1
|
Lally P, Gómez-Romero L, Tierrafría VH, Aquino P, Rioualen C, Zhang X, Kim S, Baniulyte G, Plitnick J, Smith C, Babu M, Collado-Vides J, Wade JT, Galagan JE. Predictive biophysical neural network modeling of a compendium of in vivo transcription factor DNA binding profiles for Escherichia coli. Nat Commun 2025; 16:4255. [PMID: 40335485 PMCID: PMC12059191 DOI: 10.1038/s41467-025-58862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
The DNA binding of most Escherichia coli Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of in vivo DNA binding for 139 E. coli TFs using ChIP-Seq. We use these data to train BoltzNet, a novel neural network that predicts TF binding energy from DNA sequence. BoltzNet mirrors a quantitative biophysical model and provides directly interpretable predictions genome-wide at nucleotide resolution. We use BoltzNet to quantitatively design novel binding sites, which we validate with biophysical experiments on purified protein. We generate models for 124 TFs that provide insight into global features of TF binding, including clustering of sites, the role of accessory bases, the relevance of weak sites, and the background affinity of the genome. Our paper provides new paradigms for studying TF-DNA binding and for the development of biophysically motivated neural networks.
Collapse
Affiliation(s)
- Patrick Lally
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, USA
| | - Laura Gómez-Romero
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Ciudad de México, México, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Ciudad de México, México, México
| | - Víctor H Tierrafría
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, USA
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, México
| | - Patricia Aquino
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, USA
| | - Claire Rioualen
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, México
| | - Xiaoman Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, USA
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, SK, Canada
| | | | - Jonathan Plitnick
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, SK, Canada
| | - Julio Collado-Vides
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, USA
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, México
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, USA.
- Bioinformatics Program, Boston University, 24 Cummington Mall, Boston, MA, USA.
| |
Collapse
|
2
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Lally P, Gómez-Romero L, Tierrafría VH, Aquino P, Rioualen C, Zhang X, Kim S, Baniulyte G, Plitnick J, Smith C, Babu M, Collado-Vides J, Wade JT, Galagan JE. Predictive Biophysical Neural Network Modeling of a Compendium of in vivo Transcription Factor DNA Binding Profiles for Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.594371. [PMID: 38826350 PMCID: PMC11142182 DOI: 10.1101/2024.05.23.594371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The DNA binding of most Escherichia coli Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of in vivo DNA binding for 139 E. coli TFs using ChIP-Seq. We used these data to train BoltzNet, a novel neural network that predicts TF binding energy from DNA sequence. BoltzNet mirrors a quantitative biophysical model and provides directly interpretable predictions genome-wide at nucleotide resolution. We used BoltzNet to quantitatively design novel binding sites, which we validated with biophysical experiments on purified protein. We have generated models for 125 TFs that provide insight into global features of TF binding, including clustering of sites, the role of accessory bases, the relevance of weak sites, and the background affinity of the genome. Our paper provides new paradigms for studying TF-DNA binding and for the development of biophysically motivated neural networks.
Collapse
Affiliation(s)
- Patrick Lally
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Laura Gómez-Romero
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Ciudad de México 14610, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Ciudad de México, México
| | - Víctor H. Tierrafría
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, México
| | - Patricia Aquino
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Claire Rioualen
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, México
| | - Xiaoman Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, SK S4S 0A2, Canada
| | | | - Jonathan Plitnick
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, SK S4S 0A2, Canada
| | - Julio Collado-Vides
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, México
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, USA
| | - James E. Galagan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Bioinformatics Program, Boston University, 24 Cummington Mall, Boston, MA 02215
| |
Collapse
|
4
|
Rodionova IA, Hosseinnia A, Kim S, Goodacre N, Zhang L, Zhang Z, Palsson B, Uetz P, Babu M, Saier MH. E. coli allantoinase is activated by the downstream metabolic enzyme, glycerate kinase, and stabilizes the putative allantoin transporter by direct binding. Sci Rep 2023; 13:7345. [PMID: 37147430 PMCID: PMC10163214 DOI: 10.1038/s41598-023-31812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/17/2023] [Indexed: 05/07/2023] Open
Abstract
Allantoin is a good source of ammonium for many organisms, and in Escherichia coli it is utilized under anaerobic conditions. We provide evidence that allantoinase (AllB) is allosterically activated by direct binding of the allantoin catabolic enzyme, glycerate 2-kinase (GlxK) in the presence of glyoxylate. Glyoxylate is known to be an effector of the AllR repressor which regulates the allantoin utilization operons in E. coli. AllB has low affinity for allantoin, but its activation by GlxK leads to increased affinity for its substrate. We also show that the predicted allantoin transporter YbbW (re-named AllW) has allantoin specificity and the protein-protein interaction with AllB. Our results show that the AllB-dependent allantoin degradative pathway is subject to previously unrecognized regulatory mechanisms involving direct protein-protein interactions.
