1
|
Roothans N, Gabriëls M, Abeel T, Pabst M, van Loosdrecht MCM, Laureni M. Aerobic denitrification as an N2O source from microbial communities. THE ISME JOURNAL 2024; 18:wrae116. [PMID: 38913498 PMCID: PMC11272060 DOI: 10.1093/ismejo/wrae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas of primarily microbial origin. Oxic and anoxic emissions are commonly ascribed to autotrophic nitrification and heterotrophic denitrification, respectively. Beyond this established dichotomy, we quantitatively show that heterotrophic denitrification can significantly contribute to aerobic nitrogen turnover and N2O emissions in complex microbiomes exposed to frequent oxic/anoxic transitions. Two planktonic, nitrification-inhibited enrichment cultures were established under continuous organic carbon and nitrate feeding, and cyclic oxygen availability. Over a third of the influent organic substrate was respired with nitrate as electron acceptor at high oxygen concentrations (>6.5 mg/L). N2O accounted for up to one-quarter of the nitrate reduced under oxic conditions. The enriched microorganisms maintained a constitutive abundance of denitrifying enzymes due to the oxic/anoxic frequencies exceeding their protein turnover-a common scenario in natural and engineered ecosystems. The aerobic denitrification rates are ascribed primarily to the residual activity of anaerobically synthesised enzymes. From an ecological perspective, the selection of organisms capable of sustaining significant denitrifying activity during aeration shows their competitive advantage over other heterotrophs under varying oxygen availabilities. Ultimately, we propose that the contribution of heterotrophic denitrification to aerobic nitrogen turnover and N2O emissions is currently underestimated in dynamic environments.
Collapse
Affiliation(s)
- Nina Roothans
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Minke Gabriëls
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, van Mourik Broekmanweg 6, Delft 2628 XE, the Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Michele Laureni
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
2
|
Lin H, Ning X, Wang D, Wang Q, Bai Y, Qu J. Quorum-sensing gene regulates hormetic effects induced by sulfonamides in Comamonadaceae. Appl Environ Microbiol 2023; 89:e0166223. [PMID: 38047646 PMCID: PMC10734536 DOI: 10.1128/aem.01662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Antibiotics can induce dose-dependent hormetic effects on bacterial cell proliferation, i.e., low-dose stimulation and high-dose inhibition. However, the underlying molecular basis has yet to be clarified. Here, we showed that sulfonamides play dual roles as a weapon and signal against Comamonas testosteroni that can modulate cell physiology and phenotype. Subsequently, through investigating the hormesis mechanism, we proposed a comprehensive regulatory pathway for the hormetic effects of Comamonas testosteroni low-level sulfonamides and determined the generality of the observed regulatory model in the Comamonadaceae family. Considering the prevalence of Comamonadaceae in human guts and environmental ecosystems, we provide critical insights into the health and ecological effects of antibiotics.
Collapse
Affiliation(s)
- Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork, Ireland
| | - Donglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ray A, Spiro S. DksA, ppGpp, and RegAB Regulate Nitrate Respiration in Paracoccus denitrificans. J Bacteriol 2023; 205:e0002723. [PMID: 36920204 PMCID: PMC10127633 DOI: 10.1128/jb.00027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
The periplasmic (NAP) and membrane-associated (Nar) nitrate reductases of Paracoccus denitrificans are responsible for nitrate reduction under aerobic and anaerobic conditions, respectively. Expression of NAP is elevated in cells grown on a relatively reduced carbon and energy source (such as butyrate); it is believed that NAP contributes to redox homeostasis by coupling nitrate reduction to the disposal of excess reducing equivalents. Here, we show that deletion of either dksA1 (one of two dksA homologs in the P. denitrificans genome) or relA/spoT (encoding a bifunctional ppGpp synthetase and hydrolase) eliminates the butyrate-dependent increase in nap promoter and NAP enzyme activity. We conclude that ppGpp likely signals growth on a reduced substrate and, together with DksA1, mediates increased expression of the genes encoding NAP. Support for this model comes from the observation that nap promoter activity is increased in cultures exposed to a protein synthesis inhibitor that is known to trigger ppGpp synthesis in other organisms. We also show that, under anaerobic growth conditions, the redox-sensing RegAB two-component pair acts as a negative regulator of NAP expression and as a positive regulator of expression of the membrane-associated nitrate reductase Nar. The dksA1 and relA/spoT genes are conditionally synthetically lethal; the double mutant has a null phenotype for growth on butyrate and other reduced substrates while growing normally on succinate and citrate. We also show that the second dksA homolog (dksA2) and relA/spoT have roles in regulation of expression of the flavohemoglobin Hmp and in biofilm formation. IMPORTANCE Paracoccus denitrificans is a metabolically versatile Gram-negative bacterium that is used as a model for studies of respiratory metabolism. The organism can utilize nitrate as an electron acceptor for anaerobic respiration, reducing it to dinitrogen via nitrite, nitric oxide, and nitrous oxide. This pathway (known as denitrification) is important as a route for loss of fixed nitrogen from soil and as a source of the greenhouse gas nitrous oxide. Thus, it is important to understand those environmental and genetic factors that govern flux through the denitrification pathway. Here, we identify four proteins and a small molecule (ppGpp) which function as previously unknown regulators of expression of enzymes that reduce nitrate and oxidize nitric oxide.
