1
|
Pauli S, Kohlstedt M, Lamber J, Weiland F, Becker J, Wittmann C. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Metab Eng 2023; 77:100-117. [PMID: 36931556 DOI: 10.1016/j.ymben.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 0.18 mol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.
Collapse
Affiliation(s)
- Sarah Pauli
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jessica Lamber
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Fabia Weiland
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
2
|
Christmann J, Cao P, Becker J, Desiderato CK, Goldbeck O, Riedel CU, Kohlstedt M, Wittmann C. High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microb Cell Fact 2023; 22:41. [PMID: 36849884 PMCID: PMC9969654 DOI: 10.1186/s12934-023-02044-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efficient production. RESULTS Here, we optimized the fermentative production process. Following successful simplification of the production medium, we carefully investigated the impact of dissolved oxygen, pH value, and the presence of bivalent calcium ions on pediocin production. It turned out that the formation of the peptide was strongly supported by an acidic pH of 5.7 and microaerobic conditions at a dissolved oxygen level of 2.5%. Furthermore, elevated levels of CaCl2 boosted production. The IPTG-inducible producer C. glutamicum CR099 pXMJ19 Ptac pedACDCg provided 66 mg L-1 of pediocin PA-1 in a two-phase batch process using the optimized set-up. In addition, the novel constitutive strain Ptuf pedACDCg allowed successful production without the need for IPTG. CONCLUSIONS The achieved pediocin titer surpasses previous efforts in various microbes up to almost seven-fold, providing a valuable step to further explore and develop this important bacteriocin. In addition to its high biosynthetic performance C. glutamicum proved to be highly robust under the demanding producing conditions, suggesting its further use as host for bacteriocin production.
Collapse
Affiliation(s)
- Jens Christmann
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Peng Cao
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christian K. Desiderato
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Oliver Goldbeck
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Christian U. Riedel
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael Kohlstedt
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
3
|
Jie-Liu, Xu JZ, Rao ZM, Zhang WG. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects. Microbiol Res 2022; 262:127101. [DOI: 10.1016/j.micres.2022.127101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
|
4
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Hoffmann SL, Kohlstedt M, Jungmann L, Hutter M, Poblete-Castro I, Becker J, Wittmann C. Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering. Metab Eng 2021; 67:293-307. [PMID: 34314893 DOI: 10.1016/j.ymben.2021.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Seaweeds emerge as promising third-generation renewable for sustainable bioproduction. In the present work, we valorized brown seaweed to produce l-lysine, the world's leading feed amino acid, using Corynebacterium glutamicum, which was streamlined by systems metabolic engineering. The mutant C. glutamicum SEA-1 served as a starting point for development because it produced small amounts of l-lysine from mannitol, a major seaweed sugar, because of the deletion of its arabitol repressor AtlR and its engineered l-lysine pathway. Starting from SEA-1, we systematically optimized the microbe to redirect excess NADH, formed on the sugar alcohol, towards NADPH, required for l-lysine synthesis. The mannitol dehydrogenase variant MtlD D75A, inspired by 3D protein homology modelling, partly generated NADPH during the oxidation of mannitol to fructose, leading to a 70% increased l-lysine yield in strain SEA-2C. Several rounds of strain engineering further increased NADPH supply and l-lysine production. The best strain, SEA-7, overexpressed the membrane-bound transhydrogenase pntAB together with codon-optimized gapN, encoding NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, and mak, encoding fructokinase. In a fed-batch process, SEA-7 produced 76 g L-1l-lysine from mannitol at a yield of 0.26 mol mol-1 and a maximum productivity of 2.1 g L-1 h-1. Finally, SEA-7 was integrated into seaweed valorization cascades. Aqua-cultured Laminaria digitata, a major seaweed for commercial alginate, was extracted and hydrolyzed enzymatically, followed by recovery and clean-up of pure alginate gum. The residual sugar-based mixture was converted to l-lysine at a yield of 0.27 C-mol C-mol-1 using SEA-7. Second, stems of the wild-harvested seaweed Durvillaea antarctica, obtained as waste during commercial processing of the blades for human consumption, were extracted using acid treatment. Fermentation of the hydrolysate using SEA-7 provided l-lysine at a yield of 0.40 C-mol C-mol-1. Our findings enable improvement of the efficiency of seaweed biorefineries using tailor-made C. glutamicum strains.
