1
|
Groisman EA, Choi J. Advancing evolution: Bacteria break down gene silencer to express horizontally acquired genes. Bioessays 2023; 45:e2300062. [PMID: 37533411 PMCID: PMC10530229 DOI: 10.1002/bies.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Horizontal gene transfer advances bacterial evolution. To benefit from horizontally acquired genes, enteric bacteria must overcome silencing caused when the widespread heat-stable nucleoid structuring (H-NS) protein binds to AT-rich horizontally acquired genes. This ability had previously been ascribed to both anti-silencing proteins outcompeting H-NS for binding to AT-rich DNA and RNA polymerase initiating transcription from alternative promoters. However, we now know that pathogenic Salmonella enterica serovar Typhimurium and commensal Escherichia coli break down H-NS when this silencer is not bound to DNA. Curiously, both species use the same protease - Lon - to destroy H-NS in distinct environments. Anti-silencing proteins promote the expression of horizontally acquired genes without binding to them by displacing H-NS from AT-rich DNA, thus leaving H-NS susceptible to proteolysis and decreasing H-NS amounts overall. Conserved amino acid sequences in the Lon protease and H-NS cleavage site suggest that diverse bacteria degrade H-NS to exploit horizontally acquired genes.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT, 06516, USA
| | - Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| |
Collapse
|
2
|
Structure and function of bacterial H-NS protein. Biochem Soc Trans 2017; 44:1561-1569. [PMID: 27913665 DOI: 10.1042/bst20160190] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/10/2023]
Abstract
The histone-like nucleoid structuring (H-NS) protein is a major component of the folded chromosome in Escherichia coli and related bacteria. Functions attributed to H-NS include management of genome evolution, DNA condensation, and transcription. The wide-ranging influence of H-NS is remarkable given the simplicity of the protein, a small peptide, possessing rudimentary determinants for self-association, hetero-oligomerisation and DNA binding. In this review, I will discuss our understanding of H-NS with a focus on these structural elements. In particular, I will consider how these interaction surfaces allow H-NS to exert its different effects.
Collapse
|
3
|
Mellies JL, Platenkamp A, Osborn J, Ben-Avi L. PerC Manipulates Metabolism and Surface Antigens in Enteropathogenic Escherichia coli. Front Cell Infect Microbiol 2017; 7:32. [PMID: 28224117 PMCID: PMC5293775 DOI: 10.3389/fcimb.2017.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/23/2017] [Indexed: 11/13/2022] Open
Abstract
Enteropathogenic Escherichia coli is an important cause of profuse, watery diarrhea in infants living in developing regions of the world. Typical strains of EPEC (tEPEC) possess a virulence plasmid, while related clinical isolates that lack the pEAF plasmid are termed atypical EPEC (aEPEC). tEPEC and aEPEC tend to cause acute vs. more chronic type infections, respectively. The pEAF plasmid encodes an attachment factor as well as a regulatory operon, perABC. PerC, a poorly understood regulator, was previously shown to regulate expression of the type III secretion system through Ler. Here we elucidate the regulon of PerC using RNA sequencing analysis to better our understanding of the role of the pEAF in tEPEC infection. We demonstrate that PerC controls anaerobic metabolism by increasing expression of genes necessary for nitrate reduction. A tEPEC strain overexpressing PerC exhibited a growth advantage compared to a strain lacking this regulator, when grown anaerobically in the presence of nitrate, conditions mimicking the human intestine. We show that PerC strongly down-regulates type I fimbriae expression by manipulating fim phase variation. The quantities of a number of non-coding RNA molecules were altered by PerC. In sum, this protein controls niche adaptation, and could help to explain the function of the PerC homologs (Pch), many of which are encoded within prophages in related, Gram-negative pathogens.
