1
|
Kojima T, Masuda S. Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter. J GEN APPL MICROBIOL 2024; 69:270-277. [PMID: 37482422 DOI: 10.2323/jgam.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
5-Aminolevulinic acid (ALA) is a precursor of heme and a natural amino acid synthesized in the cells of most living organisms. Currently, ALA is used as an ingredient in pharmaceuticals, supplements, cosmetics, feed, fertilizers, and other products. ALA is mainly produced by industrial fermentation by the photosynthetic bacterium Rhodobacter sphaeroides. In this study, we tried to improve the ALA productivity by R. sphaeroides using a genetic strategy to highly express ALA synthase (ALAS) genes. We inserted a constitutive promoter (PrrnB or Prsp_7571) upstream of genes encoding ALAS (hemA and/or hemT) to construct strains that constitutively express ALAS. The highest transcript levels of hemA were observed in the strain where PrrnB was inserted into the hemA promoter region and were 3.5-fold higher than those in the wild-type. The highest transcript levels of hemT were observed in the strain where PrrnB was inserted into the hemT promoter region and were 46-fold higher than those in the wild-type. The maximum ALAS activity was observed in crude cell extracts of the strain where PrrnB was inserted into the hemT promoter region under optimized growth conditions that was 2.7-fold higher than that in the wild type. This strain showed 12-fold accumulation of ALA compared to the wild-type. Thus, we improved ALA productivity without using exogenous DNA sequences. In the future, further improvement in ALA productivity may be expected by applying this approach to current industrial ALA-producing bacteria.
Collapse
Affiliation(s)
- Takuma Kojima
- Fermentation Research Center, Neopharma Japan Co., Ltd
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
2
|
Pucelik S, Becker M, Heyber S, Wöhlbrand L, Rabus R, Jahn D, Härtig E. The blue light-dependent LOV-protein LdaP of Dinoroseobacter shibae acts as antirepressor of the PpsR repressor, regulating photosynthetic gene cluster expression. Front Microbiol 2024; 15:1351297. [PMID: 38404597 PMCID: PMC10890935 DOI: 10.3389/fmicb.2024.1351297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In the marine α-proteobacterium Dinoroseobacter shibae more than 40 genes of the aerobic anoxygenic photosynthesis are regulated in a light-dependent manner. A genome-wide screen of 5,605 clones from a D. shibae transposon library for loss of pigmentation and changes in bacteriochlorophyll absorbance identified 179 mutant clones. The gene encoding the LOV-domain containing protein Dshi_1135 was identified by its colorless phenotype. The mutant phenotype was complemented by the expression of a Dshi_1135-strep fusion protein in trans. The recombinantly produced and chromatographically purified Dshi_1135 protein was able to undergo a blue light-induced photocycle mediated by bound FMN. Transcriptome analyses revealed an essential role for Dshi_1135 in the light-dependent expression of the photosynthetic gene cluster. Interactomic studies identified the repressor protein PpsR as an interaction partner of Dshi_1135. The physical contact between PpsR and the Dshi_1135 protein was verified in vivo using the bacterial adenylate cyclase-based two-hybrid system. In addition, the antirepressor function of the Dshi_1135 protein was demonstrated in vivo testing of a bchF-lacZ reporter gene fusion in a heterologous Escherichia coli-based host system. We therefore propose to rename the Dshi_1135 protein to LdaP (light-dependent antirepressor of PpsR). Using the bacterial two-hybrid system, it was also shown that cobalamin (B12) is essential for the interaction of the antirepressor PpaA with PpsR. A regulatory model for the photosynthetic gene cluster in D. shibae was derived, including the repressor PpsR, the light-dependent antirepressor LdaP and the B12-dependent antirepressor PpaA.
Collapse
Affiliation(s)
- Saskia Pucelik
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Miriam Becker
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffi Heyber
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Godoy MS, de Miguel SR, Prieto MA. A singular PpaA/AerR-like protein in Rhodospirillum rubrum rules beyond the boundaries of photosynthesis in response to the intracellular redox state. mSystems 2023; 8:e0070223. [PMID: 38054698 PMCID: PMC10734443 DOI: 10.1128/msystems.00702-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Rhodospirillum rubrum vast metabolic versatility places it as a remarkable model bacterium and an excellent biotechnological chassis. The key component of photosynthesis (PS) studied in this work (HP1) stands out among the other members of PpaA/AerR anti-repressor family since it lacks the motif they all share: the cobalamin B-12 binding motif. Despite being reduced and poorly conserved, HP1 stills controls PS as the other members of the family, allowing a fast response to changes in the redox state of the cell. This work also shows that HP1 absence affects genes from relevant biological processes other than PS, including nitrogen fixation and stress response. From a biotechnological perspective, HP1 could be manipulated in approaches where PS is not necessary, such as hydrogen or polyhydroxyalkanoates production, to save energy.
Collapse
Affiliation(s)
- Manuel S. Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| | - Santiago R. de Miguel
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
4
|
Grützner J, Börner J, Jäger A, Klug G. The Small RNA-Binding Protein CcaF1 Promotes Formation of Photosynthetic Complexes in Rhodobacter sphaeroides. Int J Mol Sci 2023; 24:ijms24119515. [PMID: 37298460 DOI: 10.3390/ijms24119515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
In natural habitats, bacteria frequently need to adapt to changing environmental conditions. Regulation of transcription plays an important role in this process. However, riboregulation also contributes substantially to adaptation. Riboregulation often acts at the level of mRNA stability, which is determined by sRNAs, RNases, and RNA-binding proteins. We previously identified the small RNA-binding protein CcaF1, which is involved in sRNA maturation and RNA turnover in Rhodobacter sphaeroides. Rhodobacter is a facultative phototroph that can perform aerobic and anaerobic respiration, fermentation, and anoxygenic photosynthesis. Oxygen concentration and light conditions decide the pathway for ATP production. Here, we show that CcaF1 promotes the formation of photosynthetic complexes by increasing levels of mRNAs for pigment synthesis and for some pigment-binding proteins. Levels of mRNAs for transcriptional regulators of photosynthesis genes are not affected by CcaF1. RIP-Seq analysis compares the binding of CcaF1 to RNAs during microaerobic and photosynthetic growth. The stability of the pufBA mRNA for proteins of the light-harvesting I complex is increased by CcaF1 during phototrophic growth but decreased during microaerobic growth. This research underlines the importance of RNA-binding proteins in adaptation to different environments and demonstrates that an RNA-binding protein can differentially affect its binding partners in dependence upon growth conditions.
