1
|
Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H, Brune A. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ Microbiol 2021; 23:4228-4245. [PMID: 33998119 DOI: 10.1111/1462-2920.15600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of 'termite gut treponemes' from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse 'termite cluster I', a deep-branching sister group of Treponemataceae (fam. 'Termitinemataceae') that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.
Collapse
Affiliation(s)
- Yulin Song
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Fabienne Pfeiffer
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Hao Zheng
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| |
Collapse
|
2
|
Tokuda G. Origin of symbiotic gut spirochetes as key players in the nutrition of termites. Environ Microbiol 2021; 23:4092-4097. [PMID: 34097340 DOI: 10.1111/1462-2920.15625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Termites harbour symbiotic spirochetes in their hindguts, which have long been considered treponemes, although they represent separate lines of descent from known species of Treponema. 'Termite gut treponemes' have a mutualistic relationship with the host termites with their physiological properties including CO2 -reductive acetogenesis, from which the resulting acetate fulfils most of the respiratory requirement of the host. Song and co-workers showed that a spirochetal isolate (strain RmG30) from a Madeira cockroach represents the earliest branching lineage of extremely diverse termite (Treponema) cluster I and was a simple homolactic fermenter, suggesting that CO2 -reductive acetogenesis exhibited by some members of termite cluster I originated via horizontal gene transfer. Phylogenomic and 16S rRNA sequence-based phylogenetic analyses indicated a deeply-branched sister clade containing termite cluster I was distinguishable as a family-level lineage. In this context, a new family, 'Termitinemataceae' has been proposed for this clade. Strain RmG30 has been designated as the type strain of Breznakiella homolactica gen. nov. sp. nov. named after John A. Breznak, an American microbiologist distinguished in termite gut microbiology. The study has posed important questions for the future, including the actual roles of the termite spirochetes in each termite lineage and the evolutionary process of their physiological properties.
Collapse
Affiliation(s)
- Gaku Tokuda
- Tropical Biosphere Research Center, COMB, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, Japan
| |
Collapse
|
3
|
Singh A, Müller B, Fuxelius HH, Schnürer A. AcetoBase: a functional gene repository and database for formyltetrahydrofolate synthetase sequences. Database (Oxford) 2019; 2019:baz142. [PMID: 31832668 PMCID: PMC6908459 DOI: 10.1093/database/baz142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023]
Abstract
Acetogenic bacteria are imperative to environmental carbon cycling and diverse biotechnological applications, but their extensive physiological and taxonomical diversity is an impediment to systematic taxonomic studies. Acetogens are chemolithoautotrophic bacteria that perform reductive carbon fixation under anaerobic conditions through the Wood-Ljungdahl pathway (WLP)/acetyl-coenzyme A pathway. The gene-encoding formyltetrahydrofolate synthetase (FTHFS), a key enzyme of this pathway, is highly conserved and can be used as a molecular marker to probe acetogenic communities. However, there is a lack of systematic collection of FTHFS sequence data at nucleotide and protein levels. In an attempt to streamline investigations on acetogens, we developed AcetoBase - a repository and database for systematically collecting and organizing information related to FTHFS sequences. AcetoBase also provides an opportunity to submit data and obtain accession numbers, perform homology searches for sequence identification and access a customized blast database of submitted sequences. AcetoBase provides the prospect to identify potential acetogenic bacteria, based on metadata information related to genome content and the WLP, supplemented with FTHFS sequence accessions, and can be an important tool in the study of acetogenic communities. AcetoBase can be publicly accessed at https://acetobase.molbio.slu.se.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Hans-Henrik Fuxelius
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Brune A. Methanogens in the Digestive Tract of Termites. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Ikeda-Ohtsubo W, Strassert JFH, Köhler T, Mikaelyan A, Gregor I, McHardy AC, Tringe SG, Hugenholtz P, Radek R, Brune A. ‘Candidatus
Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria
and a putative homoacetogen. Environ Microbiol 2016; 18:2548-64. [DOI: 10.1111/1462-2920.13234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Jürgen F. H. Strassert
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
- Institute of Biology/Zoology, Free University of Berlin; Königin-Luise-Strasse 1-3 14195 Berlin Germany
| | - Tim Köhler
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Aram Mikaelyan
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Ivan Gregor
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Inhoffenstraße 7 38124 Braunschweig Germany
- Department of Algorithmic Bioinformatics; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Alice C. McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Inhoffenstraße 7 38124 Braunschweig Germany
- Department of Algorithmic Bioinformatics; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | | | - Phil Hugenholtz
- Department of Energy Joint Genome Institute; Walnut Creek; CA 94598 USA
- Australian Centre for Ecogenomics, The University of Queensland; Brisbane QLD 4072 Australia
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin; Königin-Luise-Strasse 1-3 14195 Berlin Germany
| | - Andreas Brune
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| |
Collapse
|
6
|
Peterson BF, Scharf ME. Lower Termite Associations with Microbes: Synergy, Protection, and Interplay. Front Microbiol 2016; 7:422. [PMID: 27092110 PMCID: PMC4824777 DOI: 10.3389/fmicb.2016.00422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022] Open
Abstract
Lower-termites are one of the best studied symbiotic systems in insects. Their ability to feed on a nitrogen-poor, wood-based diet with help from symbiotic microbes has been under investigation for almost a century. A unique microbial consortium living in the guts of lower termites is essential for wood-feeding. Host and symbiont cellulolytic enzymes synergize each other in the termite gut to increase digestive efficiency. Because of their critical role in digestion, gut microbiota are driving forces in all aspects of termite biology. Social living also comes with risks for termites. The combination of group living and a microbe-rich habitat makes termites potentially vulnerable to pathogenic infections. However, the use of entomopathogens for termite control has been largely unsuccessful. One mechanism for this failure may be symbiotic collaboration; i.e., one of the very reasons termites have thrived in the first place. Symbiont contributions are thought to neutralize fungal spores as they pass through the termite gut. Also, when the symbiont community is disrupted pathogen susceptibility increases. These recent discoveries have shed light on novel interactions for symbiotic microbes both within the termite host and with pathogenic invaders. Lower termite biology is therefore tightly linked to symbiotic associations and their resulting physiological collaborations.
