovered 7 previously unknown gene families that exhibit cytotoxic properties, thereby broadening the repertoire of known phage-encoded growth inhibitors. This work, carried out under the HHMI-supported SEA-GENES project (Science Education Alliance Gene-function Exploration by a Network of Emerging Scientists), underscores the importance of comprehensive overexpression screens in elucidating genome-wide patterns of phage gene function and novel interactions between phages and their hosts.
Collapse
Affiliation(s)
- Chelsea Tafoya
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Brandon Ching
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Elva Garcia
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Alyssa Lee
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Melissa Acevedo
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Kelsey Bass
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Elizabeth Chau
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Heidi Lin
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Kaitlyn Mamora
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Michael Reeves
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Madyllyne Vaca
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | | | - Luis Velasco
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Vivianna Williams
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Grant Yonemoto
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Tyler Yonemoto
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| |
Collapse
|
2
|
Pollenz RS, Barnhill K, Biggs A, Bland J, Carter V, Chase M, Clark H, Coleman C, Daffner M, Deam C, Finocchiaro A, Franco V, Fuller T, Pinera JG, Horne M, Howard Z, Kanahan O, Miklaszewski C, Miller S, Morgan R, Onalaja O, Otero L, Padhye S, Rainey E, Rasul F, Robichaux K, Rodier A, Schlosser S, Sciacchitano A, Stewart E, Thakkar R, Heller DM. A genome-wide cytotoxicity screen of cluster F1 mycobacteriophage Girr reveals novel inhibitors of Mycobacterium smegmatis growth. G3 (BETHESDA, MD.) 2024; 14:jkae049. [PMID: 38456318 PMCID: PMC11075535 DOI: 10.1093/g3journal/jkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Over the past decade, thousands of bacteriophage genomes have been sequenced and annotated. A striking observation from this work is that known structural features and functions cannot be assigned for >65% of the encoded proteins. One approach to begin experimentally elucidating the function of these uncharacterized gene products is genome-wide screening to identify phage genes that confer phenotypes of interest like inhibition of host growth. This study describes the results of a screen evaluating the effects of overexpressing each gene encoded by the temperate Cluster F1 mycobacteriophage Girr on the growth of the host bacterium Mycobacterium smegmatis. Overexpression of 29 of the 102 Girr genes (~28% of the genome) resulted in mild to severe cytotoxicity. Of the 29 toxic genes described, 12 have no known function and are predominately small proteins of <125 amino acids. Overexpression of the majority of these 12 cytotoxic no known functions proteins resulted in moderate to severe growth reduction and represent novel antimicrobial products. The remaining 17 toxic genes have predicted functions, encoding products involved in phage structure, DNA replication/modification, DNA binding/gene regulation, or other enzymatic activity. Comparison of this dataset with prior genome-wide cytotoxicity screens of mycobacteriophages Waterfoul and Hammy reveals some common functional themes, though several of the predicted Girr functions associated with cytotoxicity in our report, including genes involved in lysogeny, have not been described previously. This study, completed as part of the HHMI-supported SEA-GENES project, highlights the power of parallel, genome-wide overexpression screens to identify novel interactions between phages and their hosts.