Collapse
Affiliation(s)
| | | | - Jossef Osborn
- Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Lily Ben-Avi
- Biology Department, Reed College Portland, OR, USA
| |
Collapse
|
4
|
Abstract
The H-NS family of DNA-binding proteins is the subject of intense study due to its important roles in the regulation of horizontally acquired genes critical for virulence, antibiotic resistance, and metabolism. Xenogeneic silencing proteins, typified by the H-NS protein of Escherichia coli, specifically target and downregulate expression from AT-rich genes by selectively recognizing specific structural features unique to the AT-rich minor groove. In doing so, these proteins facilitate bacterial evolution; enabling these cells to engage in horizontal gene transfer while buffering potential any detrimental fitness consequences that may result from it. Xenogeneic silencing and counter-silencing explain how bacterial cells can evolve effective gene regulatory strategies in the face of rampant gene gain and loss and it has extended our understanding of bacterial gene regulation beyond the classic operon model. Here we review the structures and mechanisms of xenogeneic silencers as well as their impact on bacterial evolution. Several H-NS-like proteins appear to play a role in facilitating gene transfer by other mechanisms including by regulating transposition, conjugation, and participating in the activation of virulence loci like the locus of enterocyte effacement pathogenicity island of pathogenic strains of E. coli. Evidence suggests that the critical determinants that dictate whether an H-NS-like protein will be a silencer or will perform a different function do not lie in the DNA-binding domain but, rather, in the domains that control oligomerization. This suggests that H-NS-like proteins are transcription factors that both recognize and alter the shape of DNA to exert specific effects that include but are not limited to gene silencing.
Collapse
|
5
|
Fukui N, Oshima T, Ueda T, Ogasawara N, Tobe T. Gene Activation through the Modulation of Nucleoid Structures by a Horizontally Transferred Regulator, Pch, in Enterohemorrhagic Escherichia coli. PLoS One 2016; 11:e0149718. [PMID: 26901318 PMCID: PMC4764244 DOI: 10.1371/journal.pone.0149718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
Abstract
The horizontally transferred chromosomal segments, which are the main source of genetic diversity among bacterial pathogens, are bound by the nucleoid protein H-NS, resulting in the formation of a nucleoprotein complex and the silencing of gene expression. The de-silencing or activation of virulence genes necessary for the colonization of enterohemorrhagic Escherichia coli is achieved mainly by the action of two regulators, Pch and Ler, which are encoded by horizontally transferred elements. Although Ler has been shown to activate transcription by counteracting H-NS silencing, the mechanism for Pch is poorly understood. We show here that Pch activates the LEE1 promoter and also enhances the Ler-mediated activation of other LEE promoters. Transcriptional activation was completely dependent on repression by the H-NS/StpA/Hha/YdgT complex, indicating that Pch-derived activation was achieved by alleviating H-NS-mediated silencing. Expression of pch reduced the binding of H-NS at LEE1 promoter and altered the nucleoprotein complex. Furthermore, in vitro reconstruction of the protein-DNA complex on LEE1 promoter DNA confirmed the exclusive effect of Pch on H-NS binding. These results demonstrated that Pch is another anti-silencing regulator and a modulator of H-NS-containing nucleoprotein complexes. Thus, the anti-silencing mechanism plays a key role in the coordinated regulation of virulence genes in EHEC.
Collapse
Affiliation(s)
- Naoki Fukui
- Department of Biomedical Informatics, Graduate School of Medicine Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taku Oshima
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Takeshi Ueda
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Toru Tobe
- Department of Biomedical Informatics, Graduate School of Medicine Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Malaga F, Mayberry O, Park DJ, Rodgers ME, Toptygin D, Schleif RF. A genetic and physical study of the interdomain linker of E. Coli
AraC protein-a trans
-subunit communication pathway. Proteins 2016; 84:448-60. [DOI: 10.1002/prot.24990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Fabiana Malaga
- Biology Department; UPCH; Lima San Martín De Porres Peru
| | - Ory Mayberry
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - David J. Park
- Tufts University Medical School; Boston Massachusetts
| | - Michael E. Rodgers
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - Dmitri Toptygin
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - Robert F. Schleif
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| |
Collapse
|
7
|
Will WR, Navarre WW, Fang FC. Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution. Curr Opin Microbiol 2014; 23:8-13. [PMID: 25461567 DOI: 10.1016/j.mib.2014.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/26/2022]
Abstract
Horizontal gene transfer is a major contributor to bacterial evolution and diversity. For a bacterial cell to utilize newly-acquired traits such as virulence and antibiotic resistance, new genes must be integrated into the existing regulatory circuitry to allow appropriate expression. Xenogeneic silencing of horizontally-acquired genes by H-NS or other nucleoid-associated proteins avoids adventitious expression and can be relieved by other DNA-binding counter-silencing proteins in an environmentally-responsive and physiologically-responsive manner. Biochemical and genetic analyses have recently demonstrated that counter-silencing can occur at a variety of promoter architectures, in contrast to classical transcriptional activation. Disruption of H-NS nucleoprotein filaments by DNA bending is a suggested mechanism by which silencing can be relieved. This review discusses recent advances in our understanding of the mechanisms and importance of xenogeneic silencing and counter-silencing in the successful integration of horizontally-acquired genes into regulatory networks.