Collapse
Affiliation(s)
- Sarah Lisa Hoffmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lukas Jungmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Hutter
- Centre for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Jeong H, Lee JH, Kim Y, Lee HS. Thiol-specific oxidant diamide downregulates whiA gene of Corynebacterium glutamicum, thereby suppressing cell division and metabolism. Res Microbiol 2020; 171:331-340. [PMID: 32750493 DOI: 10.1016/j.resmic.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022]
Abstract
The whiA (NCgl1527) gene from Corynebacterium glutamicum plays a crucial role during cell growth, and WhiA is recognized as the transcription factor for genes involved in cell division. In this study, we assessed the regulatory role of the gene in cell physiology. Transcription of the gene was specifically downregulated by the thiol-specific oxidant, diamide, and by heat stress. Cells exposed to diamide showed decreased transcription of genes involved in cell division and these effects were more profound in ΔwhiA cells. In addition, the ΔwhiA cells showed sensitivity to thiol-specific oxidants, DNA-damaging agents, and high temperature. Further, downregulation of sigH (NCgl0733), the central regulator in stress responses, along with master regulatory genes in cell metabolism, was observed in the ΔwhiA strain. Moreover, the amount of cAMP in the ΔwhiA cells in the early stationary phase was only at 30% level of that for the wild-type strain. Collectively, our data indicate that the role of whiA is to downregulate genes associated with cell division in response to heat or thiol-specific oxidative stress, and may suggest a role for the gene in downshifting cell metabolism by downregulating global regulatory genes when growth condition is not optimal for cells.
Collapse
Affiliation(s)
- Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea.
| | - Jae-Hyun Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
7
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
8
|
The osnR gene of Corynebacterium glutamicum plays a negative regulatory role in oxidative stress responses. ACTA ACUST UNITED AC 2019; 46:241-248. [DOI: 10.1007/s10295-018-02126-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
Abstract
Among the Corynebacterium glutamicum ORFs that have been implicated in stress responses, we chose ORF cg3230, designated osnR, and analyzed it further. Unlike the osnR-deleted strain (ΔosnR), the osnR-overexpressing strain (P180-osnR) developed growth defects and increased sensitivity to various oxidants including H2O2. Transcription in the P180-osnR strain of genes such as sodA (superoxide dismutase), ftn (ferritin biosynthesis), and ahpD (alkyl hydroperoxide reductase; cg2674), which are involved in the detoxification of reactive oxygen species, was only 40% that of the wild type. However, transcription of katA, encoding H2O2-detoxifying catalase, was unchanged in this strain. Genes such as trxB (thioredoxin reductase) and mtr (mycothiol disulfide reductase), which play roles in redox homeostasis, also showed decreased transcription in the strain. 2D-PAGE analysis indicated that genes involved in redox reactions were considerably affected by osnR overexpression. The NADPH/NADP+ ratio of the P180-osnR strain (1.35) was higher than that of the wild-type stain (0.78). Collectively, the phenotypes of the ΔosnR and P180-osnR strains suggest a global regulatory role as well as a negative role for the gene in stress responses, particularly in katA-independent oxidative stress responses.