Collapse
Affiliation(s)
- Irina A Rodionova
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA, 92093-0116, USA.
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Li Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
- College of Food Science and Engineering, Ocean University of China, Yushan Road, Shinan District, Qingdao, 266003, China
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Bernhard Palsson
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA, 92093-0116, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Huynh TN, Stewart V. Purine catabolism by enterobacteria. Adv Microb Physiol 2023; 82:205-266. [PMID: 36948655 DOI: 10.1016/bs.ampbs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Purines are abundant among organic nitrogen sources and have high nitrogen content. Accordingly, microorganisms have evolved different pathways to catabolize purines and their metabolic products such as allantoin. Enterobacteria from the genera Escherichia, Klebsiella and Salmonella have three such pathways. First, the HPX pathway, found in the genus Klebsiella and very close relatives, catabolizes purines during aerobic growth, extracting all four nitrogen atoms in the process. This pathway includes several known or predicted enzymes not previously observed in other purine catabolic pathways. Second, the ALL pathway, found in strains from all three species, catabolizes allantoin during anaerobic growth in a branched pathway that also includes glyoxylate assimilation. This allantoin fermentation pathway originally was characterized in a gram-positive bacterium, and therefore is widespread. Third, the XDH pathway, found in strains from Escherichia and Klebsiella spp., at present is ill-defined but likely includes enzymes to catabolize purines during anaerobic growth. Critically, this pathway may include an enzyme system for anaerobic urate catabolism, a phenomenon not previously described. Documenting such a pathway would overturn the long-held assumption that urate catabolism requires oxygen. Overall, this broad capability for purine catabolism during either aerobic or anaerobic growth suggests that purines and their metabolites contribute to enterobacterial fitness in a variety of environments.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Food Science, University of Wisconsin, Madison, WI, United States
| | - Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, United States.
| |
Collapse
|
6
|
Sharma M, Abayakoon P, Epa R, Jin Y, Lingford JP, Shimada T, Nakano M, Mui JWY, Ishihama A, Goddard-Borger ED, Davies GJ, Williams SJ. Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis. ACS CENTRAL SCIENCE 2021; 7:476-487. [PMID: 33791429 PMCID: PMC8006165 DOI: 10.1021/acscentsci.0c01285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 06/12/2023]
Abstract
The sulfosugar sulfoquinovose (SQ) is produced by essentially all photosynthetic organisms on Earth and is metabolized by bacteria through the process of sulfoglycolysis. The sulfoglycolytic Embden-Meyerhof-Parnas pathway metabolizes SQ to produce dihydroxyacetone phosphate and sulfolactaldehyde and is analogous to the classical Embden-Meyerhof-Parnas glycolysis pathway for the metabolism of glucose-6-phosphate, though the former only provides one C3 fragment to central metabolism, with excretion of the other C3 fragment as dihydroxypropanesulfonate. Here, we report a comprehensive structural and biochemical analysis of the three core steps of sulfoglycolysis catalyzed by SQ isomerase, sulfofructose (SF) kinase, and sulfofructose-1-phosphate (SFP) aldolase. Our data show that despite the superficial similarity of this pathway to glycolysis, the sulfoglycolytic enzymes are specific for SQ metabolites and are not catalytically active on related metabolites from glycolytic pathways. This observation is rationalized by three-dimensional structures of each enzyme, which reveal the presence of conserved sulfonate binding pockets. We show that SQ isomerase acts preferentially on the β-anomer of SQ and reversibly produces both SF and sulforhamnose (SR), a previously unknown sugar that acts as a derepressor for the transcriptional repressor CsqR that regulates SQ-utilization. We also demonstrate that SF kinase is a key regulatory enzyme for the pathway that experiences complex modulation by the metabolites SQ, SLA, AMP, ADP, ATP, F6P, FBP, PEP, DHAP, and citrate, and we show that SFP aldolase reversibly synthesizes SFP. This body of work provides fresh insights into the mechanism, specificity, and regulation of sulfoglycolysis and has important implications for understanding how this biochemistry interfaces with central metabolism in prokaryotes to process this major repository of biogeochemical sulfur.