Collapse
Affiliation(s)
- W Ryan Will
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Ali SS, Soo J, Rao C, Leung AS, Ngai DHM, Ensminger AW, Navarre WW. Silencing by H-NS potentiated the evolution of Salmonella. PLoS Pathog 2014; 10:e1004500. [PMID: 25375226 PMCID: PMC4223078 DOI: 10.1371/journal.ppat.1004500] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022] Open
Abstract
The bacterial H-NS protein silences expression from sequences with higher AT-content than the host genome and is believed to buffer the fitness consequences associated with foreign gene acquisition. Loss of H-NS results in severe growth defects in Salmonella, but the underlying reasons were unclear. An experimental evolution approach was employed to determine which secondary mutations could compensate for the loss of H-NS in Salmonella. Six independently derived S. Typhimurium hns mutant strains were serially passaged for 300 generations prior to whole genome sequencing. Growth rates of all lineages dramatically improved during the course of the experiment. Each of the hns mutant lineages acquired missense mutations in the gene encoding the H-NS paralog StpA encoding a poorly understood H-NS paralog, while 5 of the mutant lineages acquired deletions in the genes encoding the Salmonella Pathogenicity Island-1 (SPI-1) Type 3 secretion system critical to invoke inflammation. We further demonstrate that SPI-1 misregulation is a primary contributor to the decreased fitness in Salmonella hns mutants. Three of the lineages acquired additional loss of function mutations in the PhoPQ virulence regulatory system. Similarly passaged wild type Salmonella lineages did not acquire these mutations. The stpA missense mutations arose in the oligomerization domain and generated proteins that could compensate for the loss of H-NS to varying degrees. StpA variants most able to functionally substitute for H-NS displayed altered DNA binding and oligomerization properties that resembled those of H-NS. These findings indicate that H-NS was central to the evolution of the Salmonellae by buffering the negative fitness consequences caused by the secretion system that is the defining characteristic of the species.
Collapse
Affiliation(s)
- Sabrina S. Ali
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy Soo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrea S. Leung
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Hon-Man Ngai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
9
|
Takao M, Yen H, Tobe T. LeuO enhances butyrate-induced virulence expression through a positive regulatory loop in enterohaemorrhagic Escherichia coli. Mol Microbiol 2014; 93:1302-13. [PMID: 25069663 DOI: 10.1111/mmi.12737] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2014] [Indexed: 11/27/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) causes bloody diarrhoea and other severe symptoms such as haemorrhagic uraemic syndrome. The expression of virulence genes on the locus for enterocyte effacement (LEE) and associated genes is regulated by a variety of factors, including transcriptional regulators and environmental signals. Butyrate, one of the major short-chain fatty acids present in the intestine, enhances expression of LEE genes and flagella biosynthesis genes in EHEC O157:H7, resulting in increased bacterial adherence and motility. Here, we show that expression of the leuO gene, which encodes a LysR-type transcriptional regulator, is enhanced by butyrate via Lrp, which is also necessary for butyrate-induced responses of LEE genes. LeuO expression induces prolonged activation of the promoter of LEE1 operon, including the ler gene, as well as virulence mechanisms such as microcolony formation. Activation of the LEE1 promoter by LeuO depends on another regulator, called Pch. The response of the leuO promoter to butyrate requires two virulence regulators, Pch and Ler, in addition to Lrp. Pch, Ler and Lrp bind the upstream region of the leuO promoter. Thus, leuO is involved in butyrate-enhanced expression of LEE genes through a positive feedback mechanism, but its expression and action on the LEE1 promoter are dependent on the virulence regulators Pch and Ler.