Collapse
|
9
|
Hemmerich J, Moch M, Jurischka S, Wiechert W, Freudl R, Oldiges M. Combinatorial impact of Sec signal peptides fromBacillus subtilisand bioprocess conditions on heterologous cutinase secretion byCorynebacterium glutamicum. Biotechnol Bioeng 2018; 116:644-655. [DOI: 10.1002/bit.26873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/11/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Hemmerich
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Matthias Moch
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
| | - Sarah Jurischka
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Wolfgang Wiechert
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachen Germany
| | - Roland Freudl
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Marco Oldiges
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen Germany
| |
Collapse
|
10
|
Joo YC, Ko YJ, You SK, Shin SK, Hyeon JE, Musaad AS, Han SO. Creating a New Pathway in Corynebacterium glutamicum for the Production of Taurine as a Food Additive. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13454-13463. [PMID: 30516051 DOI: 10.1021/acs.jafc.8b05093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Taurine is a biologically and physiologically valuable food additive. However, commercial taurine production mainly relies on environmentally harmful chemical synthesis. Herein, for the first time in bacteria, we attempted to produce taurine in metabolically engineered Corynebacterium glutamicum. The taurine-producing strain was developed by introducing cs, cdo1, and csad genes. Interestingly, while the control strain could not produce taurine, the engineered strains successfully produced taurine via the newly introduced metabolic pathway. Furthermore, we investigated the effect of a deletion strain of the transcriptional repressor McbR gene on taurine production. As a result, sulfur accumulation and l-cysteine biosynthesis were reinforced by the McbR deletion strain, which further increased the taurine production by 2.3-fold. Taurine production of the final engineered strain Tau11 was higher than in other previously reported strains. This study demonstrated a potential approach for eco-friendly biosynthesis as an alternative to the chemical synthesis of a food additive.
Collapse
Affiliation(s)
- Young-Chul Joo
- Department of Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Seung Kyou You
- Department of Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Sang Kyu Shin
- Department of Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Jeong Eun Hyeon
- Institute of Life Science and Natural Resources , Korea University , Seoul 02841 , Republic of Korea
| | | | - Sung Ok Han
- Department of Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
11
|
Hemmerich J, Tenhaef N, Steffens C, Kappelmann J, Weiske M, Reich SJ, Wiechert W, Oldiges M, Noack S. Less Sacrifice, More Insight: Repeated Low-Volume Sampling of Microbioreactor Cultivations Enables Accelerated Deep Phenotyping of Microbial Strain Libraries. Biotechnol J 2018; 14:e1800428. [PMID: 30318833 DOI: 10.1002/biot.201800428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Indexed: 12/18/2022]
Abstract
With modern genetic engineering tools, high number of potentially improved production strains can be created in a short time. This results in a bottleneck in the succeeding step of bioprocess development, which can be handled by accelerating quantitative microbial phenotyping. Miniaturization and automation are key technologies to achieve this goal. In this study, a novel workflow for repeated low-volume sampling of BioLector-based cultivation setups is presented. Six samples of 20 μL each can be taken automatically from shaken 48-well microtiter plates without disturbing cell population growth. The volume is sufficient for quantification of substrate and product concentrations by spectrophotometric-based enzyme assays. From transient concentration data and replicate cultures, valid performance indicators (titers, rates, yields) are determined through process modeling and random error propagation analysis. Practical relevance of the workflow is demonstrated with a set of five genome-reduced Corynebacterium glutamicum strains that are engineered for Sec-mediated heterologous cutinase secretion. Quantitative phenotyping of this strain library led to the identification of a strain with a 1.6-fold increase in cutinase yield. The prophage-free strain carries combinatorial deletions of three gene clusters (Δ3102-3111, Δ3263-3301, and Δ3324-3345) of which the last two likely contain novel target genes to foster rational engineering of heterologous cutinase secretion in C. glutamicum.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carmen Steffens
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jannick Kappelmann
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marc Weiske
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sebastian J Reich
