1
|
Substrate Specificity of an Aminopropyltransferase and the Biosynthesis Pathway of Polyamines in the Hyperthermophilic Crenarchaeon Pyrobaculum calidifontis. Catalysts 2022. [DOI: 10.3390/catal12050567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The facultative anaerobic hyperthermophilic crenarchaeon Pyrobaculum calidifontis possesses norspermine (333), norspermidine (33), and spermidine (34) as intracellular polyamines (where the number in parentheses represents the number of methylene CH2 chain units between NH2, or NH). In this study, the polyamine biosynthesis pathway of P. calidifontis was predicted on the basis of the enzymatic properties and crystal structures of an aminopropyltransferase from P. calidifontis (Pc-SpeE). Pc-SpeE shared 75% amino acid identity with the thermospermine synthase from Pyrobaculum aerophilum, and recombinant Pc-SpeE could synthesize both thermospermine (334) and spermine (343) from spermidine and decarboxylated S-adenosyl methionine (dcSAM). Recombinant Pc-SpeE showed high enzymatic activity when aminopropylagmatine and norspermidine were used as substrates. By comparison, Pc-SpeE showed low affinity toward putrescine, and putrescine was not stably bound in its active site. Norspermidine was produced from thermospermine by oxidative degradation using a cell-free extract of P. calidifontis, whereas 1,3-diaminopropane (3) formation was not detected. These results suggest that thermospermine was mainly produced from arginine via agmatine, aminopropylagmatine, and spermidine. Norspermidine was produced from thermospermine by an unknown polyamine oxidase/dehydrogenase followed by norspermine formation by Pc-SpeE.
Collapse
|
2
|
Murali R, Gennis RB, Hemp J. Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA' in Archaea. THE ISME JOURNAL 2021; 15:3534-3548. [PMID: 34145390 PMCID: PMC8630170 DOI: 10.1038/s41396-021-01019-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Cytochrome bd-type oxygen reductases (cytbd) belong to one of three enzyme superfamilies that catalyze oxygen reduction to water. They are widely distributed in Bacteria and Archaea, but the full extent of their biochemical diversity is unknown. Here we used phylogenomics to identify three families and several subfamilies within the cytbd superfamily. The core architecture shared by all members of the superfamily consists of four transmembrane helices that bind two active site hemes, which are responsible for oxygen reduction. While previously characterized cytochrome bd-type oxygen reductases use quinol as an electron donor to reduce oxygen, sequence analysis shows that only one of the identified families has a conserved quinol binding site. The other families are missing this feature, suggesting that they use an alternative electron donor. Multiple gene duplication events were identified within the superfamily, resulting in significant evolutionary and structural diversity. The CydAA' cytbd, found exclusively in Archaea, is formed by the co-association of two superfamily paralogs. We heterologously expressed CydAA' from Caldivirga maquilingensis and demonstrated that it performs oxygen reduction with quinol as an electron donor. Strikingly, CydAA' is the first isoform of cytbd containing only b-type hemes shown to be active when isolated from membranes, demonstrating that oxygen reductase activity in this superfamily is not dependent on heme d.
Collapse
Affiliation(s)
- Ranjani Murali
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - James Hemp
- The Metrodora Institute, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment. ISME JOURNAL 2020; 14:2851-2861. [PMID: 32887944 PMCID: PMC7784905 DOI: 10.1038/s41396-020-00749-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Metagenomic studies have revolutionized our understanding of the metabolic potential of uncultured microorganisms in various ecosystems. However, many of these genomic predictions have yet to be experimentally tested, and the functional expression of genomic potential often remains unaddressed. In order to obtain a more thorough understanding of cell physiology, novel techniques capable of testing microbial metabolism under close to in situ conditions must be developed. Here, we provide a benchmark study to demonstrate that bioorthogonal non-canonical amino acid tagging (BONCAT) in combination with fluorescence-activated cell sorting (FACS) and 16S rRNA gene sequencing can be used to identify anabolically active members of a microbial community incubated in the presence of various growth substrates or under changing physicochemical conditions. We applied this approach to a hot spring sediment microbiome from Yellowstone National Park (Wyoming, USA) and identified several microbes that changed their activity levels in response to substrate addition, including uncultured members of the phyla Thaumarchaeota, Acidobacteria, and Fervidibacteria. Because shifts in activity in response to substrate amendment or headspace changes are indicative of microbial preferences for particular growth conditions, results from this and future BONCAT-FACS studies could inform the development of cultivation media to specifically enrich uncultured microbes. Most importantly, BONCAT-FACS is capable of providing information on the physiology of uncultured organisms at as close to in situ conditions as experimentally possible.