Collapse
Affiliation(s)
- Miyuki Takao
- Department of Biomedical Informatics, Graduate School of Medicine Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
10
|
Levine JA, Hansen AM, Michalski JM, Hazen TH, Rasko DA, Kaper JB. H-NST induces LEE expression and the formation of attaching and effacing lesions in enterohemorrhagic Escherichia coli. PLoS One 2014; 9:e86618. [PMID: 24466172 PMCID: PMC3897749 DOI: 10.1371/journal.pone.0086618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli are important causes of morbidity and mortality worldwide. These enteric pathogens contain a type III secretion system (T3SS) responsible for the attaching and effacing (A/E) lesion phenotype. The T3SS is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. The H-NS-mediated repression of LEE expression is counteracted by Ler, the major activator of virulence gene expression in A/E pathogens. A regulator present in EPEC, H-NST, positively affects expression of H-NS regulon members in E. coli K-12, although the effect of H-NST on LEE expression and virulence of A/E pathogens has yet-to-be determined. Results We examine the effect of H-NST on LEE expression and A/E lesion formation on intestinal epithelial cells. We find that H-NST positively affects the levels of LEE-encoded proteins independently of ler and induces A/E lesion formation. We demonstrate H-NST binding to regulatory regions of LEE1 and LEE3, the first report of DNA-binding by H-NST. We characterize H-NST mutants substituted at conserved residues including Ala16 and residues Arg60 and Arg63, which are part of a potential DNA-binding domain. The single mutants A16V, A16L, R60Q and the double mutant R60Q/R63Q exhibit a decreased effect on LEE expression and A/E lesion formation. DNA mobility shift assays reveal that these residues are important for H-NST to bind regulatory LEE DNA targets. H-NST positively affects Ler binding to LEE DNA in the presence of H-NS, and thereby potentially helps Ler displace H-NS bound to DNA. Conclusions H-NST induces LEE expression and A/E lesion formation likely by counteracting H-NS-mediated repression. We demonstrate that H-NST binds to DNA and identify arginine residues that are functionally important for DNA-binding. Our study suggests that H-NST provides an additional means for A/E pathogens to alleviate repression of virulence gene expression by H-NS to promote virulence capabilities.
Collapse
Affiliation(s)
- Jonathan A. Levine
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Graduate Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jane M. Michalski
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James B. Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Bingle LEH, Constantinidou C, Shaw RK, Islam MS, Patel M, Snyder LAS, Lee DJ, Penn CW, Busby SJW, Pallen MJ. Microarray analysis of the Ler regulon in enteropathogenic and enterohaemorrhagic Escherichia coli strains. PLoS One 2014; 9:e80160. [PMID: 24454682 PMCID: PMC3891560 DOI: 10.1371/journal.pone.0080160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
The type III protein secretion system is an important pathogenicity factor of enteropathogenic and enterohaemorrhagic Escherichia coli pathotypes. The genes encoding this apparatus are located on a pathogenicity island (the locus of enterocyte effacement) and are transcriptionally activated by the master regulator Ler. In each pathotype Ler is also known to regulate genes located elsewhere on the chromosome, but the full extent of the Ler regulon is unclear, especially for enteropathogenic E. coli. The Ler regulon was defined for two strains of E. coli: E2348/69 (enteropathogenic) and EDL933 (enterohaemorrhagic) in mid and late log phases of growth by DNA microarray analysis of the transcriptomes of wild-type and ler mutant versions of each strain. In both strains the Ler regulon is focused on the locus of enterocyte effacement - all major transcriptional units of which are activated by Ler, with the sole exception of the LEE1 operon during mid-log phase growth in E2348/69. However, the Ler regulon does extend more widely and also includes unlinked pathogenicity genes: in E2348/69 more than 50 genes outside of this locus were regulated, including a number of known or potential pathogenicity determinants; in EDL933 only 4 extra-LEE genes, again including known pathogenicity factors, were activated. In E2348/69, where the Ler regulon is clearly growth phase dependent, a number of genes including the plasmid-encoded regulator operon perABC, were found to be negatively regulated by Ler. Negative regulation by Ler of PerC, itself a positive regulator of the ler promoter, suggests a negative feedback loop involving these proteins.
Collapse
Affiliation(s)
- Lewis E. H. Bingle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Robert K. Shaw
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Md. Shahidul Islam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mala Patel
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Lori A. S. Snyder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David J. Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Charles W. Penn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Stephen J. W. Busby
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mark J. Pallen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Steinmann R, Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiol 2013; 8:85-105. [PMID: 23252495 DOI: 10.2217/fmb.12.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifecycle of most microbial pathogens can be divided into two states: existence outside and inside their hosts. The sudden temperature upshift experienced upon entry from environmental or vector reservoirs into a warm-blooded host is one of the most crucial signals informing the pathogens to adjust virulence gene expression and their host-stress survival program. This article reviews the plethora of sophisticated strategies that bacteria have evolved to sense temperature, and outlines the molecular signal transduction mechanisms used to modulate synthesis of crucial virulence determinants. The molecular details of thermal control through conformational changes of DNA, RNA and proteins are summarized, complex and diverse thermosensing principles are introduced and their potential as drug targets or synthetic tools are discussed.
