1
|
Speth DR, Zeller LM, Graf JS, Overholt WA, Küsel K, Milucka J. Genetic potential for aerobic respiration and denitrification in globally distributed respiratory endosymbionts. Nat Commun 2024; 15:9682. [PMID: 39516195 PMCID: PMC11549363 DOI: 10.1038/s41467-024-54047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The endosymbiont Candidatus Azoamicus ciliaticola was proposed to generate ATP for its eukaryotic host, an anaerobic ciliate of the Plagiopylea class, fulfilling a function analogous to mitochondria in other eukaryotic cells. The discovery of this respiratory endosymbiosis has major implications for both evolutionary history and ecology of microbial eukaryotes. However, with only a single species described, knowledge of its environmental distribution and diversity is limited. Here we report four complete, circular metagenome assembled genomes (cMAGs) representing respiratory endosymbionts inhabiting groundwater in California, Ohio, and Germany. These cMAGs form two lineages comprising a monophyletic clade within the uncharacterized gammaproteobacterial order UBA6186, enabling evolutionary analysis of their key protein complexes. Strikingly, all four cMAGs encode a cytochrome cbb3 oxidase, which indicates that these endosymbionts have the capacity for aerobic respiration. Accordingly, we detect these respiratory endosymbionts in diverse habitats worldwide, thus further expanding the ecological scope of this respiratory symbiosis.
Collapse
Affiliation(s)
- Daan R Speth
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Linus M Zeller
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jon S Graf
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Will A Overholt
- Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
2
|
Zhong F, Reik ME, Ragusa MJ, Pletneva EV. The structure of the diheme cytochrome c 4 from Neisseria gonorrhoeae reveals multiple contributors to tuning reduction potentials. J Inorg Biochem 2024; 253:112496. [PMID: 38330683 PMCID: PMC11034767 DOI: 10.1016/j.jinorgbio.2024.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cytochrome c4 (c4) is a diheme protein implicated as an electron donor to cbb3 oxidases in multiple pathogenic bacteria. Despite its prevalence, understanding of how specific structural features of c4 optimize its function is lacking. The human pathogen Neisseria gonorrhoeae (Ng) thrives in low oxygen environments owing to the activity of its cbb3 oxidase. Herein, we report characterization of Ng c4. Spectroelectrochemistry experiments of the wild-type (WT) protein have shown that the two Met/His-ligated hemes differ in potentials by ∼100 mV, and studies of the two His/His-ligated variants provided unambiguous assignment of heme A from the N-terminal domain of the protein as the high-potential heme. The crystal structure of the WT protein at 2.45 Å resolution has revealed that the two hemes differ in their solvent accessibility. In particular, interactions made by residues His57 and Ser59 in Loop1 near the axial ligand Met63 contribute to the tight enclosure of heme A, working together with the surface charge, to raise the reduction potential of the heme iron in this domain. The structure reveals a prominent positively-charged patch, which encompasses surfaces of both domains. In contrast to prior findings with c4 from Pseudomonas stutzeri, the interdomain interface of Ng c4 contributes minimally to the values of the heme iron potentials in the two domains. Analyses of the heme solvent accessibility, interface properties, and surface charges offer insights into the interplay of these structural elements in tuning redox properties of c4 and other multiheme proteins.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Morgan E Reik
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
3
|
Di Trani JM, Gheorghita AA, Turner M, Brzezinski P, Ädelroth P, Vahidi S, Howell PL, Rubinstein JL. Structure of the bc1- cbb3 respiratory supercomplex from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2023; 120:e2307093120. [PMID: 37751552 PMCID: PMC10556555 DOI: 10.1073/pnas.2307093120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen Pseudomonas aeruginosa is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized. Here, we determine the structure of a P. aeruginosa SC that forms between the quinol:cytochrome c oxidoreductase (cytochrome bc1) and one of the organism's terminal oxidases, cytochrome cbb3, which is found only in some bacteria. Remarkably, the SC structure also includes two intermediate electron carriers: a diheme cytochrome c4 and a single heme cytochrome c5. Together, these proteins allow electron transfer from ubiquinol in cytochrome bc1 to oxygen in cytochrome cbb3. We also present evidence that different isoforms of cytochrome cbb3 can participate in formation of this SC without changing the overall SC architecture. Incorporating these different subunit isoforms into the SC would allow the bacterium to adapt to different environmental conditions. Bioinformatic analysis focusing on structural motifs in the SC suggests that cytochrome bc1-cbb3 SCs also exist in other bacterial pathogens.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Andreea A. Gheorghita