Collapse
Affiliation(s)
- Richard S Pollenz
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Kaylee Barnhill
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Abbigail Biggs
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Jackson Bland
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Victoria Carter
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Michael Chase
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Hayley Clark
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Caitlyn Coleman
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Marshall Daffner
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Caitlyn Deam
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Alyssa Finocchiaro
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Vanessa Franco
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Thomas Fuller
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Juan Gallardo Pinera
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mae Horne
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Zoe Howard
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Olivia Kanahan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | | | - Sydney Miller
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Ryan Morgan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Oluwatobi Onalaja
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Louis Otero
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Shivani Padhye
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Emily Rainey
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Fareed Rasul
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Kobe Robichaux
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Alexandra Rodier
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Sydni Schlosser
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Ava Sciacchitano
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Emma Stewart
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Rajvi Thakkar
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| |
Collapse
|
3
|
Amaya I, Edwards K, Wise BM, Bhattacharyya A, Pablo CHD, Mushrush E, Coats AN, Dao S, Dittmar G, Gore T, Jarva TM, Kenkebashvili G, Rathan-Kumar S, Reyes GM, Watts GL, Watts VK, Dubrow D, Lewis G, Stone BH, Xue B, Cresawn SG, Mavrodi D, Sivanathan V, Heller D. A genome-wide overexpression screen reveals Mycobacterium smegmatis growth inhibitors encoded by mycobacteriophage Hammy. G3 (BETHESDA, MD.) 2023; 13:jkad240. [PMID: 37934806 PMCID: PMC10700055 DOI: 10.1093/g3journal/jkad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023]
Abstract
During infection, bacteriophages produce diverse gene products to overcome bacterial antiphage defenses, to outcompete other phages, and to take over cellular processes. Even in the best-studied model phages, the roles of most phage-encoded gene products are unknown, and the phage population represents a largely untapped reservoir of novel gene functions. Considering the sheer size of this population, experimental screening methods are needed to sort through the enormous collection of available sequences and identify gene products that can modulate bacterial behavior for downstream functional characterization. Here, we describe the construction of a plasmid-based overexpression library of 94 genes encoded by Hammy, a Cluster K mycobacteriophage closely related to those infecting clinically important mycobacteria. The arrayed library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 24 gene products (representing ∼25% of the Hammy genome) capable of inhibiting growth of the host bacterium Mycobacterium smegmatis. Half of these are related to growth inhibitors previously identified in related phage Waterfoul, supporting their functional conservation; the other genes represent novel additions to the list of known antimycobacterial growth inhibitors. This work, conducted as part of the HHMI-supported Science Education Alliance Gene-function Exploration by a Network of Emerging Scientists (SEA-GENES) project, highlights the value of parallel, comprehensive overexpression screens in exploring genome-wide patterns of phage gene function and novel interactions between phages and their hosts.
Collapse
Affiliation(s)
- Isabel Amaya
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Kaylia Edwards
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Bethany M Wise
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Ankita Bhattacharyya
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Clint H D Pablo
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Ember Mushrush
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Amber N Coats
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sara Dao
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Grace Dittmar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Taylor Gore
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Taiya M Jarva
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Giorgi Kenkebashvili
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sudiksha Rathan-Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Gabriella M Reyes
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Garrett L Watts
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Victoria Kalene Watts
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Deena Dubrow
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Gabrielle Lewis
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Benjamin H Stone
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Bingjie Xue
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Steven G Cresawn
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Dmitri Mavrodi
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Viknesh Sivanathan
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Danielle Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| |
Collapse
|
4
|