Collapse
Affiliation(s)
- Julian Grützner
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Janek Börner
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Jäger
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
5
|
Xu X, Gao Z, Wu X, Chen X. Light and oxygen facilitating the directly treatment food wastewater and poly-β-hydroxybutyrate, 5-aminolevulinic acid, pigment productions by Rubrivivax gelatinosus. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1367-1375. [PMID: 37001154 DOI: 10.2166/wst.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rubrivivax gelatinosus has the advantage of using wastewater to realize biomass recovery. However, they still cannot be applied large scale because they cannot directly treat the wastewater containing macromolecular organics. Thus, this article investigated the effects of light-oxygen conditions on R. gelatinosus by directly recycling wastewater containing macromolecular organics to produce biomass, poly-β-hydroxybutyrate (PHB), 5-aminolevulinic acid (5-ALA), and pigment. Results showed that R. gelatinosus directly treated the macromolecule organic (soybean protein and starch) wastewaters and achieved biomass recovery under light-anaerobic and light-micro-oxygen in six conditions. Chemical oxygen demand, protein, and starch removals for two wastewaters all reached above 70%. Renewable bio-resources such as biomass, PHB, 5-ALA, and pigment production were 10 times the initial content. Theoretical analysis indicated that light activated the synthesis of protease and amylase. However, oxygen concentration decided the number of enzymes. When oxygen was at micro-oxygen or anaerobic, the aforementioned expression and synthesis were conducted. In summary, this study expanded the viewpoint ignored by traditional theory. It was realized that R. gelatinosus directly treated wastewater and accumulated nutrients (biomass, PHB, pigment, and 5-ALA) for recycling, which reduced the secondary pollution of excess sludge into the environment.
Collapse
Affiliation(s)
- Xiaohan Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China E-mail:
| | - Ziqing Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xian Wu
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xi Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China E-mail: ; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Dragnea V, Gonzalez-Gutierrez G, Bauer CE. Structural Analyses of CrtJ and Its B 12-Binding Co-Regulators SAerR and LAerR from the Purple Photosynthetic Bacterium Rhodobacter capsulatus. Microorganisms 2022; 10:912. [PMID: 35630357 PMCID: PMC9144470 DOI: 10.3390/microorganisms10050912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Among purple photosynthetic bacteria, the transcription factor CrtJ is a major regulator of photosystem gene expression. Depending on growing conditions, CrtJ can function as an aerobic repressor or an anaerobic activator of photosystem genes. Recently, CrtJ's activity was shown to be modulated by two size variants of a B12 binding co-regulator called SAerR and LAerR in Rhodobacter capsulatus. The short form, SAerR, promotes CrtJ repression, while the longer variant, LAerR, converts CrtJ into an activator. In this study, we solved the crystal structure of R. capsulatus SAerR at a 2.25 Å resolution. Hydroxycobalamin bound to SAerR is sandwiched between a 4-helix bundle cap, and a Rossman fold. This structure is similar to a AerR-like domain present in CarH from Thermus termophilus, which is a combined photoreceptor/transcription regulator. We also utilized AlphaFold software to predict structures for the LAerR, CrtJ, SAerR-CrtJ and LAerR-CrtJ co-complexes. These structures provide insights into the role of B12 and an LAerR N-terminal extension in regulating the activity of CrtJ.
Collapse
Affiliation(s)
| | | | - Carl E. Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA; (V.D.); (G.G.-G.)
| |
Collapse
|
7
|
Eisenhardt KMH, Remes B, Grützner J, Spanka DT, Jäger A, Klug G. A Complex Network of Sigma Factors and sRNA StsR Regulates Stress Responses in R. sphaeroides. Int J Mol Sci 2021; 22:ijms22147557. [PMID: 34299177 PMCID: PMC8307010 DOI: 10.3390/ijms22147557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Adaptation of bacteria to a changing environment is often accompanied by remodeling of the transcriptome. In the facultative phototroph Rhodobacter sphaeroides the alternative sigma factors RpoE, RpoHI and RpoHII play an important role in a variety of stress responses, including heat, oxidative stress and nutrient limitation. Photooxidative stress caused by the simultaneous presence of chlorophylls, light and oxygen is a special challenge for phototrophic organisms. Like alternative sigma factors, several non-coding sRNAs have important roles in the defense against photooxidative stress. RNAseq-based transcriptome data pointed to an influence of the stationary phase-induced StsR sRNA on levels of mRNAs and sRNAs with a role in the photooxidative stress response. Furthermore, StsR also affects expression of photosynthesis genes and of genes for regulators of photosynthesis genes. In vivo and in vitro interaction studies revealed that StsR, that is under control of the RpoHI and RpoHII sigma factors, targets rpoE mRNA and affects its abundance by altering its stability. RpoE regulates expression of the rpoHII gene and, consequently, expression of stsR. These data provide new insights into a complex regulatory network of protein regulators and sRNAs involved in defense against photooxidative stress and the regulation of photosynthesis genes.
Collapse
|
8
|
Abstract
This Perspective provides the first detailed overview of the photoresponse of vitamin B12 and its derivatives, from the early, photophysical events to the burgeoning area of B12-dependent photobiology.
Collapse
Affiliation(s)
- Alex R. Jones
- School of Chemistry
- Photon Science Institute and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
9
|
Absence of the cbb3 Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides. J Bacteriol 2016; 198:2056-63. [PMID: 27215788 PMCID: PMC4944227 DOI: 10.1128/jb.00121-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/13/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The characteristic green color associated with chlorophyll pigments results from the formation of an isocyclic fifth ring on the tetrapyrrole macrocycle during the biosynthesis of these important molecules. This reaction is catalyzed by two unrelated cyclase enzymes employing different chemistries. Oxygenic phototrophs such as plants and cyanobacteria utilize an oxygen-dependent enzyme, the major component of which is a diiron protein named AcsF, while BchE, an oxygen-sensitive [4Fe-4S] cluster protein, dominates in phototrophs inhabiting anoxic environments, such as the purple phototrophic bacterium Rhodobacter sphaeroides We identify a potential acsF in this organism and assay for activity of the encoded protein in a strain lacking bchE under various aeration regimes. Initially, cells lacking bchE did not demonstrate AcsF activity under any condition tested. However, on removal of a gene encoding a subunit of the cbb3-type respiratory terminal oxidase, cells cultured under regimes ranging from oxic to micro-oxic exhibited cyclase activity, confirming the activity of the oxygen-dependent enzyme in this model organism. Potential reasons for the utilization of an oxygen-dependent enzyme in anoxygenic phototrophs are discussed. IMPORTANCE The formation of the E ring of bacteriochlorophyll pigments is the least well characterized step in their biosynthesis, remaining enigmatic for over 60 years. Two unrelated enzymes catalyze this cyclization step; O2-dependent and O2-independent forms dominate in oxygenic and anoxygenic phototrophs, respectively. We uncover the activity of an O2-dependent enzyme in the anoxygenic purple phototrophic bacterium Rhodobacter sphaeroides, initially by inactivation of the high-affinity terminal respiratory oxidase, cytochrome cbb3 We propose that the O2-dependent form allows for the biosynthesis of a low level of bacteriochlorophyll under oxic conditions, so that a rapid initiation of photosynthetic processes is possible for this bacterium upon a reduction of oxygen tension.