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Madison Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - P. Lynne Howell
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - John L. Rubinstein
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|
4
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
5
|
Jaramillo-Lanchero RD, Suarez-Alvarez P, Teheran-Sierra L. Effect of respiratory inhibitors and quinone analogues on the aerobic electron transport system of Eikenella corrodens. Sci Rep 2021; 11:8987. [PMID: 33903681 PMCID: PMC8076288 DOI: 10.1038/s41598-021-88388-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of respiratory inhibitors, quinone analogues and artificial substrates on the membrane-bound electron transport system of the fastidious β-proteobacterium Eikenella corrodens grown under O2-limited conditions were studied. NADH respiration in isolated membrane particles were partially inhibited by rotenone, dicoumarol, quinacrine, flavone, and capsaicin. A similar response was obtained when succinate oxidation was performed in the presence of thenoyltrifluoroacetone and N,N’-dicyclohexylcarbodiimide. NADH respiration was resistant to site II inhibitors and cyanide, indicating that a percentage of the electrons transported can reach O2 without the bc1 complex. Succinate respiration was sensitive to myxothiazol, antimycin A and 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Juglone, plumbagin and menadione had higher reactivity with NADH dehydrogenase. The membrane particles showed the highest oxidase activities with ascorbate-TCHQ (tetrachlorohydroquinone), TCHQ alone, and NADH-TMPD (N,N,N’,N’-tetramethyl-p-phenylenediamine), and minor activity levels with ascorbate-DCPIP (2,6-dichloro-phenolindophenol) and NADH-DCPIP. The substrates NADH-DCPIP, NADH-TMPD and TCHQ were electron donors to cyanide-sensitive cbb' cytochrome c oxidase. The presence of dissimilatory nitrate reductase in the aerobic respiratory system of E. corrodens ATCC 23834 was demonstrated by first time. Our results indicate that complexes I and II have resistance to their classic inhibitors, that the oxidation of NADH is stimulated by juglone, plumbagin and menadione, and that sensitivity to KCN is stimulated by the substrates TCHQ, NADH-DCPIP and NADH-TMPD.
Collapse
Affiliation(s)
- Rubén D Jaramillo-Lanchero
- Grupo de Investigación de Biomembranas (GIBIOM), CIFACS, Facultad Ciencias de La Salud, Centro Seccional de Investigación (CIUL), Universidad Libre Campus Barranquilla, Barranquilla, Colombia.
| | - Paola Suarez-Alvarez
- Grupo de Micología, Departamento de Microbiología, Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Cartagena, Colombia
| | - Luis Teheran-Sierra
- Grupo de Investigación de Biomembranas (GIBIOM), CIFACS, Facultad Ciencias de La Salud, Centro Seccional de Investigación (CIUL), Universidad Libre Campus Barranquilla, Barranquilla, Colombia.,School of Agricultural and Veterinary Sciences, Technology Department, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
6
|
André AC, Debande L, Marteyn BS. The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection. Cell Microbiol 2021; 23:e13338. [PMID: 33813807 DOI: 10.1111/cmi.13338] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Bacteria, including those that are pathogenic, have been generally classified according to their ability to survive and grow in the presence or absence of oxygen: aerobic and anaerobic bacteria, respectively. Strict aerobes require oxygen to grow (e.g., Neisseria), and strict anaerobes grow exclusively without, and do not survive oxygen exposure (e.g., Clostridia); aerotolerant bacteria (e.g., Lactobacilli) are insensitive to oxygen exposure. Facultative anaerobes (e.g., E. coli) have the unique ability to grow in the presence or in the absence of oxygen and are thus well-adapted to these changing conditions, which may constitute an underestimated selective advantage for infection. In the WHO antibiotic-resistant 'priority pathogens' list, facultative anaerobes are overrepresented (8 among 12 listed pathogens), consistent with clinical studies performed in populations particularly susceptible to infectious diseases. Bacteria aerobic respiratory chain plays a central role in oxygen consumption, leading to the formation of hypoxic infectious sites (infectious hypoxia). Facultative anaerobes have developed a wide diversity of aerotolerance and anaerotolerance strategies in vivo. However, at a single cell level, the modulation of the intracellular oxygen level in host infected cells remains elusive and will be discussed in this review. In conclusion, the ability of facultative bacteria to evolve in the presence or the absence of oxygen is essential for their virulence strategy and constitute a selective advantage. TAKE AWAY: Most life-threatening pathogenic bacteria are facultative anaerobes. Only facultative anaerobes are aerotolerant, anaerotolerant and capable of consuming O2 . Facultative anaerobes induce and are well adapted to cellular hypoxia.