Wang CL, Zhang LY, Ding XY, Sun YC. Identification of Toxic Proteins Encoded by Mycobacteriophage TM4 Using a Next-Generation Sequencing-Based Method. Microbiol Spectr 2023; 11:e0501522. [PMID: 37154774 PMCID: PMC10269906 DOI: 10.1128/spectrum.05015-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Mycobacteriophages are viruses that specifically infect mycobacteria and which, due to their diversity, represent a large gene pool. Characterization of the function of these genes should provide useful insights into host-phage interactions. Here, we describe a next-generation sequencing (NGS)-based, high-throughput screening approach for the identification of mycobacteriophage-encoded proteins that are toxic to mycobacteria. A plasmid-derived library representing the mycobacteriophage TM4 genome was constructed and transformed into Mycobacterium smegmatis. NGS and growth assays showed that the expression of TM4 gp43, gp77, -78, and -79, or gp85 was toxic to M. smegmatis. Although the genes associated with bacterial toxicity were expressed during phage infection, they were not required for lytic replication of mycobacteriophage TM4. In conclusion, we describe here an NGS-based approach which required significantly less time and resources than traditional methods and allowed the identification of novel mycobacteriophage gene products that are toxic to mycobacteria. IMPORTANCE The wide spread of drug-resistant Mycobacterium tuberculosis has brought an urgent need for new drug development. Mycobacteriophages are natural killers of M. tuberculosis, and their toxic gene products might provide potential anti-M. tuberculosis candidates. However, the enormous genetic diversity of mycobacteriophages poses challenges for the identification of these genes. Here, we used a simple and convenient screening method, based on next-generation sequencing, to identify mycobacteriophage genes encoding toxic products for mycobacteria. Using this approach, we screened and validated several toxic products encoded by mycobacteriophage TM4. In addition, we also found that the genes encoding these toxic products are nonessential for lytic replication of TM4. Our work describes a promising method for the identification of phage genes that encode proteins that are toxic to mycobacteria and which might facilitate the identification of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Chun-Liang Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan-Yue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xin-Yuan Ding
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Heller D, Amaya I, Mohamed A, Ali I, Mavrodi D, Deighan P, Sivanathan V. Systematic overexpression of genes encoded by mycobacteriophage Waterfoul reveals novel inhibitors of mycobacterial growth. G3 (BETHESDA, MD.) 2022; 12:jkac140. [PMID: 35727726 PMCID: PMC9339283 DOI: 10.1093/g3journal/jkac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages represent an enormous reservoir of novel genes, many of which are unrelated to existing entries in public databases and cannot be assigned a predicted function. Characterization of these genes can provide important insights into the intricacies of phage-host interactions and may offer new strategies to manipulate bacterial growth and behavior. Overexpression is a useful tool in the study of gene-mediated effects, and we describe here the construction of a plasmid-based overexpression library of a complete set of genes for Waterfoul, a mycobacteriophage closely related to those infecting clinically important strains of Mycobacterium tuberculosis and/or Mycobacterium abscessus. The arrayed Waterfoul gene library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 32 Waterfoul gene products capable of inhibiting the growth of the host Mycobacterium smegmatis and providing a first look at the frequency and distribution of cytotoxic products encoded within a single mycobacteriophage genome. Several of these Waterfoul gene products were observed to confer potent anti-mycobacterial effects, making them interesting candidates for follow-up mechanistic studies.
Collapse
Affiliation(s)
- Danielle Heller
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Isabel Amaya
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Aleem Mohamed
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ilzat Ali
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Dmitri Mavrodi
- Center for Molecular & Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Padraig Deighan
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Viknesh Sivanathan
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| |
Collapse
|
6
|
Hatfull GF. Wildy Prize Lecture, 2020-2021: Who wouldn't want to discover a new virus? MICROBIOLOGY-SGM 2021; 167. [PMID: 34468308 PMCID: PMC8549241 DOI: 10.1099/mic.0.001094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innovations in science education are desperately needed to find ways to engage and interest students early in their undergraduate careers. Exposing students to authentic research experiences is highly beneficial, but finding ways to include all types of students and to do this at large scale is especially challenging. An attractive solution is the concept of an inclusive research education community (iREC) in which centralized research leadership and administration supports multiple institutions, including diverse groups of schools and universities, faculty and students. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) programme is an excellent example of an iREC, in which students explore viral diversity and evolution through discovery and genomic analysis of novel bacteriophages. The SEA-PHAGES programme has proven to be sustainable, to be implemented at large scale, and to enhance student persistence in science, as well as to produce substantial research advances. Discovering a new virus with the potential for new biological insights and clinical applications is inherently exciting. Who wouldn't want to discover a new virus?