Collapse
Affiliation(s)
- Mahima Sharma
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Palika Abayakoon
- School
of Chemistry and Bio21 Molecular Science
and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ruwan Epa
- School
of Chemistry and Bio21 Molecular Science
and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Jin
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - James P. Lingford
- ACRF
Chemical Biology Division, The Walter and
Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tomohiro Shimada
- School
of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Masahiro Nakano
- Institute
for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Janice W.-Y. Mui
- School
of Chemistry and Bio21 Molecular Science
and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia
| | - Akira Ishihama
- Micro-Nano
Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Ethan D. Goddard-Borger
- ACRF
Chemical Biology Division, The Walter and
Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Spencer J. Williams
- School
of Chemistry and Bio21 Molecular Science
and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Shimada T, Ogasawara H, Ishihama A. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12. Nucleic Acids Res 2019. [PMID: 29529243 PMCID: PMC5934670 DOI: 10.1093/nar/gky138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroshi Ogasawara
- Shinshu University, Research Center for Supports to Advanced Science, Division of Gene Research, Ueda, Nagano 386-8567, Japan.,Shinshu University, Research Center for Fungal and Microbial Dynamism, Kamiina, Nagano 399-4598, Japan
| | - Akira Ishihama
- Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
8
|
Li W, Jayakody LN, Franden MA, Wehrmann M, Daun T, Hauer B, Blank LM, Beckham GT, Klebensberger J, Wierckx N. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by
Pseudomonas putida
KT2440. Environ Microbiol 2019; 21:3669-3682. [DOI: 10.1111/1462-2920.14703] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Wing‐Jin Li
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Lahiru N. Jayakody
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Mary Ann Franden
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Matthias Wehrmann
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Tristan Daun
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Bernhard Hauer
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Lars M. Blank
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Gregg T. Beckham
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Janosch Klebensberger
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Nick Wierckx
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology Forschungszentrum Jülich, 52425 Jülich Germany
| |
Collapse
|
9
|
Torres Montaguth OE, Bervoets I, Peeters E, Charlier D. Competitive Repression of the artPIQM Operon for Arginine and Ornithine Transport by Arginine Repressor and Leucine-Responsive Regulatory Protein in Escherichia coli. Front Microbiol 2019; 10:1563. [PMID: 31354664 PMCID: PMC6640053 DOI: 10.3389/fmicb.2019.01563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 11/20/2022] Open
Abstract
Two out of the three major uptake systems for arginine in Escherichia coli are encoded by the artJ-artPIQM gene cluster. ArtJ is the high-affinity periplasmic arginine-specific binding protein (ArgBP-I), whereas artI encodes the arginine and ornithine periplasmic binding protein (AO). Both ArtJ and ArtI are supposed to combine with the inner membrane-associated ArtQMP2 transport complex of the ATP-binding cassette-type (ABC). Transcription of artJ is repressed by arginine repressor (ArgR) and the artPIQM operon is regulated by the transcriptional regulators ArgR and Leucine-responsive regulatory protein (Lrp). Whereas repression by ArgR requires arginine as corepressor, repression of PartP by Lrp is partially counteracted by leucine, its major effector molecule. We demonstrate that binding of dimeric Lrp to the artP control region generates four complexes with a distinct migration velocity, and that leucine has an effect on both global binding affinity and cooperativity in the binding. We identify the binding sites for Lrp in the artP control region, reveal interferences in the binding of ArgR and Lrp in vitro and demonstrate that the two transcription factors act as competitive repressors in vivo, each one being a more potent regulator in the absence of the other. This competitive behavior may be explained by the partial steric overlap of their respective binding sites. Furthermore, we demonstrate ArgR binding to an unusual position in the control region of the lrp gene, downstream of the transcription initiation site. From this unusual position for an ArgR-specific operator, ArgR has little direct effect on lrp expression, but interferes with the negative leucine-sensitive autoregulation exerted by Lrp. Direct arginine and ArgR-dependent repression of lrp could be observed with a 25-bp deletion mutant, in which the ArgR binding site was artificially moved to a position immediately downstream of the lrp transcription initiation site. This finding is reminiscent of a previous observation made for the carAB operon encoding carbamoylphosphate synthase, where ArgR bound in overlap with the downstream promoter P2 does not block transcription initiated 67 bp upstream at the P1 promoter, and further supports the hypothesis that ArgR does not act as an efficient roadblock.