Collapse
Affiliation(s)
- Antonin C André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,Université de Paris, Paris, France
| | - Lorine Debande
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France
| | - Benoit S Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, Paris Cedex 15, France
| |
Collapse
|
7
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
8
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Gerritzen MJH, Maas RHW, van den Ijssel J, van Keulen L, Martens DE, Wijffels RH, Stork M. High dissolved oxygen tension triggers outer membrane vesicle formation by Neisseria meningitidis. Microb Cell Fact 2018; 17:157. [PMID: 30285743 PMCID: PMC6171317 DOI: 10.1186/s12934-018-1007-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria and can be used as vaccines. Often, detergents are used to promote release of OMVs and to remove the toxic lipopolysaccharides. Lipopolysaccharides can be detoxified by genetic modification such that vesicles spontaneously produced by bacteria can be directly used as vaccines. The use of spontaneous OMVs has the advantage that no separate extraction step is required in the purification process. However, the productivity of spontaneous OMVs by bacteria at optimal growth conditions is low. One of many methods for increasing OMV formation is to reduce the linkage of the outer membrane to the peptidoglycan layer by knocking out the rmpM gene. A previous study showed that for Neisseria meningitidis this resulted in release of more OMVs. Furthermore, cysteine depletion was found to trigger OMV release and at the same time cause reduced growth and oxidative stress responses. Here we study the effect of growth rate and oxidative stress on OMV release. Results First, we identified using chemostat and accelerostat cultures of N. meningitidis that increasing the growth rate from 0.03 to 0.18 h−1 has a limited effect on OMV productivity. Thus, we hypothesized that oxidative stress is the trigger for OMV release and that oxidative stress can be introduced directly by increasing the dissolved oxygen tension of bacterial cultures. Slowly increasing oxygen concentrations in a N. meningitidis changestat showed that an increase from 30 to 150% air saturation improved OMV productivity four-fold. Batch cultures controlled at 100% air saturation increased OMV productivity three-fold over batch cultures controlled at 30% air saturation. Conclusion Increased dissolved oxygen tension induces the release of outer membrane vesicles in N. meningitidis cultures. Since oxygen concentration is a well-controlled process parameter of bacterial cultures, this trigger can be applied as a convenient process parameter to induce OMV release in bacterial cultures. Improved productivity of OMVs not only improves the production costs of OMVs as vaccines, it also facilitates the use of OMVs as adjuvants, enzyme carriers, or cell-specific drug delivery vehicles. Electronic supplementary material The online version of this article (10.1186/s12934-018-1007-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias J H Gerritzen
- Process Development Bacterial Vaccines, Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL, Bilthoven, The Netherlands.,Bioprocess Engineering, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ronald H W Maas
- Process Development Bacterial Vaccines, Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL, Bilthoven, The Netherlands
| | - Jan van den Ijssel
- Process Development Bacterial Vaccines, Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL, Bilthoven, The Netherlands
| | - Lonneke van Keulen
- Process Development Bacterial Vaccines, Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL, Bilthoven, The Netherlands
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, P.O. Box 1409, 8049, Bodø, Norway
| | - Michiel Stork
- Process Development Bacterial Vaccines, Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL, Bilthoven, The Netherlands.
| |
Collapse
|
10
|
Pannekoek Y, Huis In 't Veld R, Schipper K, Bovenkerk S, Kramer G, Speijer D, van der Ende A. Regulation of Neisseria meningitidis cytochrome bc1 components by NrrF, a Fur-controlled small noncoding RNA. FEBS Open Bio 2017; 7:1302-1315. [PMID: 28904860 PMCID: PMC5586341 DOI: 10.1002/2211-5463.12266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
NrrF is a small regulatory RNA of the human pathogen Neisseria meningitidis. NrrF was previously shown to repress succinate dehydrogenase (sdhCDAB) under control of the ferric uptake regulator (Fur). Here, we provide evidence that cytochrome bc1 , encoded by the polycistronic mRNA petABC, is a NrrF target as well. We demonstrated differential expression of cytochrome bc1 comparing wild-type meningococci and meningococci expressing NrrF when sufficient iron is available. Using a gfp-reporter system monitoring translational control and target recognition of sRNA in Escherichia coli, we show that interaction between NrrF and the 5' untranslated region of the petABC mRNA results in its repression. The NrrF region essential for repression of petABC was identified by site-directed mutagenesis and is fully conserved among meningococci. Our results provide further insights into the mechanism by which Fur controls essential components of the N. meningitidis respiratory chain. Adaptation of cytochrome bc1 complex component levels upon iron limitation is post-transcriptionally regulated via the small regulatory RNA NrrF.