Collapse
|
4
|
A virus of hyperthermophilic archaea with a unique architecture among DNA viruses. Proc Natl Acad Sci U S A 2016; 113:2478-83. [PMID: 26884161 DOI: 10.1073/pnas.1518929113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.
Collapse
|
5
|
Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park. Appl Environ Microbiol 2015; 81:5907-16. [PMID: 26092468 DOI: 10.1128/aem.01095-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP.
Collapse
|
6
|
Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A. Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 2015; 6:439. [PMID: 26029183 PMCID: PMC4429474 DOI: 10.3389/fmicb.2015.00439] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023] Open
Abstract
Cytochromes c (Cytc) are widespread electron transfer proteins and important enzymes in the global nitrogen and sulfur cycles. The distribution of Cytc in more than 300 archaeal proteomes deduced from sequence was analyzed with computational methods including pattern and similarity searches, secondary and tertiary structure prediction. Two hundred and fifty-eight predicted Cytc (with single, double, or multiple heme c attachment sites) were found in some but not all species of the Desulfurococcales, Thermoproteales, Archaeoglobales, Methanosarcinales, Halobacteriales, and in two single-cell genome sequences of the Thermoplasmatales, all of them Cren- or Euryarchaeota. Other archaeal phyla including the Thaumarchaeota are so far free of these proteins. The archaeal Cytc sequences were bundled into 54 clusters of mutual similarity, some of which were specific for Archaea while others had homologs in the Bacteria. The cytochrome c maturation system I (CCM) was the only one found. The highest number and variability of Cytc were present in those species with known or predicted metal oxidation and/or reduction capabilities. Paradoxical findings were made in the haloarchaea: several Cytc had been purified biochemically but corresponding proteins were not found in the proteomes. The results are discussed with emphasis on cell morphologies and envelopes and especially for double-membraned Archaea-like Ignicoccus hospitalis. A comparison is made with compartmentalized bacteria such as the Planctomycetes of the Anammox group with a focus on the putative localization and roles of the Cytc and other electron transport proteins.
Collapse
Affiliation(s)
- Arnulf Kletzin
- Department of Biology, Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt Darmstadt, Germany
| | - Thomas Heimerl
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Jennifer Flechsler
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | - Reinhard Rachel
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Andreas Klingl
- Department of Biology I, Plant Development, Biocenter LMU Munich Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Dmytrenko O, Russell SL, Loo WT, Fontanez KM, Liao L, Roeselers G, Sharma R, Stewart FJ, Newton ILG, Woyke T, Wu D, Lang JM, Eisen JA, Cavanaugh CM. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis. BMC Genomics 2014; 15:924. [PMID: 25342549 PMCID: PMC4287430 DOI: 10.1186/1471-2164-15-924] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. RESULTS Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. CONCLUSIONS The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Eisen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, 4081 Biological Laboratories, Cambridge, MA 02138, USA.