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
Ko CC, Hatfull GF. Identification of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology. Sci Rep 2020; 10:14670. [PMID: 32887931 PMCID: PMC7474061 DOI: 10.1038/s41598-020-71588-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Double-stranded DNA tailed bacteriophages typically code for 50-200 genes, of which 15-35 are involved in virion structure and assembly, DNA packaging, lysis, and DNA metabolism. However, vast numbers of other phage genes are small, are not required for lytic growth, and are of unknown function. The 1,885 sequenced mycobacteriophages encompass over 200,000 genes in 7,300 distinct protein 'phamilies', 77% of which are of unknown function. Gene toxicity provides potential insights into function, and here we screened 193 unrelated genes encoded by 13 different mycobacteriophages for their ability to impair the growth of Mycobacterium smegmatis. We identified 45 (23%) mycobacteriophage genes that are toxic when expressed. The impacts on M. smegmatis growth range from mild to severe, but many cause irreversible loss of viability. Expression of most of the severely toxic genes confers altered cellular morphologies, including filamentation, polar bulging, curving, and, surprisingly, loss of viability of one daughter cell at division, suggesting specific impairments of mycobacterial growth. Co-immunoprecipitation and mass spectrometry show that toxicity is frequently associated with interaction with host proteins and alteration or inactivation of their function. Mycobacteriophages thus present a massive reservoir of genes for identifying mycobacterial essential functions, identifying potential drug targets and for exploring mycobacteriophage physiology.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
8
|
Abstract
Many aspects regarding superinfection, immunity, virulence, and the evolution of immune specificities are poorly understood due to the lack of large collections of isolated and sequenced phages with a spectrum of genetic diversity. Using a genetically diverse collection of Cluster A phages, we show that the classical and relatively straightforward patterns of homoimmunity, heteroimmunity, and virulence result from interactions between homotypic and heterotypic phages at the extreme edges of an evolutionary continuum of immune specificities. Genetic interactions between mesotypic phages result in more complex mesoimmunity phenotypes and virulence profiles. These results highlight that the evolution of immune specificities can be shaped by homotypic and mesotypic interactions and may be more dynamic than previously considered. Temperate phages encode an immunity system to control lytic gene expression during lysogeny. This gene regulatory circuit consists of multiple interacting genetic elements, and although it is essential for controlling phage growth, it is subject to conflicting evolutionary pressures. During superinfection of a lysogen, the prophage’s circuit interacts with the superinfecting phage’s circuit and prevents lytic growth if the two circuits are closely related. The circuitry is advantageous since it provides the prophage with a defense mechanism, but the circuitry is also disadvantageous since it limits the phage’s host range during superinfection. Evolutionarily related phages have divergent, orthogonal immunity systems that no longer interact and are heteroimmune, but we do not understand how immunity systems evolve new specificities. Here, we use a group of Cluster A mycobacteriophages that exhibit a spectrum of genetic diversity to examine how immunity system evolution impacts superinfection immunity. We show that phages with mesotypic (i.e., genetically related but distinct) immunity systems exhibit asymmetric and incomplete superinfection phenotypes. They form complex immunity networks instead of well-defined immunity groups, and mutations conferring escape (i.e., virulence) from homotypic or mesotypic immunity have various escape specificities. Thus, virulence and the evolution of new immune specificities are shaped by interactions with homotypic and mesotypic immunity systems.
Collapse
|
9
|
Singh S, Godavarthi S, Kumar A, Sen R. A mycobacteriophage genomics approach to identify novel mycobacteriophage proteins with mycobactericidal properties. MICROBIOLOGY-SGM 2019; 165:722-736. [PMID: 31091188 DOI: 10.1099/mic.0.000810] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages that are specific to mycobacteria are sources of various effector proteins that are capable of eliciting bactericidal responses. We describe a genomics approach in combination with bioinformatics to identify mycobacteriophage proteins that are toxic to mycobacteria upon expression. A genomic library comprising phage genome collections was screened for clones capable of killing Mycobacterium smegmatis strain mc2155. We identified four unique clones: clones 45 and 12N (from the mycobacteriophage D29) and clones 66 and 85 (from the mycobacteriophage Che12). The gene products from clones 66 and 45 were identified as Gp49 of the Che12 phage and Gp34 of the D29 phage, respectively. The gene products of the other two clones, 85 and 12N, utilized novel open reading frames (ORFs) coding for synthetic proteins. These four clones (clones 45, 66, 85 and 12N) caused growth defects in M. smegmatis and Mycobacterium bovis upon expression. Clones with Gp49 and Gp34 also induced growth defects in Escherichia coli, indicating that they target conserved host machineries. Their expression induced various morphological changes, indicating that they affected DNA replication and cell division steps. We predicted that Gp34 is a Xis protein that is required in phage DNA excision from the bacterial chromosome. Gp49 is predicted to have an HTH motif with DNA-bending/twisting properties. We suggest that this methodology is useful to identify new phage proteins with the desired properties without laboriously characterizing the individual phages. It is universal and could be applied to other bacteria-phage systems. We speculate that the existence of a virtually unlimited number of phages with unique gene products could offer a cheaper and less hazardous alternative to explore new antimicrobial molecules.