Collapse
Affiliation(s)
- Yvonne Pannekoek
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Robert Huis In 't Veld
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Kim Schipper
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Sandra Bovenkerk
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| | - Gertjan Kramer
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands.,Present address: Genome Biology Unit EMBL Heidelberg Heidelberg Germany
| | - Dave Speijer
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center The Netherlands
| |
Collapse
|
11
|
Beyene GT, Kalayou S, Riaz T, Tonjum T. Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis. BMC Microbiol 2017; 17:96. [PMID: 28431522 PMCID: PMC5399837 DOI: 10.1186/s12866-017-1004-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background DNA processing chain A (DprA) is a DNA binding protein which is ubiquitous in bacteria, and is required for DNA transformation to various extents among bacterial species. However, the interaction of DprA with competence and recombination proteins is poorly understood. Therefore, the proteomes of whole Neisseria meningitidis (Nm) wildtype and dprA mutant cells were compared. Such a comparative proteomic analysis increases our understanding of the interactions of DprA with other Nm components and may elucidate its potential role beyond DNA processing in transformation. Results Using label-free quantitative proteomics, a total of 1057 unique Nm proteins were identified, out of which 100 were quantified as differentially abundant (P ≤ 0.05 and fold change ≥ |2|) in the dprA null mutant. Proteins involved in homologous recombination (RecA, UvrD and HolA), pilus biogenesis (PilG, PilT1, PilT2, PilM, PilO, PilQ, PilF and PilE), cell division, including core energy metabolism, and response to oxidative stress were downregulated in the Nm dprA null mutant. The mass spectrometry data are available via ProteomeXchange with identifier PXD006121. Immunoblotting and co-immunoprecipitation were employed to validate the association of DprA with PilG. The analysis revealed reduced amounts of PilG in the dprA null mutant and reduced amounts of DprA in the Nm pilG null mutant. Moreover, a number of pilus biogenesis proteins were shown to interact with DprA and /or PilG. Conclusions DprA interacts with proteins essential for Nm DNA recombination in transformation, pilus biogenesis, and other functions associated with the inner membrane. Inverse downregulation of Nm DprA and PilG expression in the corresponding mutants indicates a link between DNA processing and pilus biogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Getachew Tesfaye Beyene
- Department of Microbiology, University of Oslo, Oslo, Norway.,Present address: College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Shewit Kalayou
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Mekelle University College of Veterinary Medicine, Mekelle, Ethiopia
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tonjum
- Department of Microbiology, University of Oslo, Oslo, Norway. .,Department of Microbiology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
12
|
Biochemical and functional characterization of a periplasmic disulfide oxidoreductase from Neisseria meningitidis essential for meningococcal viability. Biochem J 2015; 468:271-82. [PMID: 25826614 DOI: 10.1042/bj20140868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TlpAs (thioredoxin-like proteins) are bacterial thioredoxin-like periplasmic disulfide oxidoreductases generally involved in cytochrome c maturation (Ccm) process. They contain a characteristic CXXC active site motif involved in disulfide exchange reaction. In the human pathogenic Neisseria meningitidis species, no TlpA has been characterized so far. In the present study, using an in silico analysis, we identified a putative periplasmic TlpA, called TlpA2. Biochemical and kinetic characterizations of the soluble form of TlpA2, tTlpA2 (truncated TlpA2), were performed. A reduction potential of -0.230 V at pH 7 was calculated, suggesting that TlpA2 acts as a reductant in the oxidative environment of the periplasm. Using a second-order reactive probe, high pKapp (apparent pKa) values were determined for the two cysteines of the SCXXC motif. The tTlpA2 was shown to be efficiently reduced by the N-terminal domain of the DsbD, whereas tTlpA2 reduced a mimetic peptide of cytochrome c' with a catalytic efficiency similar to that observed with other disulfide oxidoreductase like ResA. Moreover, the corresponding gene tlpA2 was shown to be essential for the pathogen viability and able to partially complement a Bordetella pertussis CcsX mutant. Together, these data support an essential role of TlpA2 in the Ccm process in N. meningitidis.
Collapse
|
13
|
Liu YW, Kelly DJ. Cytochromecbiogenesis inCampylobacter jejunirequires cytochromec6(CccA; Cj1153) to maintain apocytochrome cysteine thiols in a reduced state for haem attachment. Mol Microbiol 2015; 96:1298-317. [DOI: 10.1111/mmi.13008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Yang-Wei Liu
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Firth Court Western Bank Sheffield S10 2TN UK
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Firth Court Western Bank Sheffield S10 2TN UK
| |
Collapse
|
14
|
Deeudom M, Huston W, Moir JWB. Lipid-modified azurin of Neisseria meningitidis is a copper protein localized on the outer membrane surface and not regulated by FNR. Antonie van Leeuwenhoek 2015; 107:1107-16. [PMID: 25666376 DOI: 10.1007/s10482-015-0400-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/29/2015] [Indexed: 11/24/2022]
Abstract
The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion.