| | | |
Collapse
|
8
|
Bernick DL, Karplus K, Lui LM, Coker JKC, Murphy JN, Chan PP, Cozen AE, Lowe TM. Complete genome sequence of Pyrobaculum oguniense. Stand Genomic Sci 2012; 6:336-45. [PMID: 23407329 PMCID: PMC3558965 DOI: 10.4056/sigs.2645906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pyrobaculum oguniense TE7 is an aerobic hyperthermophilic crenarchaeon isolated from a hot spring in Japan. Here we describe its main chromosome of 2,436,033 bp, with three large-scale inversions and an extra-chromosomal element of 16,887 bp. We have annotated 2,800 protein-coding genes and 145 RNA genes in this genome, including nine H/ACA-like small RNA, 83 predicted C/D box small RNA, and 47 transfer RNA genes. Comparative analyses with the closest known relative, the anaerobe Pyrobaculum arsenaticum from Italy, reveals unexpectedly high synteny and nucleotide identity between these two geographically distant species. Deep sequencing of a mixture of genomic DNA from multiple cells has illuminated some of the genome dynamics potentially shared with other species in this genus.
Collapse
Affiliation(s)
- David L Bernick
- Biomolecular Engineering, University of California., Santa Cruz, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Baymann F, Schoepp-Cothenet B, Lebrun E, van Lis R, Nitschke W. Phylogeny of Rieske/cytb complexes with a special focus on the Haloarchaeal enzymes. Genome Biol Evol 2012; 4:720-9. [PMID: 22798450 PMCID: PMC3509893 DOI: 10.1093/gbe/evs056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rieske/cytochrome b (Rieske/cytb) complexes are proton pumping quinol oxidases that are present in most bacteria and Archaea. The phylogeny of their subunits follows closely the 16S-rRNA phylogeny, indicating that chemiosmotic coupling was already present in the last universal common ancestor of Archaea and bacteria. Haloarchaea are the only organisms found so far that acquired Rieske/cytb complexes via interdomain lateral gene transfer. They encode two Rieske/cytb complexes in their genomes; one of them is found in genetic context with nitrate reductase genes and has its closest relatives among Actinobacteria and the Thermus/Deinococcus group. It is likely to function in nitrate respiration. The second Rieske/cytb complex of Haloarchaea features a split cytochrome b sequence as do Cyanobacteria, chloroplasts, Heliobacteria, and Bacilli. It seems that Haloarchaea acquired this complex from an ancestor of the above-mentioned phyla. Its involvement in the bioenergetic reaction chains of Haloarchaea is unknown. We present arguments in favor of the hypothesis that the ancestor of Haloarchaea, which relied on a highly specialized bioenergetic metabolism, that is, methanogenesis, and was devoid of quinones and most enzymes of anaerobic or aerobic bioenergetic reaction chains, integrated laterally transferred genes into its genome to respond to a change in environmental conditions that made methanogenesis unfavorable.
Collapse
|
10
|
Prunetti L, Brugna M, Lebrun R, Giudici-Orticoni MT, Guiral M. The elusive third subunit IIa of the bacterial B-type oxidases: the enzyme from the hyperthermophile Aquifex aeolicus. PLoS One 2011; 6:e21616. [PMID: 21738733 PMCID: PMC3128077 DOI: 10.1371/journal.pone.0021616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
The reduction of molecular oxygen to water is catalyzed by complicated membrane-bound metallo-enzymes containing variable numbers of subunits, called cytochrome c oxidases or quinol oxidases. We previously described the cytochrome c oxidase II from the hyperthermophilic bacterium Aquifex aeolicus as a ba3-type two-subunit (subunits I and II) enzyme and showed that it is included in a supercomplex involved in the sulfide-oxygen respiration pathway. It belongs to the B-family of the heme-copper oxidases, enzymes that are far less studied than the ones from family A. Here, we describe the presence in this enzyme of an additional transmembrane helix “subunit IIa”, which is composed of 41 amino acid residues with a measured molecular mass of 5105 Da. Moreover, we show that subunit II, as expected, is in fact longer than the originally annotated protein (from the genome) and contains a transmembrane domain. Using Aquifex aeolicus genomic sequence analyses, N-terminal sequencing, peptide mass fingerprinting and mass spectrometry analysis on entire subunits, we conclude that the B-type enzyme from this bacterium is a three-subunit complex. It is composed of subunit I (encoded by coxA2) of 59000 Da, subunit II (encoded by coxB2) of 16700 Da and subunit IIa which contain 12, 1 and 1 transmembrane helices respectively. A structural model indicates that the structural organization of the complex strongly resembles that of the ba3 cytochrome c oxidase from the bacterium Thermus thermophilus, the IIa helical subunit being structurally the lacking N-terminal transmembrane helix of subunit II present in the A-type oxidases. Analysis of the genomic context of genes encoding oxidases indicates that this third subunit is present in many of the bacterial oxidases from B-family, enzymes that have been described as two-subunit complexes.