Collapse
Affiliation(s)
- Shweta Singh
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad-39, India
| | - Sapna Godavarthi
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad-39, India
| | - Amit Kumar
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad-39, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad-39, India
| |
Collapse
|
10
|
Bacteriophage gene products as potential antimicrobials against tuberculosis. Biochem Soc Trans 2019; 47:847-860. [PMID: 31085613 DOI: 10.1042/bst20180506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
Tuberculosis (TB) is recognised as one of the most pressing global health threats among infectious diseases. Bacteriophages are adapted for killing of their host, and they were exploited in antibacterial therapy already before the discovery of antibiotics. Antibiotics as broadly active drugs overshadowed phage therapy for a long time. However, owing to the rapid spread of antibiotic resistance and the increasing complexity of treatment of drug-resistant TB, mycobacteriophages are being studied for their antimicrobial potential. Besides phage therapy, which is the administration of live phages to infected patients, the development of drugs of phage origin is gaining interest. This path of medical research might provide us with a new pool of previously undiscovered inhibition mechanisms and molecular interactions which are also of interest in basic research of cellular processes, such as transcription. The current state of research on mycobacteriophage-derived anti-TB treatment is reviewed in comparison with inhibitors from other phages, and with focus on transcription as the host target process.
Collapse
|
11
|
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. A large number of mycobacteriophages have been isolated and genomically characterized, providing insights into viral diversity and evolution, as well as fueling development of tools for mycobacterial genetics. Mycobacteriophages have intimate relationships with their hosts and provide insights into the genetics and physiology of the mycobacteria and tools for potential clinical applications such as drug development, diagnosis, vaccines, and potentially therapy.
Collapse
|
12
|
Segobola J, Adriaenssens E, Tsekoa T, Rashamuse K, Cowan D. Exploring Viral Diversity in a Unique South African Soil Habitat. Sci Rep 2018; 8:111. [PMID: 29311639 PMCID: PMC5758573 DOI: 10.1038/s41598-017-18461-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
The Kogelberg Biosphere Reserve in the Cape Floral Kingdom in South Africa is known for its unique plant biodiversity. The potential presence of unique microbial and viral biodiversity associated with this unique plant biodiversity led us to explore the fynbos soil using metaviromic techniques. In this study, metaviromes of a soil community from the Kogelberg Biosphere Reserve has been characterised in detail for the first time. Metaviromic DNA was recovered from soil and sequenced by Next Generation Sequencing. The MetaVir, MG-RAST and VIROME bioinformatics pipelines were used to analyse taxonomic composition, phylogenetic and functional assessments of the sequences. Taxonomic composition revealed members of the order Caudovirales, in particular the family Siphoviridae, as prevalent in the soil samples and other compared viromes. Functional analysis and other metaviromes showed a relatively high frequency of phage-related and structural proteins. Phylogenetic analysis of PolB, PolB2, terL and T7gp17 genes indicated that many viral sequences are closely related to the order Caudovirales, while the remainder were distinct from known isolates. The use of single virome which only includes double stranded DNA viruses limits this study. Novel phage sequences were detected, presenting an opportunity for future studies aimed at targeting novel genetic resources for applied biotechnology.