Collapse
Affiliation(s)
- Manu Deeudom
- Department of Biology (Area 10), University of York, Heslington, York, YO10 5YW, UK,
| | | | | |
Collapse
|
15
|
Aas FE, Li X, Edwards J, Hongrø Solbakken M, Deeudom M, Vik Å, Moir J, Koomey M, Aspholm M. Cytochrome c-based domain modularity governs genus-level diversification of electron transfer to dissimilatory nitrite reduction. Environ Microbiol 2014; 17:2114-32. [PMID: 25330335 DOI: 10.1111/1462-2920.12661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/04/2014] [Indexed: 12/19/2022]
Abstract
The genus Neisseria contains two pathogenic species (N. meningitidis and N. gonorrhoeae) in addition to a number of commensal species that primarily colonize mucosal surfaces in man. Within the genus, there is considerable diversity and apparent redundancy in the components involved in respiration. Here, we identify a unique c-type cytochrome (cN ) that is broadly distributed among commensal Neisseria, but absent in the pathogenic species. Specifically, cN supports nitrite reduction in N. gonorrhoeae strains lacking the cytochromes c5 and CcoP established to be critical to NirK nitrite reductase activity. The c-type cytochrome domain of cN shares high sequence identity with those localized c-terminally in c5 and CcoP and all three domains were shown to donate electrons directly to NirK. Thus, we identify three distinct but paralogous proteins that donate electrons to NirK. We also demonstrate functionality for a N. weaverii NirK variant with a C-terminal c-type heme extension. Taken together, modular domain distribution and gene rearrangement events related to these respiratory electron carriers within Neisseria are concordant with major transitions in the macroevolutionary history of the genus. This work emphasizes the importance of denitrification as a selectable trait that may influence speciation and adaptive diversification within this largely host-restricted bacterial genus.
Collapse
Affiliation(s)
- Finn Erik Aas
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - Xi Li
- Department of Biology, University of York, York, YO10 5DD, UK
| | - James Edwards
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Monica Hongrø Solbakken
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway.,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, N-0316, Norway
| | - Manu Deeudom
- Department of Biology, University of York, York, YO10 5DD, UK.,Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Åshild Vik
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - James Moir
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Michael Koomey
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway.,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, N-0316, Norway
| | - Marina Aspholm
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| |
Collapse
|
16
|
Hopper AC, Li Y, Cole JA. A critical role for the cccA gene product, cytochrome c2, in diverting electrons from aerobic respiration to denitrification in Neisseria gonorrhoeae. J Bacteriol 2013; 195:2518-29. [PMID: 23543713 PMCID: PMC3676072 DOI: 10.1128/jb.02300-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/14/2013] [Indexed: 01/22/2023] Open
Abstract
Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccA (Δc2), cycA (Δc4), cycB (Δc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae.
Collapse
Affiliation(s)
- Amanda C Hopper
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | |
Collapse
|
17
|
Characterization of an ntrX mutant of Neisseria gonorrhoeae reveals a response regulator that controls expression of respiratory enzymes in oxidase-positive proteobacteria. J Bacteriol 2013; 195:2632-41. [PMID: 23564168 DOI: 10.1128/jb.02062-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.
Collapse
|
18
|
Shewell LK, Ku SC, Schulz BL, Jen FEC, Mubaiwa TD, Ketterer MR, Apicella MA, Jennings MP. Recombinant truncated AniA of pathogenic Neisseria elicits a non-native immune response and functional blocking antibodies. Biochem Biophys Res Commun 2013; 431:215-20. [PMID: 23313483 DOI: 10.1016/j.bbrc.2012.12.132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/30/2012] [Indexed: 10/27/2022]
Abstract
AniA of the pathogenic Neisseria is glycosylated in its C-terminal repeat region by the pilin glycosylation (pgl) pathway. AniA appears to be unique among bacterial nitrite reductases as it contains an N-terminal extension that includes a lipid modification site as well as a C-terminal extension that is glycosylated. Immunising with various glycoforms of the AniA protein demonstrated a strong humoral immune response to the basal monosaccharide. In addition, when animals were immunised with a truncated form of AniA, completely lacking the glycosylated C-terminal region, the antibody response was directed against AniA regardless of the glycosylation state of the protein. Immuno-SEM confirmed that AniA is expressed on the cell surface in Neisseria gonorrhoeae. Antisera generated against a truncated, non-glycosylated, recombinant form of the AniA protein are capable of blocking nitrite reductase function in a whole cell assay. We propose that recombinant modified AniA has potential as a vaccine antigen for N. gonorrhoeae.
Collapse
Affiliation(s)
- Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Heylen K, Keltjens J. Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus. Front Microbiol 2012; 3:371. [PMID: 23087684 PMCID: PMC3475470 DOI: 10.3389/fmicb.2012.00371] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/28/2012] [Indexed: 11/13/2022] Open
Abstract
The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581(T) and B. bataviensis LMG 21833(T). In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nitrite reduction enabling a life style as a denitrifier and as an ammonifying bacterium.