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen, 52062 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marco Oldiges
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Biotechnology, RWTH Aachen, 52062 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Noack
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
12
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
13
|
Goldbeck O, Eck AW, Seibold GM. Real Time Monitoring of NADPH Concentrations in Corynebacterium glutamicum and Escherichia coli via the Genetically Encoded Sensor mBFP. Front Microbiol 2018; 9:2564. [PMID: 30405597 PMCID: PMC6207642 DOI: 10.3389/fmicb.2018.02564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Analyses of intracellular NADPH concentrations are prerequisites for the design of microbial production strains and process optimization. mBFP was described as metagenomics derived, blue fluorescent protein showing NADPH-dependent fluorescence. Characterization of mBFP showed a high specificity for binding of NADPH (KD 0.64 mM) and no binding of NADH, the protein exclusively amplified fluorescence of NADPH. mBFP catalyzed the NADPH-dependent reduction of benzaldehyde and further aldehydes, which fits to its classification as short chain dehydrogenase. For in vivo NADPH analyses a codon-optimized gene for mBFP was introduced into Corynebacterium glutamicum WT and the phosphoglucoisomerase-deficient strain C. glutamicum Δpgi, which accumulates high levels of NADPH. For determination of intracellular NADPH concentrations by mBFP a calibration method with permeabilized cells was developed. By this means an increase of intracellular NADPH concentrations within seconds after the addition of glucose to nutrient-starved cells of both C. glutamicum WT and C. glutamicum Δpgi was observed; as expected the internal NADPH concentration was significantly higher for C. glutamicum Δpgi (0.31 mM) when compared to C. glutamicum WT (0.19 mM). Addition of paraquat to E. coli cells carrying mBFP led as expected to an immediate decrease of intracellular NADPH concentrations, showing the versatile use of mBFP as intracellular sensor.
Collapse
Affiliation(s)
- Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Alexander W Eck
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany.,Institute for Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Front Microbiol 2017; 8:1937. [PMID: 29075239 PMCID: PMC5643470 DOI: 10.3389/fmicb.2017.01937] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/21/2017] [Indexed: 11/22/2022] Open
Abstract
This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium, exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium. Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.
Collapse
Affiliation(s)
- Alberto Oliveira
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leticia C Oliveira
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Aburjaile
- Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | - Leandro Benevides
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Syed B Jamal
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Arthur Silva
- Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | - Henrique C P Figueiredo
- Aquacen, National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computational Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Ricardo W Portela
- Laboratory of Immunology and Molecular Bióloga, Health Sciences Institute, Federal University of Bahiaa, Salvador, Brazil
| | - Vasco A De Carvalho Azevedo
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alice R Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Martínez VS, Krömer JO. Quantification of Microbial Phenotypes. Metabolites 2016; 6:E45. [PMID: 27941694 PMCID: PMC5192451 DOI: 10.3390/metabo6040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022] Open
Abstract
Metabolite profiling technologies have improved to generate close to quantitative metabolomics data, which can be employed to quantitatively describe the metabolic phenotype of an organism. Here, we review the current technologies available for quantitative metabolomics, present their advantages and drawbacks, and the current challenges to generate fully quantitative metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy under physiological conditions, including examples of the estimations, and the different methods for thermodynamics-based network analysis. The fundamentals of the methods and how to perform the analyses are described. Finally, an example applying quantitative metabolomics to a yeast model by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows that (1) these two methods are complementary to each other; and (2) there is a need to take into account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when further constraints are included in the analysis.
Collapse
Affiliation(s)
- Verónica S Martínez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Jens O Krömer
- Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Brisbane 4072, Australia.
- Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
16
|
Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, Wiechert W, Oldiges M. Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum
under scale-down conditions: Blueprint for robustness to bioreactor inhomogeneities. Biotechnol Bioeng 2016; 114:560-575. [DOI: 10.1002/bit.26184] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Michael H. Limberg
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Julia Schulte
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Tita Aryani
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Regina Mahr
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Meike Baumgart
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Michael Bott
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Marco Oldiges
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
- Institute of Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
17
|
Han G, Hu X, Qin T, Li Y, Wang X. Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S -adenosyl- l -methionine. Enzyme Microb Technol 2016; 83:14-21. [DOI: 10.1016/j.enzmictec.2015.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 12/14/2022]
|
18
|
Lysine Fermentation: History and Genome Breeding. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:73-102. [DOI: 10.1007/10_2016_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Hong EJ, Kim P, Kim ES, Kim Y, Lee HS. Involvement of the osrR gene in the hydrogen peroxide-mediated stress response of Corynebacterium glutamicum. Res Microbiol 2015; 167:20-8. [PMID: 26433092 DOI: 10.1016/j.resmic.2015.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
A transcriptional profile of the H2O2-adapted Corynebacterium glutamicum HA strain reveals a list of upregulated regulatory genes. Among them, we selected ORF NCgl2298, designated osrR and analyzed its role in H2O2 adaptation. The osrR-deleted (ΔosrR) mutant had defective growth in minimal medium, which was even more pronounced in an osrR deletion mutant of an HA strain. The ΔosrR strain displayed increased sensitivity to H2O2. In addition to H2O2 sensitivity, the ΔosrR strain was found to be temperature-sensitive at 37 °C. 2D-PAGE analysis of the ΔosrR mutant found that MetE and several other proteins involved in redox metabolism were affected by the mutation. Accordingly, the NADPH/NADP(+) ratio of the ΔosrR strain (0.85) was much lower than that of the wild-type strain (2.01). In contrast, the NADH/NAD(+) ratio of the mutant (0.54) was considerably higher than that of the wild-type (0.21). Based on these findings, we propose that H2O2-detoxifying metabolic systems, excluding those involving catalase, are present in C. glutamicum and are regulated, in part, by osrR.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea.
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi 420-743, Republic of Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyeong-ro, Jecheon-si, Chungbuk 390-711, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea.
| |
Collapse
|
21
|
Large-Scale 13C flux profiling reveals conservation of the Entner-Doudoroff pathway as a glycolytic strategy among marine bacteria that use glucose. Appl Environ Microbiol 2015; 81:2408-22. [PMID: 25616803 DOI: 10.1128/aem.03157-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine bacteria form one of the largest living surfaces on Earth, and their metabolic activity is of fundamental importance for global nutrient cycling. Here, we explored the largely unknown intracellular pathways in 25 microbes representing different classes of marine bacteria that use glucose: Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia of the Bacteriodetes phylum. We used (13)C isotope experiments to infer metabolic fluxes through their carbon core pathways. Notably, 90% of all strains studied use the Entner-Doudoroff (ED) pathway for glucose catabolism, whereas only 10% rely on the Embden-Meyerhof-Parnas (EMP) pathway. This result differed dramatically from the terrestrial model strains studied, which preferentially used the EMP pathway yielding high levels of ATP. Strains using the ED pathway exhibited a more robust resistance against the oxidative stress typically found in this environment. An important feature contributing to the preferential use of the ED pathway in the oceans could therefore be enhanced supply of NADPH through this pathway. The marine bacteria studied did not specifically rely on a distinct anaplerotic route, but the carboxylation of phosphoenolpyruvate (PEP) or pyruvate for fueling of the tricarboxylic acid (TCA) cycle was evenly distributed. The marine isolates studied belong to clades that dominate the uptake of glucose, a major carbon source for bacteria in seawater. Therefore, the ED pathway may play a significant role in the cycling of mono- and polysaccharides by bacterial communities in marine ecosystems.
Collapse
|
22
|
Milse J, Petri K, Rückert C, Kalinowski J. Transcriptional response of Corynebacterium glutamicum ATCC 13032 to hydrogen peroxide stress and characterization of the OxyR regulon. J Biotechnol 2014; 190:40-54. [DOI: 10.1016/j.jbiotec.2014.07.452] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 11/26/2022]
|
23
|
Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth GV, Zelder O, Wittmann C. From zero to hero – Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 2014; 25:113-23. [DOI: 10.1016/j.ymben.2014.05.007] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/03/2014] [Accepted: 05/05/2014] [Indexed: 01/06/2023]
|
24
|
Tsuge Y, Hori Y, Kudou M, Ishii J, Hasunuma T, Kondo A. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 2014; 98:8675-83. [PMID: 25112225 DOI: 10.1007/s00253-014-5924-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022]
Abstract
The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.