Collapse
|
10
|
Members of the PpaA/AerR Antirepressor Family Bind Cobalamin. J Bacteriol 2015; 197:2694-703. [PMID: 26055116 DOI: 10.1128/jb.00374-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED PpaA from Rhodobacter sphaeroides is a member of a family of proteins that are thought to function as antirepressors of PpsR, a widely disseminated repressor of photosystem genes in purple photosynthetic bacteria. PpaA family members exhibit sequence similarity to a previously defined SCHIC (sensor containing heme instead of cobalamin) domain; however, the tetrapyrrole-binding specificity of PpaA family members has been unclear, as R. sphaeroides PpaA has been reported to bind heme while the Rhodobacter capsulatus homolog has been reported to bind cobalamin. In this study, we reinvestigated tetrapyrrole binding of PpaA from R. sphaeroides and show that it is not a heme-binding protein but is instead a cobalamin-binding protein. We also use bacterial two-hybrid analysis to show that PpaA is able to interact with PpsR and activate the expression of photosynthesis genes in vivo. Mutations in PpaA that cause loss of cobalamin binding also disrupt PpaA antirepressor activity in vivo. We also tested a number of PpaA homologs from other purple bacterial species and found that cobalamin binding is a conserved feature among members of this family of proteins. IMPORTANCE Cobalamin (vitamin B12) has only recently been recognized as a cofactor that affects gene expression by interacting in a light-dependent manner with transcription factors. A group of related antirepressors known as the AppA/PpaA/AerR family are known to control the expression of photosynthesis genes in part by interacting with either heme or cobalamin. The specificity of which tetrapyrroles that members of this family interact with has, however, remained cloudy. In this study, we address the tetrapyrrole-binding specificity of the PpaA/AerR subgroup and establish that it preferentially binds cobalamin over heme.
Collapse
|
11
|
Soora M, Tomasch J, Wang H, Michael V, Petersen J, Engelen B, Wagner-Döbler I, Cypionka H. Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements. Front Microbiol 2015; 6:233. [PMID: 25859246 PMCID: PMC4373377 DOI: 10.3389/fmicb.2015.00233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAP) are abundant in the photic zone of the marine environment. Dinoroseobacter shibae, a representative of the Roseobacter group, converts light into additional energy that enhances its survival especially under starvation. However, light exposure results in the production of cytotoxic reactive oxygen species in AAPs. Here we investigated the response of D. shibae to starvation and oxidative stress, focusing on the role of extrachromosomal elements (ECRs). D. shibae possessing five ECRs (three plasmids and two chromids) was starved for 4 weeks either in the dark or under light/dark cycles and the survival was monitored. Transcriptomics showed that on the chromosome genes with a role in oxidative stress response and photosynthesis were differentially expressed during the light period. Most extrachromosomal genes in contrast showed a general loss of transcriptional activity, especially in dark-starved cells. The observed decrease of gene expression was not due to plasmid loss, as all five ECRs were maintained in the cells. Interestingly, the genes on the 72-kb chromid were the least downregulated, and one region with genes of the oxygen stress response and a light-dependent protochlorophyllide reductase of cyanobacterial origin was strongly activated under the light/dark cycle. A Δ72-kb curing mutant lost the ability to survive under starvation in a light/dark cycle demonstrating the essential role of this chromid for adaptation to starvation and oxidative stress. Our data moreover suggest that the other four ECRs of D. shibae have no vital function under the investigated conditions and therefore were transcriptionally silenced.
Collapse
Affiliation(s)
- Maya Soora
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| | - Jürgen Tomasch
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Hui Wang
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Victoria Michael
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Jörn Petersen
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
12
|
Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, Beatty JT, Lang AS. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics 2014; 15:730. [PMID: 25164283 PMCID: PMC4158056 DOI: 10.1186/1471-2164-15-730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-730) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St, John's, NL A1B 3X5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Volpicella M, Costanza A, Palumbo O, Italiano F, Claudia L, Placido A, Picardi E, Carella M, Trotta M, Ceci LR. Rhodobacter sphaeroidesadaptation to high concentrations of cobalt ions requires energetic metabolism changes. FEMS Microbiol Ecol 2014; 88:345-57. [DOI: 10.1111/1574-6941.12303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Alessandra Costanza
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Orazio Palumbo
- Medical Genetics Unit; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Francesca Italiano
- Institute for Chemical-Physical Processes; Italian National Research Council (CNR); Bari Italy
| | - Leoni Claudia
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| | - Antonio Placido
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
- National Institute of Biostructures and Biosystems (INBB); Roma Italy
| | - Massimo Carella
- Medical Genetics Unit; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Massimo Trotta
- Institute for Chemical-Physical Processes; Italian National Research Council (CNR); Bari Italy
| | - Luigi R. Ceci
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| |
Collapse
|
14
|
Klug G. Beyond catalysis: vitamin B12 as a cofactor in gene regulation. Mol Microbiol 2014; 91:635-40. [PMID: 24330414 DOI: 10.1111/mmi.12490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2013] [Indexed: 12/20/2022]
Abstract
Vitamin B12 is well known as an enzyme cofactor in the catalysis of many important biological reactions, and the role of B12 in regulation of bacterial gene expression as a ligand of riboswitches is well established. Only recently evidence has emerged that B12 can also affect bacterial gene expression by acting as a cofactor of regulatory proteins. In 2011 a role of B12 as a cofactor of the transcriptional repressor of carotenogenesis, CarH, in Myxococcus xanthus was reported. B12 is required for light-dependent DNA binding by CarH, which can therefore be considered to be a new type of photoreceptor. Cheng et al. (2014) report the identification of B12 as a cofactor of the AerR protein in Rhodobacter capsulatus. AerR acts as an antirepressor of the CrtJ protein, which represses photosynthesis genes when binding to its target promoters. As in Myxococcus B12 may have the role of a chromophore in photoreception, but it is suggested that a main function of AerR is the sensing of B12. The co-regulation of the pathways is beneficial because the syntheses of B12 , haem and bacteriochlorophylls share common precursors and the accumulation of the free molecules is toxic.