Collapse
Affiliation(s)
- Laurence Prunetti
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Institut de Microbiologie de la Méditerranée (IFR88)-Centre National de la Recherche Scientifique, Marseille, France
| | - Myriam Brugna
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Institut de Microbiologie de la Méditerranée (IFR88)-Centre National de la Recherche Scientifique, Marseille, France
- Université de Provence, Marseille, France
| | - Régine Lebrun
- Plate-forme Protéomique de l'IFR88-Centre National de la Recherche Scientifique, Marseille Protéomique, Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Institut de Microbiologie de la Méditerranée (IFR88)-Centre National de la Recherche Scientifique, Marseille, France
| | - Marianne Guiral
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Institut de Microbiologie de la Méditerranée (IFR88)-Centre National de la Recherche Scientifique, Marseille, France
- * E-mail:
| |
Collapse
|
11
|
Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. J Bacteriol 2008; 191:782-94. [PMID: 19047344 DOI: 10.1128/jb.00965-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperthermophilic crenarchaea in the genus Pyrobaculum are notable for respiratory versatility, but relatively little is known about the genetics or regulation of crenarchaeal respiratory pathways. We measured global gene expression in Pyrobaculum aerophilum cultured with oxygen, nitrate, arsenate and ferric iron as terminal electron acceptors to identify transcriptional patterns that differentiate these pathways. We also compared genome sequences for four closely related species with diverse respiratory characteristics (Pyrobaculum arsenaticum, Pyrobaculum calidifontis, Pyrobaculum islandicum, and Thermoproteus neutrophilus) to identify genes associated with different respiratory capabilities. Specific patterns of gene expression in P. aerophilum were associated with aerobic respiration, nitrate respiration, arsenate respiration, and anoxia. Functional predictions based on these patterns include separate cytochrome oxidases for aerobic growth and oxygen scavenging, a nitric oxide-responsive transcriptional regulator, a multicopper oxidase involved in denitrification, and an archaeal arsenate respiratory reductase. We were unable to identify specific genes for iron respiration, but P. aerophilum exhibited repressive transcriptional responses to iron remarkably similar to those controlled by the ferric uptake regulator in bacteria. Together, these analyses present a genome-scale view of crenarchaeal respiratory flexibility and support a large number of functional and regulatory predictions for further investigation. The complete gene expression data set can be viewed in genomic context with the Archaeal Genome Browser at archaea.ucsc.edu.