Collapse
Affiliation(s)
- Jane Segobola
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Evelien Adriaenssens
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Tsepo Tsekoa
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Konanani Rashamuse
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
13
|
Yu X, Xu Y, Gu Y, Zhu Y, Liu X. Characterization and genomic study of "phiKMV-Like" phage PAXYB1 infecting Pseudomonas aeruginosa. Sci Rep 2017; 7:13068. [PMID: 29026171 PMCID: PMC5638911 DOI: 10.1038/s41598-017-13363-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Bacteriophage PAXYB1 was recently isolated from wastewater samples. This phage was chosen based on its lytic properties against clinical isolates of Pseudomonas aeruginosa (P. aeruginosa). In the present study, characterized PAXYB1, clarified its morphological and lytic properties, and analyzed its complete genome sequence. Based on the morphology of PAXYB1, it is a Podoviridae. The linear GC-rich (62.29%) double-stranded DNA genome of PAXYB1 is 43,337 bp including direct terminal repeats (DTRs) of 468 bp. It contains 60 open reading frames (ORFs) that are all encoded within the same strand. We also showed that PAXYB1 is a virulent phage and a new member of the phiKMV-like phages genus. Twenty-eight out of sixty predicted gene products (gps) showed significant homology to proteins of known function, which were confirmed by analyzing the structural proteome. Altogether, our work identified a novel lytic bacteriophage that lyses P. aeruginosa PAO1 and efficiently infects and kills several clinical isolates of P. aeruginosa. This phage has potential for development as a biological disinfectant to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Xinyan Yu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Xu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Gu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yefei Zhu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Zhao X, Chen C, Jiang X, Shen W, Huang G, Le S, Lu S, Zou L, Ni Q, Li M, Zhao Y, Wang J, Rao X, Hu F, Tan Y. Transcriptomic and Metabolomic Analysis Revealed Multifaceted Effects of Phage Protein Gp70.1 on Pseudomonas aeruginosa. Front Microbiol 2016; 7:1519. [PMID: 27725812 PMCID: PMC5035744 DOI: 10.3389/fmicb.2016.01519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The impact of phage infection on the host cell is severe. In order to take over the cellular machinery, some phage proteins were produced to shut off the host biosynthesis early in the phage infection. The discovery and identification of these phage-derived inhibitors have a significant prospect of application in antibacterial treatment. This work presented a phage protein, gp70.1, with non-specific inhibitory effects on Pseudomonas aeruginosa and Escherichia coli. Gp70.1 was encoded by early gene – orf 70.1 from P. aeruginosa phage PaP3. The P. aeruginosa with a plasmid encoding gp70.1 showed with delayed growth and had the appearance of a small colony. The combination of multifaceted analysis including microarray-based transcriptomic analysis, RT-qPCR, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics and phenotype experiments were performed to investigate the effects of gp70.1 on P. aeruginosa. A total of 178 genes of P. aeruginosa mainly involved in extracellular function and metabolism were differentially expressed in the presence of gp70.1 at three examined time points. Furthermore, our results indicated that gp70.1 had an extensive impact on the extracellular phenotype of P. aeruginosa, such as motility, pyocyanin, extracellular protease, polysaccharide, and cellulase. For the metabolism of P. aeruginosa, the main effect of gp70.1 was the reduction of amino acid consumption. Finally, the RNA polymerase sigma factor RpoS was identified as a potential cellular target of gp70.1. Gp70.1 was the first bacterial inhibitor identified from Pseudomonas aeruginosa phage PaP3. It was also the first phage protein that interacted with the global regulator RpoS of bacteria. Our results indicated the potential value of gp70.1 in antibacterial applications. This study preliminarily revealed the biological function of gp70.1 and provided a reference for the study of other phage genes sharing similarities with orf70.1.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | | | - Xingyu Jiang
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University Chongqing, China
| | - Wei Shen
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Guangtao Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Lingyun Zou
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Qingshan Ni
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University Chongqing, China
| |
Collapse
|
15
|
Fan X, Duan X, Tong Y, Huang Q, Zhou M, Wang H, Zeng L, Young RF, Xie J. The Global Reciprocal Reprogramming between Mycobacteriophage SWU1 and Mycobacterium Reveals the Molecular Strategy of Subversion and Promotion of Phage Infection. Front Microbiol 2016; 7:41. [PMID: 26858712 PMCID: PMC4729954 DOI: 10.3389/fmicb.2016.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages are the viruses of bacteria, which have contributed extensively to our understanding of life and modern biology. The phage-mediated bacterial growth inhibition represents immense untapped source for novel antimicrobials. Insights into the interaction between mycobacteriophage and Mycobacterium host will inform better utilizing of mycobacteriophage. In this study, RNA sequencing technology (RNA-seq) was used to explore the global response of Mycobacterium smegmatis mc2155 at an early phase of infection with mycobacteriophage SWU1, key host metabolic processes of M. smegmatis mc2155 shut off by SWU1, and the responsible phage proteins. The results of RNA-seq were confirmed by Real-time PCR and functional assay. 1174 genes of M. smegmatis mc2155 (16.9% of the entire encoding capacity) were differentially regulated by phage infection. These genes belong to six functional categories: (i) signal transduction, (ii) cell energetics, (iii) cell wall biosynthesis, (iv) DNA, RNA, and protein biosynthesis, (v) iron uptake, (vi) central metabolism. The transcription patterns of phage SWU1 were also characterized. This study provided the first global glimpse of the reciprocal reprogramming between the mycobacteriophage and Mycobacterium host.