Collapse
Affiliation(s)
- Yota Tsuge
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Corynebacterium glutamicum sdhA encoding succinate dehydrogenase subunit A plays a role in cysR-mediated sulfur metabolism. Appl Microbiol Biotechnol 2014; 98:6751-9. [DOI: 10.1007/s00253-014-5823-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
26
|
Berger A, Dohnt K, Tielen P, Jahn D, Becker J, Wittmann C. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS One 2014; 9:e88368. [PMID: 24709961 PMCID: PMC3977821 DOI: 10.1371/journal.pone.0088368] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a human pathogen that frequently causes urinary tract and catheter-associated urinary tract infections. Here, using 13C-metabolic flux analysis, we conducted quantitative analysis of metabolic fluxes in the model strain P. aeruginosa PAO1 and 17 clinical isolates. All P. aeruginosa strains catabolized glucose through the Entner-Doudoroff pathway with fully respiratory metabolism and no overflow. Together with other NADPH supplying reactions, this high-flux pathway provided by far more NADPH than needed for anabolism: a benefit for the pathogen to counteract oxidative stress imposed by the host. P. aeruginosa recruited the pentose phosphate pathway exclusively for biosynthesis. In contrast to glycolytic metabolism, which was conserved among all isolates, the flux through pyruvate metabolism, the tricarboxylic acid cycle, and the glyoxylate shunt was highly variable, likely caused by adaptive processes in individual strains during infection. This aspect of metabolism was niche-specific with respect to the corresponding flux because strains isolated from the urinary tract clustered separately from those originating from catheter-associated infections. Interestingly, most glucose-grown strains exhibited significant flux through the glyoxylate shunt. Projection into the theoretical flux space, which was computed using elementary flux-mode analysis, indicated that P. aeruginosa metabolism is optimized for efficient growth and exhibits significant potential for increasing NADPH supply to drive oxidative stress response.
Collapse
Affiliation(s)
- Antje Berger
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Petra Tielen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Judith Becker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
27
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
28
|
Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A, Hoffmann T, Becker J, Steil L, Hecker M, van Dijl JM, Lalk M, Mäder U, Stülke J, Bremer E, Völker U, Wittmann C. Adaptation ofBacillus subtiliscarbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Environ Microbiol 2014; 16:1898-917. [DOI: 10.1111/1462-2920.12438] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Michael Kohlstedt
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| | - Praveen K. Sappa
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Hanna Meyer
- Institutes of Biochemistry; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Sandra Maaß
- Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Adrienne Zaprasis
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Tamara Hoffmann
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Judith Becker
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Michael Hecker
- Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Michael Lalk
- Institutes of Biochemistry; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Ulrike Mäder
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Jörg Stülke
- Department for General Microbiology; Georg-August-University Göttingen; Göttingen Germany
| | - Erhard Bremer
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| |
Collapse
|
29
|
Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C. Systems metabolic engineering of xylose-utilizingCorynebacterium glutamicumfor production of 1,5-diaminopentane. Biotechnol J 2013; 8:557-70. [DOI: 10.1002/biot.201200367] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 11/09/2022]
|
30
|
Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 2013; 6:493-502. [PMID: 23302511 PMCID: PMC3918152 DOI: 10.1111/1751-7915.12029] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation.