Collapse
Affiliation(s)
- Ashvini Ray
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Stephen Spiro
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
4
|
Gu X, Leng J, Zhu J, Zhang K, Zhao J, Wu P, Xing Q, Tang K, Li X, Hu B. Influence mechanism of C/N ratio on heterotrophic nitrification- aerobic denitrification process. BIORESOURCE TECHNOLOGY 2022; 343:126116. [PMID: 34653622 DOI: 10.1016/j.biortech.2021.126116] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 05/27/2023]
Abstract
A heterotrophic nitrification- aerobic denitrification (HNAD) bacterium, Acinetobacter junii ZHG-1, was isolated, meanwhile, the optimal conditions for the strain were evaluated, moreover, the influence mechanism of the C/N ratio on the HNAD process was investigated from the perspective of electron transport and energy level. The increasing of C/N ratio enhanced the reduced/oxidized nicotinamide adenine dinucleotide (NADH/NAD+) ratio, NADH concentration, electron transport system activity (ETSA), ATP content, as well as enzymes activities, consequently, the HNAD performance of the strain can be improved, however, when the C/N ratio was higher than 30, the activities of enzymes relating to the HNAD process and the ETSA had reached the maximum, which might limit the further improvement of the nitrogen removal with the increasing of C/N ratio. As the interaction between different biochemical reactions in HNAD process, more efforts should be devoted to the influent mechanism of different environmental factors on the HNAD process.
Collapse
Affiliation(s)
- Xin Gu
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Juntong Leng
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Jitao Zhu
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Kai Zhang
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; School of Water and Environment, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Pei Wu
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Qingyi Xing
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Kejing Tang
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Xiaoling Li
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Bo Hu
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China.
| |
Collapse
|
5
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
6
|
Hu B, Wang T, Ye J, Zhao J, Yang L, Wu P, Duan J, Ye G. Effects of carbon sources and operation modes on the performances of aerobic denitrification process and its microbial community shifts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:299-305. [PMID: 30913480 DOI: 10.1016/j.jenvman.2019.03.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/14/2023]
Abstract
Carbon source, operation mode and microbial species have great effects on the synthesis of poly-β-hydroxybutyrate (PHB) which has been identified as the key issue for aerobic denitrification process. In this study, an aerobic denitrification SBR was operated under anoxic/oxic mode and completely oxic mode with the carbon source of CH3COONa and CH3CH2CH2COONa, respectively. Total nitrogen (TN) removal efficiencies, PHB content in activated sludge, production of nitric oxide (NO) and nitrous oxide (N2O) of the process were investigated in great detail. The main results obtained from the trial were: (1) the average TN removal was in the range of 86.11%-90.05%; (2) the maximum TN removal efficiency and the maximum PHB content of the process being achieved when the carbon source of CH3CH2CH2COONa was applied under anoxic/oxic mode; (3) in case of CH3COONa as the carbon source, the concentrations of NO and N2O in the bulk liquid were ∼0.4 mg/L and ∼0.02 mg/L, respectively, while in case of CH3CH2CH2COONa, N2O of ∼0.2 mg/L and NO of ∼2.5 mg/L were recorded and the latter was decreased to ∼1.0 mg/L at the end of the cycle; (4) no obvious dominant genus in case of using CH3COONa, while Plasticicumulans sp. being the major microbial community when using CH3CH2CH2COONa. Overall, the effect of carbon source on microbial community is obvious. Nevertheless, operation mode affects the PHB synthesis, while PHB plays an important role in aerobic denitrification process for achieving a relatively high TN nitrogen removal efficiency. CH3COONa is a better carbon source for aerobic denitrification compared with CH3CH2CH2COONa.