Collapse
Affiliation(s)
- Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest UniversityChongqing, China; Department of Biotechnology, School of Biological Science and Technology, University of JinanJinan, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Yan Tong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Qinqin Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Mingliang Zhou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Huan Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University College Station, TX, USA
| | - Ry F Young
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University College Station, TX, USA
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University Chongqing, China
| |
Collapse
|
16
|
Fan X, Yan J, Xie L, Zeng L, Young RF, Xie J. Genomic and proteomic features of mycobacteriophage SWU1 isolated from China soil. Gene 2015; 561:45-53. [PMID: 25701596 DOI: 10.1016/j.gene.2015.02.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Mycobacteriophage SWU1 is a newly isolated phage from soil sample collected in Sichuan province, China using Mycobacterium smegmatis mc(2)155 as host. Plaque, phage morphology and one-step growth curve were characterized. The complete genomic sequence of phage SWU1 was determined by shotgun sequencing. The ends of SWU1 were determined. Structural proteins of SWU1 were analyzed by NanoLC-ESI-MS/MS. Seven ORFs were identified as structural protein encoded by SWU1 genome. The genetic basis underlying the SWU1 plaque was explored using comparative genomics. Prophages homologous to SWU1 were identified in two pathogens, Segniliparus rugosus ATCC BAA-974 and Mycobacterium rhodesiae JS60. Genus Segniliparus is a member of the order Corynebacteriales. To our knowledge, this is the first report of Mycobacterium prophages in different genera.
Collapse
Affiliation(s)
- Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; School of Biological Science and Technology, University of Jinan, Shandong 250022, China.
| | - Jianlong Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Lanying Zeng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| | - Ryland F Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Mutational analysis of the mycobacteriophage BPs promoter PR reveals context-dependent sequences for mycobacterial gene expression. J Bacteriol 2014; 196:3589-97. [PMID: 25092027 DOI: 10.1128/jb.01801-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PR promoter of mycobacteriophage BPs directs early lytic gene expression and is under the control of the BPs repressor, gp33. Reporter gene fusions showed that PR has modest activity in an extrachromosomal context but has activity that is barely detectable in an integrated context, even in the absence of its repressor. Mutational dissection of PR showed that it uses a canonical -10 hexamer recognized by SigA, and mutants with mutations to the sequence 5'-TATAMT had the greatest activities. It does not contain a 5'-TGN-extended -10 sequence, although mutants with mutations creating an extended -10 sequence had substantially increased promoter activity. Mutations in the -35 hexamer also influenced promoter activity but were strongly context dependent, and similar substitutions in the -35 hexamer differentially affected promoter activity, depending on the -10 and extended -10 motifs. This warrants caution in the construction of synthetic promoters or the bioinformatic prediction of promoter activity. Combinations of mutations throughout PR generated a calibrated series of promoters for expression of stably integrated recombinant genes in both Mycobacterium smegmatis and M. tuberculosis, with maximal promoter activity being more than 2-fold that of the strong hsp60 promoter.