Collapse
Affiliation(s)
- Oscar E Torres Montaguth
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Zhao DS, Wu ZT, Li ZQ, Wang LL, Jiang LL, Shi W, Li P, Li HJ. Liver-specific metabolomics characterizes the hepatotoxicity of Dioscorea bulbifera rhizome in rats by integration of GC-MS and 1H-NMR. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:111-119. [PMID: 30114519 DOI: 10.1016/j.jep.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/01/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscorea bulbifera rhizome (DBR), one type of herbal medicine, is extensively used in both Indian and Chinese system of traditional medicine. It has been effective in treating various diseases, such as sore throat, struma, and tumors. However, more and more clinical investigations have suggested that DBR can cause liver injury. AIM OF THE STUDY In the present study, we aimed to characterize the corresponding molecular changes of liver dysfunction and reveal overall metabolic and physiological mechanisms of the subchronic toxic effect of DBR. MATERIALS AND METHODS A liver-specific metabolomics approach integrating GC-MS and 1H-NMR was developed to assess the hepatotoxicity in rats after DBR exposure for 12 weeks. Multivariate statistical analysis and pattern recognition were employed to examine different metabolic profiles of liver in DBR-challenged rats. RESULTS A total of 61 metabolites were screened as significantly altered metabolites, which were distributed in 43 metabolic pathways. The correlation network analysis indicated that the hub metabolites of hepatotoxicity could be mainly linked to amino acid, lipid, purine, pyrimidine, bile acid, gut microflora, and energy metabolisms. Notably, purine, pyrimidine, and gut microflora metabolisms might be novel pathways participating in metabolic abnormalities in rats with DBR-triggered hepatic damage. CONCLUSIONS Our results primarily showed that the liver-specific metabolic information provided by the different analytical platforms was essential for identifying more biomarkers and metabolic pathways, and our findings provided novel insights into understand the mechanistic complexity of herb-induced liver injury.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Tian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhuo-Qing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ling-Li Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Li-Long Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
11
|
Herrou J, Czyż DM, Fiebig A, Willett JW, Kim Y, Wu R, Babnigg G, Crosson S. Molecular control of gene expression by Brucella BaaR, an IclR-type transcriptional repressor. J Biol Chem 2018; 293:7437-7456. [PMID: 29567835 PMCID: PMC5949995 DOI: 10.1074/jbc.ra118.002045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Indexed: 01/06/2023] Open
Abstract
The general stress response sigma factor σE1 directly and indirectly regulates the transcription of dozens of genes that influence stress survival and host infection in the zoonotic pathogen Brucella abortus Characterizing the functions of σE1-regulated genes therefore would contribute to our understanding of B. abortus physiology and infection biology. σE1 indirectly activates transcription of the IclR family regulator Bab2_0215, but the function of this regulator remains undefined. Here, we present a structural and functional characterization of Bab2_0215, which we have named B rucella adipic acid-activated regulator (BaaR). We found that BaaR adopts a classic IclR-family fold and directly represses the transcription of two operons with predicted roles in carboxylic acid oxidation. BaaR binds two sites on chromosome II between baaR and a divergently transcribed hydratase/dehydrogenase (acaD2), and it represses transcription of both genes. We identified three carboxylic acids (adipic acid, tetradecanedioic acid, and ϵ-aminocaproic acid) and a lactone (ϵ-caprolactone) that enhance transcription from the baaR and acaD2 promoters. However, neither the activating acids nor caprolactone enhanced transcription by binding directly to BaaR. Induction of baaR transcription by adipic acid required the gene bab2_0213, which encodes a major facilitator superfamily transporter, suggesting that Bab2_0213 transports adipic acid across the inner membrane. We conclude that a suite of structurally related organic molecules activate transcription of genes repressed by BaaR. Our study provides molecular-level understanding of a gene expression program in B. abortus that is downstream of σE1.