Collapse
Affiliation(s)
- Gabriele Klug
- Institute of Microbiology and Molecular Biology, IFZ, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
15
|
Cheng Z, Li K, Hammad LA, Karty JA, Bauer CE. Vitamin B12 regulates photosystem gene expression via the CrtJ antirepressor AerR in Rhodobacter capsulatus. Mol Microbiol 2014; 91:649-64. [PMID: 24329562 DOI: 10.1111/mmi.12491] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2013] [Indexed: 12/29/2022]
Abstract
The tetrapyrroles haem, bacteriochlorophyll and cobalamin (B12 ) exhibit a complex interrelationship regarding their synthesis. In this study, we demonstrate that AerR functions as an antirepressor of the tetrapyrrole regulator CrtJ. We show that purified AerR contains B12 that is bound to a conserved histidine (His145) in AerR. The interaction of AerR to CrtJ was further demonstrated in vitro by pull down experiments using AerR as bait and quantified using microscale thermophoresis. DNase I DNA footprint assays show that AerR containing B12 inhibits CrtJ binding to the bchC promoter. We further show that bchC expression is greatly repressed in a B12 auxotroph of Rhodobacter capsulatus and that B12 regulation of gene expression is mediated by AerR's ability to function as an antirepressor of CrtJ. This study thus provides a mechanism for how the essential tetrapyrrole, cobalamin controls the synthesis of bacteriochlorophyll, an essential component of the photosystem.
Collapse
Affiliation(s)
- Zhuo Cheng
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | |
Collapse
|
16
|
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ. Proc Natl Acad Sci U S A 2012; 109:16306-11. [PMID: 22988125 DOI: 10.1073/pnas.1207067109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.
Collapse
|
17
|
Role of the Irr protein in the regulation of iron metabolism in Rhodobacter sphaeroides. PLoS One 2012; 7:e42231. [PMID: 22879920 PMCID: PMC3413700 DOI: 10.1371/journal.pone.0042231] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 07/05/2012] [Indexed: 12/21/2022] Open
Abstract
In Rhizobia the Irr protein is an important regulator for iron-dependent gene expression. We studied the role of the Irr homolog RSP_3179 in the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides. While Irr had little effect on growth under iron-limiting or non-limiting conditions its deletion resulted in increased resistance to hydrogen peroxide and singlet oxygen. This correlates with an elevated expression of katE for catalase in the Irr mutant compared to the wild type under non-stress conditions. Transcriptome studies revealed that Irr affects the expression of genes for iron metabolism, but also has some influence on genes involved in stress response, citric acid cycle, oxidative phosphorylation, transport, and photosynthesis. Most genes showed higher expression levels in the wild type than in the mutant under normal growth conditions indicating an activator function of Irr. Irr was however not required to activate genes of the iron metabolism in response to iron limitation, which showed even stronger induction in the absence of Irr. This was also true for genes mbfA and ccpA, which were verified as direct targets for Irr. Our results suggest that in R. sphaeroides Irr diminishes the strong induction of genes for iron metabolism under iron starvation.
Collapse
|
18
|
Metz S, Jäger A, Klug G. Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides. Microbiology (Reading) 2012; 158:368-379. [DOI: 10.1099/mic.0.054700-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Sebastian Metz
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Andreas Jäger
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Gabriele Klug
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| |
Collapse
|
19
|
Peuser V, Glaeser J, Klug G. The RSP_2889 gene product of Rhodobacter sphaeroides is a CueR homologue controlling copper-responsive genes. Microbiology (Reading) 2011; 157:3306-3313. [DOI: 10.1099/mic.0.051607-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metal homeostasis is important in all living cells in order to provide sufficient amounts of metal ions for biological processes but to prevent toxic effects by excess amounts. Here we show that the gene product of RSP_2889 of the facultatively photosynthetic bacterium Rhodobacter sphaeroides is homologous to CueR, a regulator of copper metabolism in Escherichia coli and other bacteria. CueR binds to the promoter regions of genes for a copper-translocating ATPase and for a copper chaperone and is responsible for their high expression when cells are exposed to elevated levels of copper ions. While deletion of RSP_2889 has no significant effect on copper resistance, expression from a low-copy-number plasmid mediates increased sensitivity to copper.
Collapse
Affiliation(s)
- Verena Peuser
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Jens Glaeser
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
20
|
The PpaA/AerR regulators of photosynthesis gene expression from anoxygenic phototrophic proteobacteria contain heme-binding SCHIC domains. J Bacteriol 2010; 192:5253-6. [PMID: 20675482 DOI: 10.1128/jb.00736-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SCHIC domain of the B12-binding domain family present in the Rhodobacter sphaeroides AppA protein binds heme and senses oxygen. Here we show that the predicted SCHIC domain PpaA/AerR regulators also bind heme and respond to oxygen in vitro, despite their low sequence identity with AppA.
Collapse
|
21
|
Losurdo L, Italiano F, Trotta M, Gallerani R, Luigi RC, Leo FD. Assessment of an internal reference gene in Rhodobacter sphaeroides grown under cobalt exposure. J Basic Microbiol 2010; 50:302-5. [DOI: 10.1002/jobm.200900340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Lambert C, Ivanov P, Sockett RE. A transcriptional "Scream" early response of E. coli prey to predatory invasion by Bdellovibrio. Curr Microbiol 2009; 60:419-27. [PMID: 20024656 PMCID: PMC2859166 DOI: 10.1007/s00284-009-9559-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/25/2009] [Indexed: 11/25/2022]
Abstract
We have transcriptionally profiled the genes differentially expressed in E. coli prey cells when predatorily attacked by Bdellovibrio bacteriovorus just prior to prey cell killing. This is a brief, approximately 20–25 min period when the prey cell is still alive but contains a Bdellovibrio cell in its periplasm or attached to and penetrating its outer membrane. Total RNA was harvested and labelled 15 min after initiating a semi-synchronous infection with an excess of Bdellovibrio preying upon E. coli and hybridised to a macroarray spotted with all predicted ORFs of E. coli. SAM analysis and t-tests were performed on the resulting data and 126 E. coli genes were found to be significantly differentially regulated by the prey upon attack by Bdellovibrio. The results were confirmed by QRT-PCR. Amongst the prey genes upregulated were a variety of general stress response genes, potentially “selfish” genes within or near prophages and transposable elements, and genes responding to damage in the periplasm and osmotic stress. Essentially, the presence of the invading Bdellovibrio and the resulting damage to the prey cell elicited a small “transcriptional scream”, but seemingly no specific defensive mechanism with which to counter the Bdellovibrio attack. This supports other studies which do not find Bdellovibrio resistance responses in prey, and bodes well for its use as a “living antibiotic”.