Collapse
Affiliation(s)
- Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, University of Ghent Gent, Belgium
| | | |
Collapse
|
20
|
Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:114-35. [PMID: 22842521 DOI: 10.1016/j.bbabio.2012.07.005] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022]
Abstract
Nitrogen is an essential element of life that needs to be assimilated in its most reduced form, ammonium. On the other hand, nitrogen exists in a multitude of oxidation states and, consequently, nitrogen compounds (NCs) serve as electron donor and/or acceptors in many catabolic pathways including various forms of microbial respiration that contribute to the global biogeochemical nitrogen cycle. Some of these NCs are also known as reactive nitrogen species able to cause nitrosative stress because of their high redox reactivity. The best understood processes of the nitrogen cycle are denitrification and ammonification (both beginning with nitrate reduction to nitrite), nitrification (aerobic oxidation of ammonium and nitrite) and anaerobic ammonium oxidation (anammox). This review presents examples of the diverse architecture, either elucidated or anticipated, and the high degree of modularity of the corresponding respiratory electron transport processes found in Bacteria and Archaea, and relates these to their respective bioenergetic mechanisms of proton motive force generation. In contrast to the multiplicity of enzymes that catalyze NC transformations, the number of proteins or protein modules involved in connecting electron transport to and from these enzymes with the quinone/quinol pool is comparatively small. These quinone/quinol-reactive protein modules consist of cytochromes b and c and iron-sulfur proteins. Conclusions are drawn towards the evolutionary relationships of bioenergetic systems involved in NC transformation and deduced aspects of the evolution of the biogeochemical nitrogen cycle are presented. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
21
|
Tied down: tethering redox proteins to the outer membrane in Neisseria and other genera. Biochem Soc Trans 2012; 39:1895-9. [PMID: 22103547 DOI: 10.1042/bst20110736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Typically, the redox proteins of respiratory chains in Gram-negative bacteria are localized in the cytoplasmic membrane or in the periplasm. An alternative arrangement appears to be widespread within the betaproteobacterial genus Neisseria, wherein several redox proteins are covalently associated with the outer membrane. In the present paper, we discuss the structural properties of these outer membrane redox proteins and the functional consequences of this attachment. Several tethered outer membrane redox proteins of Neisseria contain a weakly conserved repeated structure between the covalent tether and the redox protein globular domain that should enable the redox cofactor-containing domain to extend from the outer membrane, across the periplasm and towards the inner membrane. It is argued that the constraints imposed on the movement and orientation of the globular domains by these tethers favours the formation of electron-transfer complexes for entropic reasons. The attachment to the outer membrane may also affect the exposure of the host to redox proteins with a moonlighting function in the host-microbe interaction, thus affecting the host response to Neisseria infection. We identify putative outer membrane redox proteins from a number of other bacterial genera outside Neisseria, and suggest that this organizational arrangement may be more common than previously recognized.
Collapse
|
22
|
A snapshot of a pathogenic bacterium mid-evolution: Neisseria meningitidis is becoming a nitric oxide-tolerant aerobe. Biochem Soc Trans 2012; 39:1890-4. [PMID: 22103546 DOI: 10.1042/bst20110735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the Neisseria genus typically display the ability to carry out denitrification of nitrite to nitrous oxide as an alternative to oxygen respiration when oxygen is depleted. The key enzymes nitrite and nitric oxide reductase are found across the Neisseria genus. Within Neisseria meningitidis, however, a number of research groups have found that a significant proportion of strains lack a functional nitrite reductase. It appears that N. meningitidis is on an evolutionary trajectory towards loss of the capacity to reduce nitrite. In the present paper, I propose that N. meningitidis is evolving to become a nitric oxide-tolerant aerobe in order to occupy an oxygen-rich niche close to host tissue (and hence oxygen perfusion). Other features of the genomic and functional specialization of N. meningitidis, such as possession of a polysaccharide capsule and various acquired reactive oxygen species-resistance mechanisms, support this proposition. The importance of oxygen availability more generally is discussed with reference to recent findings with other mucosal pathogens.