Collapse
Affiliation(s)
- Julien Herrou
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Daniel M Czyż
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Aretha Fiebig
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Jonathan W Willett
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | | | - Ruiying Wu
- Argonne National Laboratory, Argonne, Illinois 60439
| | | | - Sean Crosson
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439; Microbiology, University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
12
|
Shimada T, Momiyama E, Yamanaka Y, Watanabe H, Yamamoto K, Ishihama A. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12. FEMS Microbiol Lett 2018; 364:4566516. [PMID: 29087459 DOI: 10.1093/femsle/fnx220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Eri Momiyama
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Yuki Yamanaka
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| |
Collapse
|
13
|
AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes. Appl Environ Microbiol 2015; 81:6649-59. [PMID: 26187964 DOI: 10.1128/aem.02098-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022] Open
Abstract
Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production.
Collapse
|
14
|
Shimada T, Saito N, Maeda M, Tanaka K, Ishihama A. Expanded roles of leucine-responsive regulatory protein in transcription regulation of the Escherichia coli genome: Genomic SELEX screening of the regulation targets. Microb Genom 2015; 1:e000001. [PMID: 28348809 PMCID: PMC5320599 DOI: 10.1099/mgen.0.000001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is a transcriptional regulator for the genes involved in transport, biosynthesis and catabolism of amino acids in Escherichia coli. In order to identify the whole set of genes under the direct control of Lrp, we performed Genomic SELEX screening and identified a total of 314 Lrp-binding sites on the E. coli genome. As a result, the regulation target of Lrp was predicted to expand from the hitherto identified genes for amino acid metabolism to a set of novel target genes for utilization of amino acids for protein synthesis, including tRNAs, aminoacyl-tRNA synthases and rRNAs. Northern blot analysis indicated alteration of mRNA levels for at least some novel targets, including the aminoacyl-tRNA synthetase genes. Phenotype MicroArray of the lrp mutant indicated significant alteration in utilization of amino acids and peptides, whilst metabolome analysis showed variations in the concentration of amino acids in the lrp mutant. From these two datasets we realized a reverse correlation between amino acid levels and cell growth rate: fast-growing cells contain low-level amino acids, whilst a high level of amino acids exists in slow-growing cells. Taken together, we propose that Lrp is a global regulator of transcription of a large number of the genes involved in not only amino acid transport and metabolism, but also amino acid utilization.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan.,Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Natsumi Saito
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan.,Department of Chemistry and Material Engineering, Tsuruoka National College of Technology, Yamagata, Japan
| | - Michihisa Maeda
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
15
|
Urano H, Umezawa Y, Yamamoto K, Ishihama A, Ogasawara H. Cooperative regulation of the common target genes between H₂O₂-sensing YedVW and Cu²⁺-sensing CusSR in Escherichia coli. MICROBIOLOGY-SGM 2015; 161:729-38. [PMID: 25568260 DOI: 10.1099/mic.0.000026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/01/2015] [Indexed: 11/18/2022]
Abstract