Collapse
Affiliation(s)
- Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China.
| | - Tong Wang
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Junhong Ye
- School of Environmental Science and Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; School of Environmental Science and Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Jianlei Duan
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Guiqi Ye
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms. J Bacteriol 2018; 200:JB.00031-18. [PMID: 29463605 DOI: 10.1128/jb.00031-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Microbes in biofilms face the challenge of substrate limitation. In particular, oxygen often becomes limited for cells in Pseudomonas aeruginosa biofilms growing in the laboratory or during host colonization. Previously we found that phenazines, antibiotics produced by P. aeruginosa, balance the intracellular redox state of cells in biofilms. Here, we show that genes involved in denitrification are induced in phenazine-null (Δphz) mutant biofilms grown under an aerobic atmosphere, even in the absence of nitrate. This finding suggests that resident cells employ a bet-hedging strategy to anticipate the potential availability of nitrate and counterbalance their highly reduced redox state. Consistent with our previous characterization of aerobically grown colonies supplemented with nitrate, we found that the pathway that is induced in Δphz mutant colonies combines the nitrate reductase activity of the periplasmic enzyme Nap with the downstream reduction of nitrite to nitrogen gas catalyzed by the enzymes Nir, Nor, and Nos. This regulatory relationship differs from the denitrification pathway that functions under anaerobic growth, with nitrate as the terminal electron acceptor, which depends on the membrane-associated nitrate reductase Nar. We identified the sequences in the promoter regions of the nap and nir operons that are required for the effects of phenazines on expression. We also show that specific phenazines have differential effects on nap gene expression. Finally, we provide evidence that individual steps of the denitrification pathway are catalyzed at different depths within aerobically grown biofilms, suggesting metabolic cross-feeding between community subpopulations.IMPORTANCE An understanding of the unique physiology of cells in biofilms is critical to our ability to treat fungal and bacterial infections. Colony biofilms of the opportunistic pathogen Pseudomonas aeruginosa grown under an aerobic atmosphere but without nitrate express a denitrification pathway that differs from that used for anaerobic growth. We report that the components of this pathway are induced by electron acceptor limitation and that they are differentially expressed over the biofilm depth. These observations suggest that (i) P. aeruginosa exhibits "bet hedging," in that it expends energy and resources to prepare for nitrate availability when other electron acceptors are absent, and (ii) cells in distinct biofilm microniches may be able to exchange substrates to catalyze full denitrification.
Collapse
|
8
|
Giannopoulos G, Sullivan MJ, Hartop KR, Rowley G, Gates AJ, Watmough NJ, Richardson DJ. Tuning the modular Paracoccus denitrificans respirome to adapt from aerobic respiration to anaerobic denitrification. Environ Microbiol 2017; 19:4953-4964. [PMID: 29076595 DOI: 10.1111/1462-2920.13974] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
Bacterial denitrification is a respiratory process that is a major source and sink of the potent greenhouse gas nitrous oxide. Many denitrifying bacteria can adjust to life in both oxic and anoxic environments through differential expression of their respiromes in response to environmental signals such as oxygen, nitrate and nitric oxide. We used steady-state oxic and anoxic chemostat cultures to demonstrate that the switch from aerobic to anaerobic metabolism is brought about by changes in the levels of expression of relatively few genes, but this is sufficient to adjust the configuration of the respirome to allow the organism to efficiently respire nitrate without the significant release of intermediates, such as nitrous oxide. The regulation of the denitrification respirome in strains deficient in the transcription factors FnrP, Nnr and NarR was explored and revealed that these have both inducer and repressor activities, possibly due to competitive binding at similar DNA binding sites. This may contribute to the fine tuning of expression of the denitrification respirome and so adds to the understanding of the regulation of nitrous oxide emission by denitrifying bacteria in response to different environmental signals.