Collapse
|
23
|
Physiological function of soluble cytochrome c-552 from alkaliphilic Pseudomonas alcaliphila AL15-21(T). J Bioenerg Biomembr 2011; 43:473-81. [PMID: 21766198 DOI: 10.1007/s10863-011-9376-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
It has been found that the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) produces a larger amount of soluble c-type cytochromes at pH 10.0 under air-limited condition than at pH 7.0 under high aeration. Cytochrome c-552 was confirmed as the major c-type cytochrome among three soluble c-type cytochromes in the strain. To understand the physiological function of cytochrome c-552, a P. alcaliphila AL15-21(T) cytochrome c-552 gene deletion mutant without a marker gene was constructed by electrotransformation adjusted in this study for the strain. The maximum specific growth rate and maximum cell turbidity of cells grown at pHs 7.0 and 10.0 under the high-aeration condition did not differ significantly between the wild-type and cytochrome c-552 deletion mutant strains. In the mutant grown at pH 10.0 under low-aeration condition, marked decreases in the maximum specific growth rate (40%) and maximum cell turbidity (25%) compared with the wild type were observed. On the other hand, the oxygen consumption rates of cell suspensions of the mutant obtained by the growth at pH 10 under low-aeration condition were slightly higher than that of the wild type. Considering the high electron-retaining ability of cytochrome c-552, the above observations could be accounted for by cytochrome c-552 acting as an electron sink in the periplasmic space. This may facilitate terminal oxidation in the respiratory system at high pH under air-limited conditions.
Collapse
|
24
|
Abstract
Proper periplasmic disulfide bond formation is important for folding and stability of many secreted and membrane proteins, and is catalysed by three DsbA oxidoreductases in Neisseria meningitidis. DsbD provides reducing power to DsbC that shuffles incorrect disulfide bond in misfolded proteins as well as to the periplasmic enzymes that reduce apo-cytochrome c (CcsX) or repair oxidative protein damages (MrsAB). The expression of dsbD, but not other dsb genes, is positively regulated by the MisR/S two-component system. Quantitative real-time PCR analyses showed significantly reduced dsbD expression in all misR/S mutants, which was rescued by genetic complementation. The direct and specific interaction of MisR with the upstream region of the dsbD promoter was demonstrated by electrophoretic mobility shift assay, and the MisR binding sequences were mapped. Further, the expression of dsbD was found to be induced by dithiothrietol (DTT), through the MisR/S regulatory system. Surprisingly, we revealed that inactivation of dsbD can only be achieved in a strain carrying an ectopically located dsbD, in the dsbA1A2 double mutant or in the dsbA1A2A3 triple mutant, thus DsbD is indispensable for DsbA-catalysed oxidative protein folding in N. meningitidis. The defects of the meningococcal dsbA1A2 mutant in transformation and resistance to oxidative stress were more severe in the absence of dsbD.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Soma Sannigrahi
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Yih-Ling Tzeng
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Yip ES, Burnside DM, Cianciotto NP. Cytochrome c4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c1 and c5 promote intracellular infection. MICROBIOLOGY-SGM 2010; 157:868-878. [PMID: 21178169 PMCID: PMC3081086 DOI: 10.1099/mic.0.046490-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A panel of cytochrome c maturation (ccm) mutants of Legionella pneumophila displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a Legionella-specific bioassay. These data, coupled with the finding that ccm transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by L. pneumophila. To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual c-type cytochromes. Whereas ubiquinol-cytochrome c reductase (petC) mutants specifically lacking cytochrome c1 and cycB mutants lacking cytochrome c5 had normal siderophore expression, cyc4 mutants defective for cytochrome c4 completely lacked legiobactin. These data, along with the expression pattern of cyc4 mRNA, indicate that cytochrome c4 in particular promotes siderophore expression. In intracellular infection assays, petC mutants and cycB mutants, but not cyc4 mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like ccm mutants, the cycB mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome c5 in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a c-type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of c-type cytochromes in intracellular infection events.
Collapse
Affiliation(s)
- Emily S Yip
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Denise M Burnside
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 2010; 192:6497-8. [PMID: 20952571 DOI: 10.1128/jb.01144-10] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylosinus trichosporium OB3b (for "oddball" strain 3b) is an obligate aerobic methane-oxidizing alphaproteobacterium that was originally isolated in 1970 by Roger Whittenbury and colleagues. This strain has since been used extensively to elucidate the structure and function of several key enzymes of methane oxidation, including both particulate and soluble methane monooxygenase (sMMO) and the extracellular copper chelator methanobactin. In particular, the catalytic properties of soluble methane monooxygenase from M. trichosporium OB3b have been well characterized in context with biodegradation of recalcitrant hydrocarbons, such as trichloroethylene. The sequence of the M. trichosporium OB3b genome is the first reported from a member of the Methylocystaceae family in the order Rhizobiales.