Collapse
Affiliation(s)
- Carey Lambert
- School of Biology, University of Nottingham, Nottingham, UK
| | - Pavel Ivanov
- Department of Physics, Moscow State University, Moscow, Russia
| | | |
Collapse
|
23
|
Gomelsky L, Moskvin OV, Stenzel RA, Jones DF, Donohue TJ, Gomelsky M. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides. J Bacteriol 2008; 190:8106-14. [PMID: 18931128 PMCID: PMC2593241 DOI: 10.1128/jb.01094-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/03/2008] [Indexed: 11/20/2022] Open
Abstract
In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.
Collapse
Affiliation(s)
- Larissa Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
24
|
Masuda S, Berleman J, Hasselbring BM, Bauer CE. Regulation of aerobic photosystem synthesis in the purple bacterium Rhodospirillum centenum by CrtJ and AerR. Photochem Photobiol Sci 2008; 7:1267-72. [PMID: 18846293 PMCID: PMC2774734 DOI: 10.1039/b802365b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 08/29/2008] [Indexed: 11/21/2022]
Abstract
Genes coding for putative CrtJ and AerR homologs were identified and characterized in the purple photosynthetic bacterium Rhodospirillum centenum (also known as Rhodocista centenaria), an organism that synthesizes photopigments even under highly aerated conditions. Mutational analysis indicated that in Rsp. centenum, gene crtJ codes for a repressor for photosynthesis gene expression as in Rhodobacter capsulatus, which exhibits a high level of oxygen repression of photosystem synthesis. In contrast to Rba. capsulatus, AerR in Rsp. centenum appears to be an aerobic activator; an aerR mutation resulted in significantly reduced levels of photopigment synthesis. Both aerR and crtJ mutants retained essentially normal levels of photosystem synthesis under anaerobic conditions, indicating that their activities are specific for aerobic photosystem synthesis. The readthrough transcript from crtE promoter, which is regulated by AerR and CrtJ, seems to be significant in maintaining the expression levels of the light harvesting I (puf) genes in Rsp. centenum. We suggest that AerR and CrtJ regulate aerobic photosystem synthesis primarily through controlling activity of the transcriptional readthrough.
Collapse
Affiliation(s)
- Shinji Masuda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | | | | | | |
Collapse
|
25
|
The use of chromatin immunoprecipitation to define PpsR binding activity in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2008; 190:6817-28. [PMID: 18689484 DOI: 10.1128/jb.00719-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes involved in photosystem development in Rhodobacter sphaeroides is dependent upon three major regulatory networks: FnrL, the PrrBA (RegBA) two-component system, and the transcriptional repressor/antirepressor PpsR/AppA. Of the three regulators, PpsR appears to have the narrowest range of physiological effects, which are limited to effects on the structural and pigment biosynthetic activities involved in photosynthetic membrane function. Although a PrrA(-) mutant is unable to grow under photosynthetic conditions, when a ppsR mutation was present, photosynthetic growth occurred. An examination of the double mutant under anaerobic-dark-dimethyl sulfoxide conditions using microarray analysis revealed the existence of an "extended" PpsR regulon and new physiological roles. To characterize the PpsR regulon and to better ascertain the significance of degeneracy within the PpsR binding sequence in vivo, we adapted the chromatin immunoprecipitation technique to R. sphaeroides. We demonstrated that in vivo there was direct and significant binding by PpsR to newly identified genes involved in microaerobic respiration and periplasmic stress resistance, as well as to photosynthesis genes. The new members of the PpsR regulon are located outside the photosynthesis gene cluster and have degenerate PpsR binding sequences. The possible interaction under physiologic conditions with degenerate binding sequences in the presence of other biologically relevant molecules is discussed with respect to its importance in physiological processes and to the existence of complex phenotypes associated with regulatory mutants. This study further defines the DNA structure necessary for PpsR binding in situ.
Collapse
|
26
|
Mackenzie C, Eraso JM, Choudhary M, Roh JH, Zeng X, Bruscella P, Puskás A, Kaplan S. Postgenomic adventures with Rhodobacter sphaeroides. Annu Rev Microbiol 2007; 61:283-307. [PMID: 17506668 DOI: 10.1146/annurev.micro.61.080706.093402] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes some of the recent highlights taken from the studies of Rhodobacter sphaeroides 2.4.1. The review is not intended to be comprehensive, but to reflect the bias of the authors as to how the availability of a sequenced and annotated genome, a gene-chip, and proteomic profile as well as comparative genomic analyses can direct the progress of future research in this system.
Collapse
Affiliation(s)
- Chris Mackenzie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Han Y, Meyer MHF, Keusgen M, Klug G. A haem cofactor is required for redox and light signalling by the AppA protein of Rhodobacter sphaeroides. Mol Microbiol 2007; 64:1090-104. [PMID: 17501930 DOI: 10.1111/j.1365-2958.2007.05724.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AppA protein of Rhodobacter sphaeroides is unique in its ability to sense and transmit redox signals as well as light signals. By functioning as antagonist to the PpsR transcriptional repressor, it regulates the expression of photosynthesis genes in response to these environmental stimuli. Here we show binding of the cofactor haem to a domain in the C-terminal part of AppA and redox activity of bound haem. This is supported by the findings that: (i) the C-terminal domain of AppA (AppADeltaN) binds to haemin agarose, (ii) AppADeltaN isolated from Escherichia coli shows absorbance at 411 nm and absorbances at 424 nm and 556 nm after reduction with dithionite and (iii) AppADeltaN can be reconstituted with haem in vitro. Expression of AppA variants in R. sphaeroides reveals that the haem binding domain is important for normal expression levels of photosynthesis genes and for normal light regulation in the presence of oxygen. The haem cofactor affects the interaction of the C-terminal part of AppA to PpsR but also its interaction to the N-terminal light sensing AppA-BLUF domain. Based on this we present a model for the transmission of light and redox signals by AppA.