Collapse
Affiliation(s)
- Georgios Giannopoulos
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Matthew J Sullivan
- School of Medical Science, Griffith University, Gold Coast campus, Southport, Australia
| | - Katherine R Hartop
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Nicholas J Watmough
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
9
|
Gonzalez PJ, Rivas MG, Mota CS, Brondino CD, Moura I, Moura JJ. Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Chen J, Strous M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:136-44. [PMID: 23044391 DOI: 10.1016/j.bbabio.2012.10.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022]
Abstract
This paper explores the bioenergetics and potential co-evolution of denitrification and aerobic respiration. The advantages and disadvantages of combining these two pathways in a single, hybrid respiratory chain are discussed and the experimental evidence for the co-respiration of nitrate and oxygen is critically reviewed. A scenario for the co-evolution of the two pathways is presented. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Jianwei Chen
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | |
Collapse
|
11
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
12
|
Proteomic and physiological responses of Kineococcus radiotolerans to copper. PLoS One 2010; 5:e12427. [PMID: 20865147 PMCID: PMC2928746 DOI: 10.1371/journal.pone.0012427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/14/2010] [Indexed: 01/21/2023] Open
Abstract
Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0–1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration.
Collapse
|
13
|
Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T, Curmi P, Iwata S. Molecular mechanism of energy conservation in polysulfide respiration. Nat Struct Mol Biol 2008; 15:730-7. [PMID: 18536726 PMCID: PMC2887006 DOI: 10.1038/nsmb.1434] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 04/23/2008] [Indexed: 11/09/2022]
Abstract
Bacterial polysulfide reductase (PsrABC) is an integral membrane protein complex responsible for quinone-coupled reduction of polysulfide, a process important in extreme environments such as deep-sea vents and hot springs. We determined the structure of polysulfide reductase from Thermus thermophilus at 2.4-A resolution, revealing how the PsrA subunit recognizes and reduces its unique polyanionic substrate. The integral membrane subunit PsrC was characterized using the natural substrate menaquinone-7 and inhibitors, providing a comprehensive representation of a quinone binding site and revealing the presence of a water-filled cavity connecting the quinone binding site on the periplasmic side to the cytoplasm. These results suggest that polysulfide reductase could be a key energy-conserving enzyme of the T. thermophilus respiratory chain, using polysulfide as the terminal electron acceptor and pumping protons across the membrane via a previously unknown mechanism.
Collapse
Affiliation(s)
- Mika Jormakka
- Department of Biophysics, University of New South Wales, Barker Street, Sydney, NSW2052, Australia
- Structural Biology Program, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Sydney NSW 2042, Australia
- Faculty of Medicine, Central Clinical School, University of Sydney, Sydney NSW 2006, Australia
| | - Ken Yokoyama
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- ICORP ATP-synthesis Regulation Project, Japan Science and Technology Agency, 2-41 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Takahiro Yano
- ICORP ATP-synthesis Regulation Project, Japan Science and Technology Agency, 2-41 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoru Akimoto
- ICORP ATP-synthesis Regulation Project, Japan Science and Technology Agency, 2-41 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tatsuro Shimamura
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- ERATO Human Receptor Crystallography Project, Kawasaki, Kanagawa 210-0855, Japan
| | - Paul Curmi
- Department of Biophysics, University of New South Wales, Barker Street, Sydney, NSW2052, Australia
| | - So Iwata
- ERATO Human Receptor Crystallography Project, Kawasaki, Kanagawa 210-0855, Japan
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, Exhibition Road, London SW7 2AZ, United Kingdom
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
14
|
Morozkina EV, Zvyagilskaya RA. Nitrate reductases: structure, functions, and effect of stress factors. BIOCHEMISTRY (MOSCOW) 2008; 72:1151-60. [PMID: 18021072 DOI: 10.1134/s0006297907100124] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural and functional peculiarities of four types of nitrate reductases are considered: assimilatory nitrate reductase of eukaryotes, as well as cytoplasmic assimilatory, membrane-bound respiratory, and periplasmic dissimilatory bacterial nitrate reductases. Arguments are presented showing that eukaryotic organisms are capable of nitrate dissimilation. Data concerning new classes of extremophil nitrate reductases, whose active center does not contain molybdocofactor, are summarized.