Collapse
|
27
|
Chang HY, Ahn Y, Pace LA, Lin MT, Lin YH, Gennis RB. The diheme cytochrome c(4) from Vibrio cholerae is a natural electron donor to the respiratory cbb(3) oxygen reductase. Biochemistry 2010; 49:7494-503. [PMID: 20715760 PMCID: PMC2932843 DOI: 10.1021/bi1004574] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The respiratory chain of Vibrio cholerae contains three bd-type quinol oxygen reductases as well as one cbb(3) oxygen reductase. The cbb(3) oxygen reductase has been previously isolated and characterized; however, the natural mobile electron donor(s) that shuttles electrons between the bc(1) complex and the cbb(3) oxygen reductase is not known. The most likely candidates are the diheme cytochrome c(4) and monoheme cytochrome c(5), which have been previously shown to be present in the periplasm of aerobically grown cultures of V. cholerae. Both cytochromes c(4) and c(5) from V. cholerae have been cloned and expressed heterologously in Escherichia coli. It is shown that reduced cytochrome c(4) is a substrate for the purified cbb(3) oxygen reductase and can support steady state oxygen reductase activity of at least 300 e(-1)/s. In contrast, reduced cytochrome c(5) is not a good substrate for the cbb(3) oxygen reductase. Surprisingly, the dependence of the oxygen reductase activity on the concentration of cytochrome c(4) does not exhibit saturation. Global spectroscopic analysis of the time course of the oxidation of cytochrome c(4) indicates that the apparent lack of saturation is due to the strong dependence of K(M) and V(max) on the concentration of oxidized cytochrome c(4). Whether this is an artifact of the in vitro assay or has physiological significance remains unknown. Cyclic voltammetry was used to determine that the midpoint potentials of the two hemes in cytochrome c(4) are 240 and 340 mV (vs standard hydrogen electrode), similar to the electrochemical properties of other c(4)-type cytochromes. Genomic analysis shows a strong correlation between the presence of a c(4)-type cytochrome and a cbb(3) oxygen reductase within the beta- and gamma-proteobacterial clades, suggesting that cytochrome c(4) is the likely natural electron donor to the cbb(3) oxygen reductases within these organisms. These would include the beta-proteobacteria Neisseria meningitidis and Neisseria gonnorhoeae, in which the cbb(3) oxygen reductases are the only terminal oxidases in their respiratory chains, and the gamma-proteobacterium Pseudomonas stutzeri.
Collapse
Affiliation(s)
- Hsin-Yang Chang
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Young Ahn
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Laura A. Pace
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Myat T. Lin
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801
| | - Yun-Hui Lin
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| |
Collapse
|
28
|
Aspholm M, Aas FE, Harrison OB, Quinn D, Vik Å, Viburiene R, Tønjum T, Moir J, Maiden MCJ, Koomey M. Structural alterations in a component of cytochrome c oxidase and molecular evolution of pathogenic Neisseria in humans. PLoS Pathog 2010; 6:e1001055. [PMID: 20808844 PMCID: PMC2924362 DOI: 10.1371/journal.ppat.1001055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/21/2010] [Indexed: 12/26/2022] Open
Abstract
Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb(3) oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host.
Collapse
Affiliation(s)
- Marina Aspholm
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Finn Erik Aas
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | | | - Diana Quinn
- Department of Biology (Area 10), University of York, Heslington, York, United Kingdom
| | - Åshild Vik
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Raimonda Viburiene
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Institute of Microbiology, University of Oslo, Oslo, Norway
| | - James Moir
- Department of Biology (Area 10), University of York, Heslington, York, United Kingdom
| | | | - Michael Koomey
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Hopper A, Tovell N, Cole J. A physiologically significant role in nitrite reduction of the CcoP subunit of the cytochrome oxidasecbb3fromNeisseria gonorrhoeae. FEMS Microbiol Lett 2009; 301:232-40. [DOI: 10.1111/j.1574-6968.2009.01824.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 2009; 106:4447-52. [PMID: 19251655 DOI: 10.1073/pnas.0809504106] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein glycosylation is an important element of biologic systems because of its significant effects on protein properties and functions. Although prominent within all domains of life, O-linked glycosylation systems modifying serine and threonine residues within bacteria and eukaryotes differ substantially in target protein selectivity. In particular, well-characterized bacterial systems have been invariably dedicated to modification of individual proteins or related subsets thereof. Here we characterize a general O-linked glycosylation system that targets structurally and functionally diverse groups of membrane-associated proteins in the gram-negative bacterium Neisseria gonorrhoeae, the etiologic agent of the human disease gonorrhea. The 11 glycoproteins identified here are implicated in activities as varied as protein folding, disulfide bond formation, and solute uptake, as well as both aerobic and anaerobic respiration. Along with their common trafficking within the periplasmic compartment, the protein substrates share quasi-related domains bearing signatures of low complexity that were demonstrated to encompass sites of glycan occupancy. Thus, as in eukaryotes, the broad scope of this system is dictated by the relaxed specificity of the glycan transferase as well as the bulk properties and context of the protein-targeting signal rather than by a strict amino acid consensus sequence. Together, these findings reveal previously unrecognized commonalities linking O-linked protein glycosylation in distantly related life forms.
Collapse
|