Collapse
Affiliation(s)
- Yuchen Han
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
28
|
Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2007; 190:286-99. [PMID: 17965166 DOI: 10.1128/jb.01375-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides 2.4.1 is a facultative photosynthetic anaerobe that grows by anoxygenic photosynthesis under anaerobic-light conditions. Changes in energy generation pathways under photosynthetic and aerobic respiratory conditions are primarily controlled by oxygen tensions. In this study, we performed time series microarray analyses to investigate transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration. Major changes in gene expression profiles occurred in the initial 15 min after the shift from anaerobic-light to aerobic-dark conditions, with changes continuing to occur up to 4 hours postshift. Those genes whose expression levels changed significantly during the time series were grouped into three major classes by clustering analysis. Class I contained genes, such as that for the aa3 cytochrome oxidase, whose expression levels increased after the shift. Class II contained genes, such as those for the photosynthetic apparatus and Calvin cycle enzymes, whose expression levels decreased after the shift. Class III contained genes whose expression levels temporarily increased during the time series. Many genes for metabolism and transport of carbohydrates or lipids were significantly induced early during the transition, suggesting that those endogenous compounds were initially utilized as carbon sources. Oxidation of those compounds might also be required for maintenance of redox homeostasis after exposure to oxygen. Genes for the repair of protein and sulfur groups and uptake of ferric iron were temporarily upregulated soon after the shift, suggesting they were involved in a response to oxidative stress. The flagellar-biosynthesis genes were expressed in a hierarchical manner at 15 to 60 min after the shift. Numerous transporters were induced at various time points, suggesting that the cellular composition went through significant changes during the transition from anaerobic photosynthesis to aerobic respiration. Analyses of these data make it clear that numerous regulatory activities come into play during the transition from one homeostatic state to another.
Collapse
|
29
|
Moskvin OV, Kaplan S, Gilles-Gonzalez MA, Gomelsky M. Novel heme-based oxygen sensor with a revealing evolutionary history. J Biol Chem 2007; 282:28740-28748. [PMID: 17660296 DOI: 10.1074/jbc.m703261200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To monitor fluctuations in oxygen concentration, cells use sensory proteins often containing heme cofactors. Here, we identify a new class of heme-binding oxygen sensors, reveal their unusual phylogenetic origin, and propose a sensing mode of a member of this class. We show that heme is bound noncovalently to the central region of AppA, an oxygen and light sensor from Rhodobacter sphaeroides. The addition of oxygen to ferrous AppA discoordinated the heme, and subsequent oxygen removal fully restored the heme coordination. In vitro, the extent of heme discoordination increased gradually with the rise in oxygen levels over a broad concentration range. This response correlated well with the gradual decrease in transcription of photosynthesis genes regulated by AppA and its partner repressor PpsR. We conclude that the AppA-PpsR regulatory system functions as an oxygen-dependent transcriptional rheostat. We identified a new domain embedded in the central region of AppA and designated it SCHIC for sensor containing heme instead of cobalamin. A phylogenetic analysis revealed that SCHIC domain proteins form a distinct cluster within a superfamily that includes vitamin B(12)-binding proteins and other proteins that may bind other kinds of tetrapyrroles.
Collapse
Affiliation(s)
- Oleg V Moskvin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School, Houston, Texas 77030
| | - Marie-Alda Gilles-Gonzalez
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071.
| |
Collapse
|
30
|
Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O'huallachain ME, Lince MT, Blankenship RE, Beatty JT, Touchman JW. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 2006; 189:683-90. [PMID: 17098896 PMCID: PMC1797316 DOI: 10.1128/jb.01390-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purple aerobic anoxygenic phototrophs (AAPs) are the only organisms known to capture light energy to enhance growth only in the presence of oxygen but do not produce oxygen. The highly adaptive AAPs compose more than 10% of the microbial community in some euphotic upper ocean waters and are potentially major contributors to the fixation of the greenhouse gas CO2. We present the complete genomic sequence and feature analysis of the AAP Roseobacter denitrificans, which reveal clues to its physiology. The genome lacks genes that code for known photosynthetic carbon fixation pathways, and most notably missing are genes for the Calvin cycle enzymes ribulose bisphosphate carboxylase (RuBisCO) and phosphoribulokinase. Phylogenetic evidence implies that this absence could be due to a gene loss from a RuBisCO-containing alpha-proteobacterial ancestor. We describe the potential importance of mixotrophic rather than autotrophic CO2 fixation pathways in these organisms and suggest that these pathways function to fix CO2 for the formation of cellular components but do not permit autotrophic growth. While some genes that code for the redox-dependent regulation of photosynthetic machinery are present, many light sensors and transcriptional regulatory motifs found in purple photosynthetic bacteria are absent.
Collapse
Affiliation(s)
- Wesley D Swingley
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lambert C, Evans KJ, Till R, Hobley L, Capeness M, Rendulic S, Schuster SC, Aizawa SI, Sockett RE. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol Microbiol 2006; 60:274-86. [PMID: 16573680 PMCID: PMC1453311 DOI: 10.1111/j.1365-2958.2006.05081.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2006] [Indexed: 11/28/2022]
Abstract
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.
Collapse
Affiliation(s)
- Carey Lambert
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Katy J Evans
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Rob Till
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Laura Hobley
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Michael Capeness
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Snjezana Rendulic
- Department of Biochemistry and Molecular Biology Center for Comparative Genomics and Bioinformatics310 Wartik Building, Penn State University, University Park, PA 16802, USA
| | - Stephan C Schuster
- Department of Biochemistry and Molecular Biology Center for Comparative Genomics and Bioinformatics310 Wartik Building, Penn State University, University Park, PA 16802, USA
| | - Shin-Ichi Aizawa
- CREST ‘Soft Nano-Machine Project’ Innovation Plaza Hiroshima3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046 Japan.
| | - R Elizabeth Sockett
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| |
Collapse
|
32
|
Waidner LA, Kirchman DL. Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ Microbiol 2006; 7:1896-908. [PMID: 16309388 DOI: 10.1111/j.1462-2920.2005.00883.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Photosynthesis genes and operons of aerobic anoxygenic photosynthetic (AAP) bacteria have been examined in a variety of marine habitats, but genomic information about freshwater AAP bacteria is lacking. The goal of this study was to examine photosynthesis genes of AAP bacteria in the Delaware River. In a fosmid library, we found two clones bearing photosynthesis gene clusters with unique gene content and organization. Both clones contained 37 open reading frames, with most of those genes encoding known AAP bacterial proteins. The genes in one fosmid were most closely related to those of AAP bacteria in the Rhodobacter genus. The genes of the other clone were related to those of freshwater beta-proteobacteria. Both clones contained the acsF gene, which is required for aerobic bacteriochlorophyll synthesis, suggesting that these bacteria are not anaerobes. The beta-proteobacterial fosmid has the puf operon B-A-L-M-C and is the first example of an uncultured bacterium with this operon structure. The alpha-3-proteobacterial fosmid has a rare gene order (Q-B-A-L-M-X), previously observed only in the Rhodobacter genus. Phylogenetic analyses of photosynthesis genes revealed a possible freshwater cluster of AAP beta-proteobacteria. The data from both Delaware River clones suggest there are groups of freshwater or estuarine AAP bacteria distinct from those found in marine environments.