Collapse
Affiliation(s)
- Rebekka Steinmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
13
|
Hansen AM, Jin DJ. SspA up-regulates gene expression of the LEE pathogenicity island by decreasing H-NS levels in enterohemorrhagic Escherichia coli. BMC Microbiol 2012; 12:231. [PMID: 23051860 PMCID: PMC3539938 DOI: 10.1186/1471-2180-12-231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) colonizes the intestinal epithelium and causes attaching and effacing (A/E) lesions. Expression of virulence genes, particularly those from the locus of the enterocyte effacement (LEE) pathogenicity island is required for the formation of a type three secretion system, which induces A/E lesion formation. Like other horizontally acquired genetic elements, expression of the LEE is negatively regulated by H-NS. In the non-pathogenic Escherichia coli K-12 strain the stringent starvation protein A (SspA) inhibits accumulation of H-NS, and thereby allows de-repression of the H-NS regulon during the stationary phase of growth. However, the effect of SspA on the expression of H-NS-controlled virulence genes in EHEC is unknown. Results Here we assess the effect of SspA on virulence gene expression in EHEC. We show that transcription of virulence genes including those of the LEE is decreased in an sspA mutant, rendering the mutant strain defective in forming A/E lesions. A surface exposed pocket of SspA is functionally important for the regulation of the LEE and for the A/E phenotype. Increased expression of ler alleviates LEE expression in an sspA mutant, suggesting that the level of Ler in the mutant is insufficient to counteract H-NS-mediated repression. We demonstrate that the H-NS level is two-fold higher in an sspA mutant compared to wild type, and that the defects of the sspA mutant are suppressed by an hns null mutation, indicating that hns is epistatic to sspA in regulating H-NS repressed virulence genes. Conclusions SspA positively regulates the expression of EHEC virulence factors by restricting the intracellular level of H-NS. Since SspA is conserved in many bacterial pathogens containing horizontally acquired pathogenicity islands controlled by H-NS, our study suggests a common mechanism whereby SspA potentially regulates the expression of virulence genes in these pathogens.
Collapse
Affiliation(s)
- Anne-Marie Hansen
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
14
|
Flockhart AF, Tree JJ, Xu X, Karpiyevich M, McAteer SP, Rosenblum R, Shaw DJ, Low CJ, Best A, Gannon V, Laing C, Murphy KC, Leong JM, Schneiders T, La Ragione R, Gally DL. Identification of a novel prophage regulator in Escherichia coli controlling the expression of type III secretion. Mol Microbiol 2011; 83:208-23. [PMID: 22111928 PMCID: PMC3378721 DOI: 10.1111/j.1365-2958.2011.07927.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This study has identified horizontally acquired genomic regions of enterohaemorrhagic Escherichia coli O157:H7 that regulate expression of the type III secretion (T3S) system encoded by the locus of enterocyte effacement (LEE). Deletion of O-island 51, a 14.93 kb cryptic prophage (CP-933C), resulted in a reduction in LEE expression and T3S. The deletion also had a reduced capacity to attach to epithelial cells and significantly reduced E. coli O157 excretion levels from sheep. Further characterization of O-island 51 identified a novel positive regulator of the LEE, encoded by ecs1581 in the E. coli O157:H7 strain Sakai genome and present but not annotated in the E. coli strain EDL933 sequence. Functionally important residues of ECs1581 were identified based on phenotypic variants present in sequenced E. coli strains and the regulator was termed RgdR based on a motif demonstrated to be important for stimulation of gene expression. While RgdR activated expression from the LEE1 promoter in the presence or absence of the LEE-encoded regulator (Ler), RgdR stimulation of T3S required ler and Ler autoregulation. RgdR also controlled the expression of other phenotypes, including motility, indicating that this new family of regulators may have a more global role in E. coli gene expression.