Collapse
Affiliation(s)
- E V Morozkina
- Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
| | | |
Collapse
|
15
|
Oguz MT, Robinson KG, Layton AC, Sayler GS. Concurrent nitrite oxidation and aerobic denitrification in activated sludge exposed to volatile fatty acids. Biotechnol Bioeng 2007; 97:1562-72. [PMID: 17304559 DOI: 10.1002/bit.21379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The goal of this research was to investigate the simultaneous occurrence of nitrification and denitrification by activated sludge exposed to volatile fatty acids (VFAs) during aerobic wastewater treatment using a single-stage reactor. A mixture of VFAs was spiked directly into a continuous-stirred tank reactor (CSTR) to assess subsequent impacts on nitrite removal, nitrate formation, CO(2) fixation, total bacterial density, and dominant nitrite oxidizing bacteria (NOB) concentration (i.e., Nitrospira). The activity of the periplasmic nitrate reductase (NAP) enzyme and the presence of nap gene were also measured. A rapid decrease in the nitrate formation rate (>70% reduction) was measured for activated sludge exposed to VFAs; however, the nitrite removal rate was not reduced. The total bacterial density and Nitrospira concentration remained essentially constant; therefore, the reduction in nitrate formation rate was likely not due to heterotrophic uptake of nitrogen or to a decrease in the dominant NOB population. Additionally, VFA exposure did not impact microbial CO(2) fixation efficiency. The activity of NAP enzyme increased in the presence of VFAs suggesting that nitrate produced as a consequence of nitrite oxidation was likely further reduced to gaseous denitrification products via catalysis by NAP. Little, if any, nitrogen was discharged in the aqueous effluent of the CSTR after exposure to VFAs demonstrating that activated sludge treatment yielded compounds other than those typically produced solely by nitrification.
Collapse
Affiliation(s)
- Merve T Oguz
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
16
|
Williams HD, Zlosnik JEA, Ryall B. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv Microb Physiol 2006; 52:1-71. [PMID: 17027370 DOI: 10.1016/s0065-2911(06)52001-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is a gram-negative, rod-shaped bacterium that belongs to the gamma-proteobacteria. This clinically challenging, opportunistic pathogen occupies a wide range of niches from an almost ubiquitous environmental presence to causing infections in a wide range of animals and plants. P. aeruginosa is the single most important pathogen of the cystic fibrosis (CF) lung. It causes serious chronic infections following its colonisation of the dehydrated mucus of the CF lung, leading to it being the most important cause of morbidity and mortality in CF sufferers. The recent finding that steep O2 gradients exist across the mucus of the CF-lung indicates that P. aeruginosa will have to show metabolic adaptability to modify its energy metabolism as it moves from a high O2 to low O2 and on to anaerobic environments within the CF lung. Therefore, the starting point of this review is that an understanding of the diverse modes of energy metabolism available to P. aeruginosa and their regulation is important to understanding both its fundamental physiology and the factors significant in its pathogenicity. The main aim of this review is to appraise the current state of knowledge of the energy generating pathways of P. aeruginosa. We first look at the organisation of the aerobic respiratory chains of P. aeruginosa, focusing on the multiple primary dehydrogenases and terminal oxidases that make up the highly branched pathways. Next, we will discuss the denitrification pathways used during anaerobic respiration as well as considering the ability of P. aeruginosa to carry out aerobic denitrification. Attention is then directed to the limited fermentative capacity of P. aeruginosa with discussion of the arginine deiminase pathway and the role of pyruvate fermentation. In the final part of the review, we consider other aspects of the biology of P. aeruginosa that are linked to energy metabolism or affected by oxygen availability. These include cyanide synthesis, which is oxygen-regulated and can affect the operation of aerobic respiratory pathways, and alginate production leading to a mucoid phenotype, which is regulated by oxygen and energy availability, as well as having a role in the protection of P. aeruginosa against reactive oxygen species. Finally, we consider a possible link between cyanide synthesis and the mucoid switch that operates in P. aeruginosa during chronic CF lung infection.