Collapse
Affiliation(s)
- Rohit Ruhal
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Biotechnology, IIT Roorkee, Roorkee, India.
| | | | | |
Collapse
|
31
|
Production of aromatics in Saccharomyces cerevisiae—A feasibility study. J Biotechnol 2013; 163:184-93. [DOI: 10.1016/j.jbiotec.2012.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/18/2012] [Accepted: 04/25/2012] [Indexed: 11/19/2022]
|
32
|
Pathways at Work: Metabolic Flux Analysis of the Industrial Cell Factory Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Yuan W, Edwards JL, Li S. Global profiling of carbonyl metabolites with a photo-cleavable isobaric labeling affinity tag. Chem Commun (Camb) 2013; 49:11080-2. [DOI: 10.1039/c3cc45956j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Winter G, Krömer JO. Fluxomics - connecting ‘omics analysis and phenotypes. Environ Microbiol 2013; 15:1901-16. [DOI: 10.1111/1462-2920.12064] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Gal Winter
- Centre for Microbial Electrosynthesis (CEMES); Advanced Water Management Centre (AWMC); University of Queensland; Brisbane; Qld; Australia
| | - Jens O. Krömer
- Centre for Microbial Electrosynthesis (CEMES); Advanced Water Management Centre (AWMC); University of Queensland; Brisbane; Qld; Australia
| |
Collapse
|
35
|
Ikeda M, Takeno S. Amino Acid Production by Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr Opin Biotechnol 2012; 23:718-26. [DOI: 10.1016/j.copbio.2011.12.025] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/20/2011] [Indexed: 12/12/2022]
|
37
|
Korneli C, David F, Biedendieck R, Jahn D, Wittmann C. Getting the big beast to work--systems biotechnology of Bacillus megaterium for novel high-value proteins. J Biotechnol 2012; 163:87-96. [PMID: 22750448 DOI: 10.1016/j.jbiotec.2012.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
The high industrial relevance of the soil bacterium Bacillus megaterium as host for recombinant proteins is driving systems-wide analyses of its metabolic and regulatory networks. The present review highlights novel systems biology tools available to unravel the various cellular components on the level of metabolic and regulatory networks. These provide a rational platform for systems metabolic engineering of B. megaterium. In line, a number of interesting studies have particularly focused on studying recombinant B. megaterium in its industrial bioprocess environment thus integrating systems metabolic engineering with systems biotechnology and providing the full picture toward optimal processes.
Collapse
Affiliation(s)
- Claudia Korneli
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
38
|
Korneli C, Bolten CJ, Godard T, Franco-Lara E, Wittmann C. Debottlenecking recombinant protein production in Bacillus megaterium under large-scale conditions-targeted precursor feeding designed from metabolomics. Biotechnol Bioeng 2012; 109:1538-50. [DOI: 10.1002/bit.24434] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/03/2012] [Indexed: 01/13/2023]
|
39
|
Kind S, Kreye S, Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 2011; 13:617-27. [DOI: 10.1016/j.ymben.2011.07.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 01/26/2023]
|
40
|
Poetsch A, Haussmann U, Burkovski A. Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 2011; 11:3244-55. [PMID: 21674800 DOI: 10.1002/pmic.201000786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/09/2022]
Abstract
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
41
|
Han MJ, Lee JW, Lee SY. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics 2011; 11:721-43. [DOI: 10.1002/pmic.201000411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/05/2010] [Accepted: 09/07/2010] [Indexed: 12/18/2022]
|
42
|
Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 2010; 76:7154-60. [PMID: 20851994 DOI: 10.1128/aem.01464-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A sufficient supply of NADPH is a critical factor in l-lysine production by Corynebacterium glutamicum. Endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of C. glutamicum was replaced with nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) of Streptococcus mutans, which catalyzes the reaction of glyceraldehyde 3-phosphate to 3-phosphoglycerate with the reduction of NADP(+) to NADPH, resulting in the reconstruction of the functional glycolytic pathway. Although the growth of the engineered strain on glucose was significantly retarded, a suppressor mutant with an increased ability to utilize sugars was spontaneously isolated from the engineered strain. The suppressor mutant was characterized by the properties of GapN as well as the nucleotide sequence of the gene, confirming that no change occurred in either the activity or the basic properties of GapN. The suppressor mutant was engineered into an l-lysine-producing strain by plasmid-mediated expression of the desensitized lysC gene, and the performance of the mutant as an l-lysine producer was evaluated. The amounts of l-lysine produced by the suppressor mutant were larger than those produced by the reference strain (which was created by replacement of the preexisting gapN gene in the suppressor mutant with the original gapA gene) by ∼70% on glucose, ∼120% on fructose, and ∼100% on sucrose, indicating that the increased l-lysine production was attributed to GapN. These results demonstrate effective l-lysine production by C. glutamicum with an additional source of NADPH during glycolysis.