Collapse
Affiliation(s)
- Allen F Flockhart
- Immunity and Infection Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cordeiro TN, Schmidt H, Madrid C, Juárez A, Bernadó P, Griesinger C, García J, Pons M. Indirect DNA readout by an H-NS related protein: structure of the DNA complex of the C-terminal domain of Ler. PLoS Pathog 2011; 7:e1002380. [PMID: 22114557 PMCID: PMC3219716 DOI: 10.1371/journal.ppat.1002380] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022] Open
Abstract
Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family. Pathogenic Escherichia coli strains and other enterobacteria carry genes acquired from other bacteria by a process known as horizontal gene transfer. Proper regulation of the genes that are expressed in a given moment is crucial for the success of the bacteria. The protein H-NS is a global regulator that binds DNA and maintains a large number of genes silent until they are required, for example, to sustain the bacteria's colonization of a new host. Ler is a member of the H-NS family that competes with H-NS to activate the expression of a group of horizontally acquired genes that encode for a molecular machine used by E. coli to infect human cells. Ler and H-NS share a similar DNA-binding domain and can bind to different DNA sequences. Here, we present the structure of a complex between the DNA-binding domain of Ler and a natural DNA fragment. This structure reveals that Ler recognizes specific DNA shapes, explaining its capacity to regulate genes with different sequences. A single arginine residue is key for the recognition of a DNA narrow minor groove, which is one of, though not the only, hallmarks of the DNA shapes that are recognized by H-NS and Ler.
Collapse
Affiliation(s)
- Tiago N. Cordeiro
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
| | - Holger Schmidt
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Göttingen, Germany
| | - Cristina Madrid
- Department of Microbiology, University of Barcelona, Barcelona, Spain
| | - Antonio Juárez
- Department of Microbiology, University of Barcelona, Barcelona, Spain
- Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de Barcelona, Barcelona, Spain
| | - Pau Bernadó
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Göttingen, Germany
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
- * E-mail: (MP); (JG)
| | - Miquel Pons
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
- * E-mail: (MP); (JG)
| |
Collapse
|
16
|
Bustamante VH, Villalba MI, García-Angulo VA, Vázquez A, Martínez LC, Jiménez R, Puente JL. PerC and GrlA independently regulate Ler expression in enteropathogenic Escherichia coli. Mol Microbiol 2011; 82:398-415. [DOI: 10.1111/j.1365-2958.2011.07819.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain. J Bacteriol 2011; 193:4881-92. [PMID: 21764926 DOI: 10.1128/jb.05198-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The 5.5 protein (T7p32) of coliphage T7 (5.5(T7)) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5(T7) protein is insoluble when expressed in Escherichia coli, but we find that 5.5(T7) can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5(T7) binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5(T7) can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5(T7) protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5(T7) protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression.
Collapse
|
18
|
Regulatory control of the Escherichia coli O157:H7 lpf1 operon by H-NS and Ler. J Bacteriol 2011; 193:1622-32. [PMID: 21278287 DOI: 10.1128/jb.01082-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long polar fimbriae 1 (Lpf1) of Escherichia coli O157:H7 is a tightly regulated adhesin, with H-NS silencing the transcriptional expression of the lpf1 operon while Ler (locus of enterocyte effacement-encoded regulator) acts as an antisilencer. We mapped the minimal regulatory region of lpf1 required for H-NS- and Ler-mediated regulation and found that it is 79% AT rich. Three putative sites for H-NS binding were identified. Two of them, named silencer regulatory sequence 1 (SRS1) and SRS2, are located on a region that covers both of the lpf1 promoters (P1 and P2). The third putative H-NS binding site is located within the lpfA1 gene in a region extending from +258 bp to +545 bp downstream of ATG; however, this site does not seem to play a role in lpfA1 regulation under the conditions tested in this work. Ler was also found to interact with Ler binding sites (LBSs). Ler binding site 1 (LBS1) and LBS2 are located upstream of the two promoters. LBS1 overlaps SRS1, while LBS3 overlaps the P1 promoter and SRS2. Based on the experimental data, we propose that H-NS silences lpf1 expression by binding to both of the SRSs on the promoter region, forming an SRS-H-NS complex that prevents RNA polymerase-mediated transcription. A model of the regulation of the lpfA1 operon of E. coli O157:H7 by H-NS and Ler is discussed.