Collapse
Affiliation(s)
- Huw D Williams
- Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
17
|
Lee PKH, Johnson DR, Holmes VF, He J, Alvarez-Cohen L. Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Appl Environ Microbiol 2006; 72:6161-8. [PMID: 16957242 PMCID: PMC1563655 DOI: 10.1128/aem.01070-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study characterizes the transcriptional expression of the reductive dehalogenase (RDase)-encoding tceA and vcrA genes and evaluates their applicability as potential biological markers of Dehalococcoides activity. When Dehalococcoides ethenogenes 195 was provided with trichloroethene (TCE) as the electron acceptor, the expression of the tceA gene increased by 90-fold relative to that in cells starved of chlorinated ethenes, demonstrating that tceA gene expression is indicative of the active physiological state of this strain. In a Dehalococcoides-containing enrichment culture that contains both the tceA and vcrA genes, the tceA gene was up-regulated in response to TCE and cis-1,2-dichloroethene (cDCE) exposure, while the vcrA gene was up-regulated in response to TCE, cDCE, and vinyl chloride (VC). When chlorinated ethenes were depleted, the RDase-encoding gene transcripts decayed exponentially, with a half-life between 4.8 and 6.1 h, until they reached a stable background level after 2 days. We found that while gene expression correlated generally to the presence of chlorinated ethenes, there was no apparent direct relationship between RDase-encoding transcript numbers and respective rates of TCE, cDCE, and VC dechlorination activities. However, elevated tceA and vcrA expression did correlate with chlorinated-ethene reduction beyond cDCE, suggesting that elevated RDase-encoding transcript numbers could serve as a biomarker for the physiological ability of Dehalococcoides spp. to dechlorinate beyond cDCE.
Collapse
Affiliation(s)
- Patrick K H Lee
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, USA
| | | | | | | | | |
Collapse
|
18
|
González PJ, Rivas MG, Brondino CD, Bursakov SA, Moura I, Moura JJG. EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774. J Biol Inorg Chem 2006; 11:609-16. [PMID: 16791644 DOI: 10.1007/s00775-006-0110-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 04/13/2006] [Indexed: 11/30/2022]
Abstract
Nitrate reductases are enzymes that catalyze the conversion of nitrate to nitrite. We report here electron paramagnetic resonance (EPR) studies in the periplasmic nitrate reductase isolated from the sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774. This protein, belonging to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes, comprises a single 80-kDa subunit and contains a Mo bis(molybdopterin guanosine dinucleotide) cofactor and a [4Fe-4S] cluster. EPR-monitored redox titrations, carried out with and without nitrate in the potential range from 200 to -500 mV, and EPR studies of the enzyme, in both catalytic and inhibited conditions, reveal distinct types of Mo(V) EPR-active species, which indicates that the Mo site presents high coordination flexibility. These studies show that nitrate modulates the redox properties of the Mo active site, but not those of the [4Fe-4S] center. The possible structures and the role in catalysis of the distinct Mo(V) species detected by EPR are discussed.
Collapse
Affiliation(s)
- Pablo J González
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | | | |
Collapse
|
19
|
Oguz MT, Robinson KG, Layton AC, Sayler GS. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge. WATER RESEARCH 2006; 40:665-74. [PMID: 16436292 DOI: 10.1016/j.watres.2005.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 05/06/2023]
Abstract
Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge.