Collapse
Affiliation(s)
- Lisa A Waidner
- University of Delaware, College of Marine Studies, 700 Pilottown Road, Lewes, DE 19958, USA
| | | |
Collapse
|
33
|
Elsen S, Jaubert M, Pignol D, Giraud E. PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 2005; 57:17-26. [PMID: 15948946 DOI: 10.1111/j.1365-2958.2005.04655.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purple bacteria control the level of expression and the composition of their photosystem according to light and redox conditions. This control involves several regulatory systems that have been now well characterized. Among them, the PpsR regulator plays a central role, because it directly or indirectly controls the synthesis of all of the different components of the photosystem. In this review, we report our knowledge of the PpsR protein, highlighting the diversity of its mode of action and focusing on the proteins identified in four model purple bacteria (Rhodobacter capsulatus, Rhodobacter sphaeroides, Rubrivivax gelatinosus, Bradyrhizobium ORS278). This regulator exhibits unique regulatory features in each bacterium: it can activate and/or repress the expression of photosynthesis genes, its activity can be modulated or not by the redox conditions, it can interact with other specific regulators and therefore be involved differently in light and/or redox regulatory circuits.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
34
|
Moskvin OV, Gomelsky L, Gomelsky M. Transcriptome analysis of the Rhodobacter sphaeroides PpsR regulon: PpsR as a master regulator of photosystem development. J Bacteriol 2005; 187:2148-56. [PMID: 15743963 PMCID: PMC1064034 DOI: 10.1128/jb.187.6.2148-2156.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PpsR from the anoxygenic phototrophic bacterium Rhodobacter sphaeroides has been known as an oxygen- and light-dependent repressor of bacteriochlorophyll and carotenoid biosynthesis genes and puc operons involved in photosystem development. However, the putative PpsR-binding sites, TGTN12ACA, are also located upstream of numerous nonphotosystem genes, thus raising the possibility that the role of PpsR is broader. To characterize the PpsR regulon, transcriptome profiling was performed on the wild-type strain grown at high and low oxygen tensions, on the strain overproducing PpsR, and on the ppsR mutant. Transcriptome analysis showed that PpsR primarily regulates photosystem genes; the consensus PpsR binding sequence is TGTcN10gACA (lowercase letters indicate lesser conservation); the presence of two binding sites is required for repression in vivo. These findings explain why numerous single TGTN12ACA sequences are nonfunctional. In addition to photosystem genes, the hemC and hemE genes involved in the early steps of tetrapyrrole biosynthesis were identified as new direct targets of PpsR repression. Unexpectedly, PpsR was found to indirectly repress the puf and puhA operons encoding photosystem core proteins. The upstream regions of these operons contain no PpsR binding sites. Involvement in regulation of these operons suggests that PpsR functions as a master regulator of photosystem development. Upregulation of the puf and puhA operons that resulted from ppsR inactivation was sufficient to restore the ability to grow phototrophically to the prrA mutant. PrrA, the global redox-dependent activator, was previously considered indispensable for phototrophic growth. It is revealed that the PrrBA and AppA-PpsR systems, believed to work independently, in fact interact and coordinately regulate photosystem development.
Collapse
Affiliation(s)
- Oleg V Moskvin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | |
Collapse
|
35
|
Kovács AT, Rákhely G, Kovács KL. The PpsR regulator family. Res Microbiol 2005; 156:619-25. [PMID: 15950121 DOI: 10.1016/j.resmic.2005.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Under aerobic conditions, phototrophic bacteria repress the formation of pigments to protect cells in the presence of light from the damaging effects of reactive oxygen species and consume oxygen through respiratory complexes. Members of the PpsR family regulate the transcription of bch, crt, puc, and hem genes in respond to redox or light conditions. This mini-review focuses on the function and distribution of PpsR proteins.
Collapse
Affiliation(s)
- Akos T Kovács
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences and Department of Biotechnology, University of Szeged, Szeged, Temesvári krt. 62, Hungary
| | | | | |
Collapse
|
36
|
Smart JL, Willett JW, Bauer CE. Regulation of hem gene expression in Rhodobacter capsulatus by redox and photosystem regulators RegA, CrtJ, FnrL, and AerR. J Mol Biol 2004; 342:1171-86. [PMID: 15351643 DOI: 10.1016/j.jmb.2004.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/02/2004] [Accepted: 08/03/2004] [Indexed: 11/18/2022]
Abstract
Biosynthetic pathways for heme and chlorophyll share common intermediates from 5-aminolevulinic acid through protoporphyrin IX. To obtain a better understanding of how photosynthetic organisms coordinate heme and chlorophyll biosynthesis, we have undertaken detailed analysis of the expression pattern of numerous heme biosynthesis genes in the purple photosynthetic bacterium Rhodobacter capsulatus. beta-Galactosidase reporter assays demonstrated that expression of hemA, hemB, hemC, hemE and hemZ genes is elevated under conditions that give rise to elevated bacteriochlorophyll synthesis. Heme gene expression is shown to be affected by mutations in previously identified transcriptional regulators RegA, FnrL, CrtJ, and AerR, which also control expression of genes involved in bacteriochlorophyll and carotenoid synthesis, and synthesis of the apoprotein subunits of the photosynthetic and electron transport apparatus. High-resolution primer extension analysis of hem mRNA reveals the presence of numerous putative RegA, FnrL and CrtJ binding sites in several hem promoter regions.
Collapse
Affiliation(s)
- James L Smart
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
37
|
Braatsch S, Moskvin OV, Klug G, Gomelsky M. Responses of the Rhodobacter sphaeroides transcriptome to blue light under semiaerobic conditions. J Bacteriol 2004; 186:7726-35. [PMID: 15516587 PMCID: PMC524910 DOI: 10.1128/jb.186.22.7726-7735.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 08/10/2004] [Indexed: 11/20/2022] Open
Abstract
Exposure to blue light of the facultative phototrophic proteobacterium Rhodobacter sphaeroides grown semiaerobically results in repression of the puc and puf operons involved in photosystem formation. To reveal the genome-wide effects of blue light on gene expression and the underlying photosensory mechanisms, transcriptome profiles of R. sphaeroides during blue-light irradiation (for 5 to 135 min) were analyzed. Expression of most photosystem genes was repressed upon irradiation. Downregulation of photosystem development may be used to prevent photooxidative damage occurring when the photosystem, oxygen, and high-intensity light are present simultaneously. The photoreceptor of the BLUF-domain family, AppA, which belongs to the AppA-PpsR antirepressor-repressor system, is essential for maintenance of repression upon prolonged irradiation (S. Braatsch et al., Mol. Microbiol. 45:827-836, 2002). Transcriptome data suggest that the onset of repression is also mediated by the AppA-PpsR system, albeit via an apparently different sensory mechanism. Expression of several genes, whose products may participate in photooxidative damage defense, including deoxypyrimidine photolyase, glutathione peroxidase, and quinol oxidoreductases, was increased. Among the genes upregulated were genes encoding two sigma factors: sigmaE and sigma38. The consensus promoter sequences for these sigma factors were predicted in the upstream sequences of numerous upregulated genes, suggesting that coordinated action of sigmaE and sigma38 is responsible for the upregulation. Based on the dynamics of upregulation, the anti-sigmaE factor ChrR or its putative upstream partner is proposed to be the primary sensor. The identified transcriptome responses provided a framework for deciphering blue-light-dependent signal transduction pathways in R. sphaeroides.