Collapse
|
43
|
Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 2010; 88:1065-75. [PMID: 20821203 DOI: 10.1007/s00253-010-2854-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 01/10/2023]
Abstract
The recent years have seen tremendous progress towards the understanding of microbial metabolism on a higher level of the entire functional system. Hereby, huge achievements including the sequencing of complete genomes and efficient post-genomic approaches provide the basis for a new, fascinating era of research-analysis of metabolic and regulatory properties on a global scale. Metabolic flux (fluxome) analysis displays the first systems oriented approach to unravel the physiology of microorganisms since it combines experimental data with metabolic network models and allows determining absolute fluxes through larger networks of central carbon metabolism. Hereby, fluxes are of central importance for systems level understanding because they fundamentally represent the cellular phenotype as integrated output of the cellular components, i.e. genes, transcripts, proteins, and metabolites. A currently emerging and promising area of research in systems biology and systems metabolic engineering is therefore the integration of fluxome data in multi-omics studies to unravel the multiple layers of control that superimpose the flux network and enable its optimal operation under different environmental conditions.
Collapse
|
44
|
Rühl M, Zamboni N, Sauer U. Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture. Biotechnol Bioeng 2010; 105:795-804. [PMID: 19882734 DOI: 10.1002/bit.22591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
How do intracellular fluxes respond to dynamically increasing glucose limitation when the physiology changes from strong overflow metabolism near to exclusively maintenance metabolism? Here we investigate this question in a typical industrial, glucose-limited fed-batch cultivation with a riboflavin overproducing Bacillus subtilis strain. To resolve dynamic flux changes, a novel approach to (13)C flux analysis was developed that is based on recording (13)C labeling patterns in free intracellular amino acids. Fluxes are then estimated with stationary flux ratio and iterative isotopomer balancing methods, for which a decomposition of the process into quasi-steady states and estimation of isotopic steady state (13)C labeling patterns was necessary. By this approach, we achieve a temporal resolution of 30-60 min that allows us to resolve the slow metabolic transients that typically occur in such cultivations. In the late process phase we found, most prominently, almost exclusive respiratory metabolism, significantly increased pentose phosphate pathway contribution and a strongly decreased futile cycle through the PEP carboxykinase. As a consequence, higher catabolic NADPH formation occurred than was necessary to satisfy the anabolic demands, suggesting a transhydrogenase-like mechanism to close the balance of reducing equivalents.
Collapse
Affiliation(s)
- Martin Rühl
- Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli-Str. 16, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
45
|
Wittmann C. Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:21-49. [PMID: 20140657 DOI: 10.1007/10_2009_58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Gram-positive soil bacterium Corynebacterium glutamicum was discovered as a natural overproducer of glutamate about 50 years ago. Linked to the steadily increasing economical importance of this microorganism for production of glutamate and other amino acids, the quest for efficient production strains has been an intense area of research during the past few decades. Efficient production strains were created by applying classical mutagenesis and selection and especially metabolic engineering strategies with the advent of recombinant DNA technology. Hereby experimental and computational approaches have provided fascinating insights into the metabolism of this microorganism and directed strain engineering. Today, C. glutamicum is applied to the industrial production of more than 2 million tons of amino acids per year. The huge achievements in recent years, including the sequencing of the complete genome and efficient post genomic approaches, now provide the basis for a new, fascinating era of research - analysis of metabolic and regulatory properties of C. glutamicum on a global scale towards novel and superior bioprocesses.
Collapse
Affiliation(s)
- Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany,
| |
Collapse
|