Collapse
Affiliation(s)
- Merve T Oguz
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996-2010, USA
| | | | | | | |
Collapse
|
20
|
González PJ, Correia C, Moura I, Brondino CD, Moura JJG. Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. J Inorg Biochem 2006; 100:1015-23. [PMID: 16412515 DOI: 10.1016/j.jinorgbio.2005.11.024] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 11/30/2022]
Abstract
Nitrogen is a vital component in living organisms as it participates in the making of essential biomolecules such as proteins, nucleic acids, etc. In the biosphere, nitrogen cycles between the oxidation states +V and -III producing many species that constitute the biogeochemical cycle of nitrogen. All reductive branches of this cycle involve the conversion of nitrate to nitrite, which is catalyzed by the enzyme nitrate reductase. The characterization of nitrate reductases from prokaryotic organisms has allowed us to gain considerable information on the molecular basis of nitrate reduction. Prokaryotic nitrate reductases are mononuclear Mo-containing enzymes sub-grouped as respiratory nitrate reductases, periplasmic nitrate reductases and assimilatory nitrate reductases. We review here the biological and molecular properties of these three enzymes along with their gene organization and expression, which are necessary to understand the biological processes involved in nitrate reduction.
Collapse
Affiliation(s)
- P J González
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
21
|
Ellington MJK, Fosdike WLJ, Sawers RG, Richardson DJ, Ferguson SJ. Regulation of the nap operon encoding the periplasmic nitrate reductase of Paracoccus pantotrophus: delineation of DNA sequences required for redox control. Arch Microbiol 2005; 184:298-304. [PMID: 16333617 DOI: 10.1007/s00203-005-0044-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 07/19/2005] [Accepted: 09/08/2005] [Indexed: 11/27/2022]
Abstract
Expression of the nap operon, encoding the periplasmic nitrate reductase in Paracoccus pantotrophus, is maximal when cells are grown aerobically, but not anaerobically, with butyrate. Two promoters, termed P1 and P2, control operon expression and the operon-proximal P2 promoter is primarily responsible for increased nap expression in the presence of butyrate. A near-perfect palindromic sequence is centred at +7, relative to the P2 transcription start site. Mutation of this palindrome demonstrated that it is important for regulation of nap operon expression in response to both the redox and the oxidation state of the carbon substrate. A 5' deletion analysis of the nap promoter fused to lacZ revealed that full redox control of expression was retained when the DNA sequence up to position -49 bp, relative to the operon-distal P1 transcription start site, was removed. Encroaching beyond this position resulted in an approximately 4-fold reduction in expression when cells were grown aerobically with butyrate. Additionally, point mutations at position -38 and -45 relative to P1 also resulted in a reduction in expression during aerobic growth with butyrate. A GC-rich region of nap promoter DNA, centred on position -41 relative to the P1 transcription start site is thus proposed as a second DNA motif that is important for efficient expression of the nap operon.
Collapse
Affiliation(s)
- M J K Ellington
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | | | |
Collapse
|
22
|
Holmes DE, Nevin KP, Lovley DR. In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl Environ Microbiol 2005; 70:7251-9. [PMID: 15574924 PMCID: PMC535187 DOI: 10.1128/aem.70.12.7251-7259.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to determine whether the metabolic state of Geobacteraceae involved in bioremediation of subsurface sediments might be inferred from levels of mRNA for key genes, in situ expression of nifD, a highly conserved gene involved in nitrogen fixation, was investigated. When Geobacter sulfurreducens was grown without a source of fixed nitrogen in chemostats with acetate provided as the limiting electron donor and Fe(III) as the electron acceptor, levels of nifD transcripts were 4 to 5 orders of magnitude higher than in chemostat cultures provided with ammonium. In contrast, the number of transcripts of recA and the 16S rRNA gene were slightly lower in the absence of ammonium. The addition of acetate to organic- and nitrogen-poor subsurface sediments stimulated the growth of Geobacteraceae and Fe(III) reduction, as well as the expression of nifD in Geobacteraceae. Levels of nifD transcripts in Geobacteraceae decreased more than 100-fold within 2 days after the addition of 100 microM ammonium, while levels of recA and total bacterial 16S rRNA in Geobacteraceae remained relatively constant. Ammonium amendments had no effect on rates of Fe(III) reduction in acetate-amended sediments or toluene degradation in petroleum-contaminated sediments, suggesting that other factors, such as the rate that Geobacteraceae could access Fe(III) oxides, limited Fe(III) reduction. These results demonstrate that it is possible to monitor one aspect of the in situ metabolic state of Geobacteraceae species in subsurface sediments via analysis of mRNA levels, which is the first step toward a more global analysis of in situ gene expression related to nutrient status and stress response during bioremediation by Geobacteraceae.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|