Collapse
|
19
|
Mellies JL, Benison G, McNitt W, Mavor D, Boniface C, Larabee FJ. Ler of pathogenic Escherichia coli forms toroidal protein-DNA complexes. MICROBIOLOGY-SGM 2011; 157:1123-1133. [PMID: 21212119 DOI: 10.1099/mic.0.046094-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enteropathogenic and enterohaemorrhagic Escherichia coli are related pathotypes of bacteria that cause acute watery diarrhoea and haemorrhagic colitis, respectively, and enterohaemorrhagic E. coli can lead to a serious complication known as haemolytic uraemic syndrome. In both bacteria the global regulatory protein Ler controls virulence. The ler gene is found within the locus of enterocyte effacement, or LEE, encoding a type III secretion system necessary for injecting effector proteins into intestinal epithelial cells and causing net secretory diarrhoea. The nucleoid-associated protein H-NS silences, whereas Ler serves as an anti-silencer of, multiple LEE operons. Although Ler has a higher affinity for DNA than does H-NS, the precise molecular mechanism by which Ler increases LEE transcription remains to be determined. In this report we investigate the oligomerization activity of Ler. In solution, Ler forms dimers and soluble aggregates of up to 5000 kDa molecular mass, and appears to oligomerize more readily than the related protein H-NS. An insertional mutation into the Ler linker region diminished oligomerization activity. Despite being proteins of similar mass and having homologous DNA-binding domains, Ler and H-NS complexed to DNA migrated to distinct locations, as determined by an electrophoretic mobility shift assay, implying that the related proteins form different 3D shapes in the presence of DNA. Lastly, we present electron microscopy images of toroidal Ler-DNA structures that are predicted to be involved in stimulating gene expression.
Collapse
Affiliation(s)
- Jay L Mellies
- Biology Department, Reed College, Portland, OR 97202, USA
| | | | - William McNitt
- College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - David Mavor
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chris Boniface
- Oregon Health and Sciences University, Portland, OR 97202, USA
| | - Frederick J Larabee
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Tree JJ, Wolfson EB, Wang D, Roe AJ, Gally DL. Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli. Trends Microbiol 2009; 17:361-70. [PMID: 19660954 DOI: 10.1016/j.tim.2009.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 12/01/2022]
Abstract
Type III secretion (T3S) systems enable the injection of bacterial proteins through membrane barriers into host cells, either from outside the host cell or from within a vacuole. This system is required for colonization of their ruminant reservoir hosts by enterohaemorrhagic Escherichia coli (EHEC) and might also be important for the etiology of disease in the incidental human host. T3S systems of E. coli inject a cocktail of proteins into epithelial cells that enables bacterial attachment and promotes longer-term colonization in the animal. Here, we review recent progress in our understanding of the regulation of T3S in EHEC, focusing on the induction and assembly of the T3S system, the co-ordination of effector protein expression, and the timing of effector protein export through the apparatus. Strain variation is often associated with differences in bacteriophages encoding the production of Shiga toxin and in multiple cryptic prophage elements that can encode effector proteins and T3S regulators. It is evident that this repertoire of phage-related sequences results in the different levels of T3S demonstrated between strains, with implications for EHEC epidemiology and strain evolution.
Collapse
Affiliation(s)
- Jai J Tree
- Immunity and Infection Division, The Roslin Institute and R(D)SVS, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | | | | | | |
Collapse
|
21
|
Hansen AM, Kaper JB. Hfq affects the expression of the LEE pathogenicity island in enterohaemorrhagic Escherichia coli. Mol Microbiol 2009; 73:446-65. [PMID: 19570135 DOI: 10.1111/j.1365-2958.2009.06781.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colonization of the intestinal epithelium by enterohaemorrhagic Escherichia coli (EHEC) is characterized by an attaching and effacing (A/E) histopathology. The locus of enterocyte effacement (LEE) pathogenicity island encodes many genes required for the A/E phenotype including the global regulator of EHEC virulence gene expression, Ler. The LEE is subject to a complex regulatory network primarily targeting ler transcription. The RNA chaperone Hfq, implicated in post-transcriptional regulation, is an important virulence factor in many bacterial pathogens. Although post-transcriptional regulation of EHEC virulence genes is known to occur, a regulatory role of Hfq in EHEC virulence gene expression has yet to be defined. Here, we show that an hfq mutant expresses increased levels of LEE-encoded proteins prematurely, leading to earlier A/E lesion formation relative to wild type. Hfq indirectly affects LEE expression in exponential phase independent of Ler by negatively controlling levels of the regulators GrlA and GrlR through post-transcriptional regulation of the grlRA messenger. Moreover, Hfq negatively affects LEE expression in stationary phase independent of GrlA and GrlR. Altogether, Hfq plays an important role in co-ordinating the temporal expression of the LEE by controlling grlRA expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | |
Collapse
|