YedVW is one of the uncharacterized two-component systems (TCSs) of Escherichia coli. In order to identify the regulation targets of YedVW, we performed genomic SELEX (systematic evolution of ligands by exponential enrichment) screening using phosphorylated YedW and an E. coli DNA library, and identified YedW-binding sites within three intergenic spacers, yedW-hiuH, cyoA-ampG and cusR-cusC, along the E. coli genome. Using a reporter assay system, we found that transcription of hiuH, encoding 5-hydroxyisourate hydrolase, was induced at high concentrations of either Cu(2+) or H₂O₂. Cu(2+)-dependent expression of hiuH was observed in the yedWV knockout mutant, but was reduced markedly in the cusRS-null mutant. However, H₂O₂-induced hiuH expression was observed in the cusRS-null mutant, but not in the yedWV-null mutant. Gel mobility shift and DNase I footprinting analyses showed binding of both YedW and CusR to essentially the same sequence within the hiuH promoter region. Taken together, we concluded that YedVW and CusSR formed a unique cooperative TCS pair by recognizing and regulating the same targets, but under different environmental conditions - YedVW played a role in H₂O₂ response regulation, whilst CusSR played a role in Cu(2+) response regulation.
Collapse
Affiliation(s)
- Hiroyuki Urano
- Research Center for Human and Environmental Sciences, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Yoshimasa Umezawa
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Hiroshi Ogasawara
- Research Center for Human and Environmental Sciences, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
16
|
Shimada T, Shimada K, Matsui M, Kitai Y, Igarashi J, Suga H, Ishihama A. Roles of cell division control factor SdiA: recognition of quorum sensing signals and modulation of transcription regulation targets. Genes Cells 2014; 19:405-18. [DOI: 10.1111/gtc.12139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/14/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
- Research Center for Micro-Nano Technology; Hosei University; Koganei Tokyo 184-8584 Japan
- Chemical Resources Laboratory; Tokyo Institute of Technology; Nagatsuda Yokohama 226-8503 Japan
| | - Kaori Shimada
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
| | - Makoto Matsui
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
| | - Yuichi Kitai
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
| | - Jun Igarashi
- Department of Chemistry and Biotechnology; Graduate School of Science; University of Tokyo; Tokyo 113-0033 Japan
| | - Hiroaki Suga
- Department of Chemistry and Biotechnology; Graduate School of Science; University of Tokyo; Tokyo 113-0033 Japan
| | - Akira Ishihama
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
- Research Center for Micro-Nano Technology; Hosei University; Koganei Tokyo 184-8584 Japan
| |
Collapse
|
17
|
Identification of the set of genes, including nonannotated morA, under the direct control of ModE in Escherichia coli. J Bacteriol 2013; 195:4496-505. [PMID: 23913318 DOI: 10.1128/jb.00304-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ModE is the molybdate-sensing transcription regulator that controls the expression of genes related to molybdate homeostasis in Escherichia coli. ModE is activated by binding molybdate and acts as both an activator and a repressor. By genomic systematic evolution of ligands by exponential enrichment (SELEX) screening and promoter reporter assays, we have identified a total of nine operons, including the hitherto identified modA, moaA, dmsA, and napF operons, of which six were activated by ModE and three were repressed. In addition, two promoters were newly identified and direct transcription of novel genes, referred to as morA and morB, located on antisense strands of yghW and torY, respectively. The morA gene encodes a short peptide, MorA, with an unusual initiation codon. Surprisingly, overexpression of the morA 5' untranslated region exhibited an inhibitory influence on colony formation of E. coli K-12.