Collapse
|
12
|
Hemp J, Gennis RB. Diversity of the heme-copper superfamily in archaea: insights from genomics and structural modeling. Results Probl Cell Differ 2008; 45:1-31. [PMID: 18183358 DOI: 10.1007/400_2007_046] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent advances in DNA sequencing technologies have provided unprecedented access into the diversity of the microbial world. Herein we use the comparative genomic analysis of microbial genomes and environmental metagenomes coupled with structural modelling to explore the diversity of aerobic respiration in Archaea. We focus on the heme-copper oxidoreductase superfamily which is responsible for catalyzing the terminal reaction in aerobic respiration-the reduction of molecular oxygen to water. Sequence analyses demonstrate that there are at least eight heme-copper oxygen reductase families: A-, B-, C-, D-, E-, F-, G-, and H-families. Interestingly, five of these oxygen reductase families (D-, E-, F-, G-, and H-families) are currently found exclusively in Archaea. We review the structural properties of all eight families focusing on the members found within Archaea. Structural modelling coupled with sequence analysis suggests that many of the oxygen reductases identified from thermophilic Archaea have modified proton channel properties compared to the currently studied mesophilic bacterial oxygen reductases. These structural differences may be due to adaptation to the specific environments in which these enzymes function. We conclude with a brief analysis of the phylogenetic distribution and evolution of Archaeal heme-copper oxygen reductases.
Collapse
Affiliation(s)
- James Hemp
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
13
|
Nunoura T, Sako Y, Wakagi T, Uchida A. Cytochromeaa3in facultatively aerobic and hyperthermophilic archaeonPyrobaculum oguniense. Can J Microbiol 2005; 51:621-7. [PMID: 16234860 DOI: 10.1139/w05-040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We partially purified and characterized the cytochrome aa3from the facultatively aerobic and hyperthermophilic archaeon Pyrobaculum oguniense. This cytochrome aa3showed oxygen consumption activity with N, N, N′, N′-tetramethyl-1,4-phenylenediamine and ascorbate as substrates, and also displayed bovine cytochrome c oxidase activity. These enzymatic activities of cytochrome aa3were inhibited by cyanide and azide. This cytochrome contained heme As, but not typical heme A. An analysis of trypsin-digested fragments indicated that 1 subunit of this cytochrome was identical to the gene product of subunit I of the SoxM-type heme – copper oxidase (poxC). This is the first report of a terminal oxidase in hyperthermophilic crenarchaeon belonging to the order Thermoproteales.Key words: aerobic respiratory chain, terminal oxidase, Archaea, hyperthermophile, Pyrobaculum.
Collapse
Affiliation(s)
- Takuro Nunoura
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Japan.
| | | | | | | |
Collapse
|
14
|
Müller JA, DasSarma S. Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J Bacteriol 2005; 187:1659-67. [PMID: 15716436 PMCID: PMC1064022 DOI: 10.1128/jb.187.5.1659-1667.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated anaerobic respiration of the archaeal model organism Halobacterium sp. strain NRC-1 by using phenotypic and genetic analysis, bioinformatics, and transcriptome analysis. NRC-1 was found to grow on either dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as the sole terminal electron acceptor, with a doubling time of 1 day. An operon, dmsREABCD, encoding a putative regulatory protein, DmsR, a molybdopterin oxidoreductase of the DMSO reductase family (DmsEABC), and a molecular chaperone (DmsD) was identified by bioinformatics and confirmed as a transcriptional unit by reverse transcriptase PCR analysis. dmsR, dmsA, and dmsD in-frame deletion mutants were individually constructed. Phenotypic analysis demonstrated that dmsR, dmsA, and dmsD are required for anaerobic respiration on DMSO and TMAO. The requirement for dmsR, whose predicted product contains a DNA-binding domain similar to that of the Bat family of activators (COG3413), indicated that it functions as an activator. A cysteine-rich domain was found in the dmsR gene, which may be involved in oxygen sensing. Microarray analysis using a whole-genome 60-mer oligonucleotide array showed that the dms operon is induced during anaerobic respiration. Comparison of dmsR+ and DeltadmsR strains by use of microarrays showed that the induction of the dmsEABCD operon is dependent on a functional dmsR gene, consistent with its action as a transcriptional activator. Our results clearly establish the genes required for anaerobic respiration using DMSO and TMAO in an archaeon for the first time.
Collapse
Affiliation(s)
- Jochen A Müller
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Suite 236, Baltimore, MD 21202, USA
| | | |
Collapse
|