Collapse
|
18
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
19
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
20
|
Biology of a novel mycobacteriophage, SWU1, isolated from Chinese soil as revealed by genomic characteristics. J Virol 2012; 86:10230-1. [PMID: 22923793 DOI: 10.1128/jvi.01568-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacteriophage SWU1 is a newly isolated phage from a soil sample collected at Gongping village, Pingchang County, Sichuan Province, China, using Mycobacterium smegmatis mc(2)155 as a host. Plaques of SWU1 appear as a unique bull's-eye on an M. smegmatis lawn. In this paper, we report the complete genome sequence of SWU1 and some major findings from the analysis result.
Collapse
|
21
|
Rybniker J, Krumbach K, van Gumpel E, Plum G, Eggeling L, Hartmann P. The cytotoxic early protein 77 of mycobacteriophage L5 interacts with MSMEG_3532, an L-serine dehydratase of Mycobacterium smegmatis. J Basic Microbiol 2011; 51:515-22. [PMID: 21656815 DOI: 10.1002/jobm.201000446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 02/04/2011] [Indexed: 11/06/2022]
Abstract
Mycobacteriophage L5 is a temperate phage infecting a broad range of mycobacterial species. Upon induction of lytic growth, L5 rapidly switches off host protein synthesis. We have recently identified the mycobacteriophage L5 early protein gp77 as a host shut-off protein that acts growth inhibitory in the mycobacterial host when expressed through the corresponding phage promoter. Here we present data showing that this purified phage protein of unknown function specifically binds to protein MSMEG_3532 when incubated with cell lysates of Mycobacterium smegmatis. This interaction was confirmed by pull-down assays using purified MSMEG_3532 as bait which co-purified with gp77. The amino acid sequence of MSMEG_3532 is nearly identical to that of threonine dehydratases, serine dehydratases and an L-threo-3-hydroxyaspartate dehydratase. An enzymatic assay identified this host protein as a pyridoxal-5'-phosphate-dependent L-serine dehydratase (SdhA) which converts L-serine to pyruvate. This is the first biochemical characterization of a SdhA derived from mycobacteria. Though the addition of purified gp77 to the established in vitro assay had no influence on SdhA activity at a saturating L-serine concentration, the specific interaction of phage protein and dehydratase in vivo may well have a role in altering the amino acid pool or the products of amino acid metabolism in favour of phage maturation.
Collapse
Affiliation(s)
- Jan Rybniker
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Viruses are powerful tools for investigating and manipulating their hosts, but the enormous size and amazing genetic diversity of the bacteriophage population have emerged as something of a surprise. In light of the evident importance of mycobacteria to human health--especially Mycobacterium tuberculosis, which causes tuberculosis--and the difficulties that have plagued their genetic manipulation, mycobacteriophages are especially appealing subjects for discovery, genomic characterization, and manipulation. With more than 70 complete genome sequences available, the mycobacteriophages have provided a wealth of information on the diversity of phages that infect a common bacterial host, revealed the pervasively mosaic nature of phage genome architectures, and identified a huge number of genes of unknown function. Mycobacteriophages have provided key tools for tuberculosis genetics, and new methods for simple construction of mycobacteriophage recombinants will facilitate postgenomic explorations into mycobacteriophage biology.
Collapse
Affiliation(s)
- Graham F Hatfull
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
23
|
Rybniker J, Nowag A, Van Gumpel E, Nissen N, Robinson N, Plum G, Hartmann P. Insights into the function of the WhiB-like protein of mycobacteriophage TM4 - a transcriptional inhibitor of WhiB2. Mol Microbiol 2010; 77:642-57. [DOI: 10.1111/j.1365-2958.2010.07235.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Henry M, O'Sullivan O, Sleator RD, Coffey A, Ross RP, McAuliffe O, O'Mahony JM. In silico analysis of Ardmore, a novel mycobacteriophage isolated from soil. Gene 2010; 453:9-23. [DOI: 10.1016/j.gene.2009.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
|