Collapse
Affiliation(s)
- Stephan Braatsch
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, Giesse, Germany
| | | | | | | |
Collapse
|
38
|
Dubbs JM, Tabita FR. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 2004; 28:353-76. [PMID: 15449608 DOI: 10.1016/j.femsre.2004.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
39
|
Jaubert M, Zappa S, Fardoux J, Adriano JM, Hannibal L, Elsen S, Lavergne J, Verméglio A, Giraud E, Pignol D. Light and Redox Control of Photosynthesis Gene Expression in Bradyrhizobium. J Biol Chem 2004; 279:44407-16. [PMID: 15304477 DOI: 10.1074/jbc.m408039200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two closely related bacteria Bradyrhizobium and Rhodopseudomonas palustris show an unusual mechanism of regulation of photosystem formation by light thanks to a bacteriophytochrome that antirepresses the regulator PpsR. In these two bacteria, we found out, unexpectedly, that two ppsR genes are present. We show that the two Bradyrhizobium PpsR proteins exert antagonistic effects in the regulation of photosystem formation with a classical repressor role for PpsR2 and an unexpected activator role for PpsR1. DNase I footprint analysis show that both PpsR bind to the same DNA TGTN12ACA motif that is present in tandem in the bchC promoter and the crtED intergenic region. Interestingly, the cycA and aerR promoter regions that contain only one conserved palindrome are recognized by PpsR2, but not PpsR1. Further biochemical analyses indicate that PpsR1 only is redox sensitive through the formation of an intermolecular disulfide bond, which changes its oligomerization state from a tetramer to an octamer under oxidizing conditions. Moreover, PpsR1 presents a higher DNA affinity under its reduced form in contrast to what has been previously found for PpsR or its homolog CrtJ from the Rhodobacter species. These results suggest that regulation of photosystem synthesis in Bradyrhizobium involves two PpsR competing for the binding to the same photosynthesis genes and this competition might be modulated by two factors: light via the antagonistic action of a bacteriophytochrome on PpsR2 and redox potential via the switch of PpsR1 oligomerization state.
Collapse
Affiliation(s)
- Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes (UMR113-IRD-CIRAD-AGRO-M-INRA-UM2), TA 10/J, Campus de Baillarguet, 34398 Montpellier 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pappas CT, Sram J, Moskvin OV, Ivanov PS, Mackenzie RC, Choudhary M, Land ML, Larimer FW, Kaplan S, Gomelsky M. Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: transcriptome flexibility at diverse growth modes. J Bacteriol 2004; 186:4748-58. [PMID: 15231807 PMCID: PMC438620 DOI: 10.1128/jb.186.14.4748-4758.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes--aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis--were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Dept. 3944, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cho SH, Youn SH, Lee SR, Yim HS, Kang SO. Redox property and regulation of PpsR, a transcriptional repressor of photosystem gene expression in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2004; 150:697-706. [PMID: 14993319 DOI: 10.1099/mic.0.26777-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PpsR from Rhodobacter sphaeroides is involved in the repression of photosystem gene expression. The PpsR protein was heterologously overexpressed and purified to homogeneity. Gel mobility shift assay showed that the purified PpsR has DNA-binding activity. SDS-PAGE analysis showed that some portions of PpsR were oxidized, indicating that intramolecular or intermolecular disulphide bonds were formed between the two cysteines in each subunit. When the disulphide bond of PpsR was reduced by DTT, the binding activity of PpsR to the puc promoter region distinctly increased. The changes in protein level and DNA-binding activity of PpsR were observed in a conjugant with an extra copy of the ppsR gene and in a PpsR-null mutant (PPS1), respectively. Both cysteines in PpsR existed in their reduced form under aerobic, anaerobic-dark and anaerobic-light growth conditions, as determined using thiol-specific chemical modification. In an AppA-null mutant (APP11), the binding activity and the amount of PpsR decreased compared to those of the wild-type and an appA-complemented strain, and decreased even more under anaerobic-dark conditions than under aerobic conditions. PpsR had a redox-sensitive property but retained its reduced state in the cell, and its amount was reduced by disruption of AppA.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang-Hee Youn
- Laboratory of Biophysics, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung-Rock Lee
- Center for Cell Signalling Research, Division of Molecular Life Sciences, Ewha Women's University, Seoul 120-750, Korea
| | - Hyung-Soon Yim
- Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sa-Ouk Kang
- Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
- Laboratory of Biophysics, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
42
|
Roh JH, Smith WE, Kaplan S. Effects of Oxygen and Light Intensity on Transcriptome Expression in Rhodobacter sphaeroides 2.4.1. J Biol Chem 2004; 279:9146-55. [PMID: 14662761 DOI: 10.1074/jbc.m311608200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of oxygen and light on the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 have been well studied over the past 50 years. More recently, the effects of oxygen and light on gene regulation have been shown to involve the interacting redox chains present in R. sphaeroides under diverse growth conditions, and many of the redox carriers comprising these chains have been well studied. However, the expression patterns of those genes encoding these redox carriers, under aerobic and anaerobic photosynthetic growth, have been less well studied. Here, we provide a transcriptional analysis of many of the genes comprising the photosynthesis lifestyle, including genes corresponding to many of the known regulatory elements controlling the response of this organism to oxygen and light. The observed patterns of gene expression are evaluated and discussed in light of our knowledge of the physiology of R. sphaeroides under aerobic and photosynthetic growth conditions. Finally, this analysis has enabled to us go beyond the traditional patterns of gene expression associated with the photosynthesis lifestyle and to consider, for the first time, the full complement of genes responding to oxygen, and variations in light intensity when growing photosynthetically. The data provided here should be considered as a first step in enabling one to model electron flow in R. sphaeroides 2.4.1.
Collapse
Affiliation(s)
- Jung Hyeob Roh
- Department of Microbiology and Molecular Genetics, University of Texas, Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|