Collapse
|
18
|
Teramoto J, Yamanishi Y, Magdy ESH, Hasegawa A, Kori A, Nakajima M, Arai F, Fukuda T, Ishihama A. Single live-bacterial cell assay of promoter activity and regulation. Genes Cells 2010; 15:1111-22. [DOI: 10.1111/j.1365-2443.2010.01449.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 2010; 34:628-45. [DOI: 10.1111/j.1574-6976.2010.00227.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Teramoto J, Yoshimura SH, Takeyasu K, Ishihama A. A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions. Nucleic Acids Res 2010; 38:3605-18. [PMID: 20156994 PMCID: PMC2887951 DOI: 10.1093/nar/gkq077] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A systematic search was performed for DNA-binding sequences of YgiP, an uncharacterized transcription factor of Escherichia coli, by using the Genomic SELEX. A total of 688 YgiP-binding loci were identified after genome-wide profiling of SELEX fragments with a high-density microarray (SELEX-chip). Gel shift and DNase-I footprinting assays indicated that YgiP binds to multiple sites along DNA probes with a consensus GTTNATT sequence. Atomic force microscope observation indicated that at low concentrations, YgiP associates at various sites on DNA probes, but at high concentrations, YgiP covers the entire DNA surface supposedly through protein–protein contact. The intracellular concentration of YgiP is very low in growing E. coli cells under aerobic conditions, but increases more than 100-fold to the level as high as the major nucleoid proteins under anaerobic conditions. An E. coli mutant lacking ygiP showed retarded growth under anaerobic conditions. High abundance and large number of binding sites together indicate that YgiP is a nucleoid-associated protein with both architectural and regulatory roles as the nucleoid proteins Fis and IHF. We then propose that YgiP is a novel nucleoid protein of E. coli under anaerobiosis and propose to rename it Dan (DNA-binding protein under anaerobic conditions).
Collapse
Affiliation(s)
- Jun Teramoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | | | | | | |
Collapse
|
21
|
Participation of regulator AscG of the beta-glucoside utilization operon in regulation of the propionate catabolism operon. J Bacteriol 2009; 191:6136-44. [PMID: 19633077 DOI: 10.1128/jb.00663-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asc operon of Escherichia coli is one of the cryptic genetic systems for beta-D-galactoside utilization as a carbon source. The ascFB genes for beta-D-galactoside transport and catabolism are repressed by the AscG regulator. After genomic SELEX screening, AscG was found to recognize and bind the consensus palindromic sequence TGAAACC-GGTTTCA. AscG binding was detected at two sites upstream of the ascFB promoter and at three sites upstream of the prpBC operon for propionate catabolism. In an ascG-disrupted mutant, transcription of ascFB was enhanced, in agreement with the repressor model of AscG. This repression was indicated to be due to interference of binding of cyclic AMP-CRP to the CRP box, which overlaps with the AscG-binding site 1, as well as binding of RNA polymerase to the promoter. Under conditions of steady-state E. coli growth in a rich medium, the intracellular level of AscG stayed constant at a level supposedly leading to tight repression of the ascFB operon. The level of prpR, encoding the activator of prpBCDE, was also increased in the absence of AscG, indicating the involvement of AscG in repression of prpR. Taken together, these data suggest a metabolic link through interplay between the asc and prp operons.
Collapse
|
22
|
Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. J Bacteriol 2009; 191:4562-71. [PMID: 19429622 DOI: 10.1128/jb.00108-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LeuO, a LysR family transcription factor, exists in a wide variety of bacteria of the family Enterobacteriaceae and is involved in the regulation of as yet unidentified genes affecting the stress response and pathogenesis expression. Using genomic screening by systematic evolution of ligands by exponential enrichment (SELEX) in vitro, a total of 106 DNA sequences were isolated from 12 different regions of the Escherichia coli genome. All of the SELEX fragments formed complexes in vitro with purified LeuO. After Northern blot analysis of the putative target genes located downstream of the respective LeuO-binding sequence, a total of nine genes were found to be activated by LeuO, while three genes were repressed by LeuO. The LeuO target gene collection included several multidrug resistance genes. A phenotype microarray assay was conducted to identify the gene(s) responsible for drug resistance and the drug species that are under the control of the LeuO target gene(s). The results described herein indicate that the yjcRQP operon, one of the LeuO targets, is involved in sensitivity control against sulfa drugs. We propose to rename the yjcRQP genes the sdsRQP genes (sulfa drug sensitivity determinant).
Collapse
|