Collapse
Affiliation(s)
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette IN, USA
| |
Collapse
|
7
|
Müller B, Sun L, Westerholm M, Schnürer A. Bacterial community composition and fhs profiles of low- and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:48. [PMID: 26925165 PMCID: PMC4769498 DOI: 10.1186/s13068-016-0454-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/08/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Syntrophic acetate oxidation (SAO) is the predominant pathway for methane production in high ammonia anaerobic digestion processes. The bacteria (SAOB) occupying this niche and the metabolic pathway are poorly understood. Phylogenetic diversity and strict cultivation requirements hinder comprehensive research and discovery of novel SAOB. Most SAOB characterised to date are affiliated to the physiological group of acetogens. Formyltetrahydrofolate synthetase is a key enzyme of both acetogenic and SAO metabolism. The encoding fhs gene has therefore been identified as a suitable functional marker, using a newly designed primer pair. In this comparative study, we used a combination of terminal restriction fragment length polymorphism profiling, clone-based comparison, qPCR and Illumina amplicon sequencing to assess the bacterial community and acetogenic sub-community prevailing in high- and low-ammonia laboratory-scale digesters in order to delineate potential SAOB communities. Potential candidates identified were further tracked in a number of low-ammonia and high-ammonia laboratory-scale and large-scale digesters in order to reveal a potential function in SAO. RESULTS All methodical approaches revealed significant changes in the bacterial community composition concurrently with increasing ammonia and predominance of SAO. The acetogenic community under high ammonia conditions was revealed to be generally heterogeneous, but formed distinct phylogenetic clusters. The clusters differed clearly from those found under low-ammonia conditions and represented an acetogenic assemblage unique for biogas processes and recurring in a number of high-ammonia processes, indicating potential involvement in SAO. CONCLUSIONS The phylogenetic affiliation and population dynamics observed point to a key community, belonging mainly to the Clostridia class, in particular to the orders Clostridiales and Thermoanaerobacterales, which appear to specialise in SAO rather than being metabolically versatile. Overall, the results reported here provide evidence of functional importance of the bacterial families identified in high-ammonia systems and extend existing knowledge of bacterial and acetogenic assemblages at low and high ammonia levels. This information will be of help in monitoring and assessing the impacts on the SAOB community in order to identify characteristics of robust and productive high ammonia biogas processes.
Collapse
Affiliation(s)
- Bettina Müller
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7025, 750 07 Uppsala, Sweden
| | - Li Sun
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7025, 750 07 Uppsala, Sweden
| | - Maria Westerholm
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7025, 750 07 Uppsala, Sweden
| | - Anna Schnürer
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7025, 750 07 Uppsala, Sweden
| |
Collapse
|
8
|
Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue JI, Darby AC, Hongoh Y. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci U S A 2015; 112:10224-30. [PMID: 25979941 PMCID: PMC4547241 DOI: 10.1073/pnas.1423979112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Symbiotic associations of cellulolytic eukaryotic protists and diverse bacteria are common in the gut microbial communities of termites. Besides cellulose degradation by the gut protists, reductive acetogenesis from H2 plus CO2 and nitrogen fixation by gut bacteria play crucial roles in the host termites' nutrition by contributing to the energy demand of termites and supplying nitrogen poor in their diet, respectively. Fractionation of these activities and the identification of key genes from the gut community of the wood-feeding termite Hodotermopsis sjoestedti revealed that substantial activities in the gut--nearly 60% of reductive acetogenesis and almost exclusively for nitrogen fixation--were uniquely attributed to the endosymbiotic bacteria of the cellulolytic protist in the genus Eucomonympha. The rod-shaped endosymbionts were surprisingly identified as a spirochete species in the genus Treponema, which usually exhibits a characteristic spiral morphology. The endosymbionts likely use H2 produced by the protist for these dual functions. Although H2 is known to inhibit nitrogen fixation in some bacteria, it seemed to rather stimulate this important mutualistic process. In addition, the single-cell genome analyses revealed the endosymbiont's potentials of the utilization of sugars for its energy requirement, and of the biosynthesis of valuable nutrients such as amino acids from the fixed nitrogen. These metabolic interactions are suitable for the dual functions of the endosymbiont and reconcile its substantial contributions in the gut.
Collapse
Affiliation(s)
- Moriya Ohkuma
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Ibaraki 305-0074, Japan;
| | - Satoko Noda
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Satoshi Hattori
- Department of Food, Life, and Environmental Sciences, Yamagata University, Yamagata 997-8555, Japan
| | - Toshiya Iida
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and
| | - Masahiro Yuki
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Ibaraki 305-0074, Japan
| | - David Starns
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; and
| | - Jun-ichi Inoue
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; and
| | - Yuichi Hongoh
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and Department of Biological Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
|
10
|
Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy. Proc Natl Acad Sci U S A 2013; 110:16163-8. [PMID: 24043823 DOI: 10.1073/pnas.1307876110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying microbes responsible for particular environmental functions is challenging, given that most environments contain an uncultivated microbial diversity. Here we combined approaches to identify bacteria expressing genes relevant to catabolite flow and to locate these genes within their environment, in this case the gut of a "lower," wood-feeding termite. First, environmental transcriptomics revealed that 2 of the 23 formate dehydrogenase (FDH) genes known in the system accounted for slightly more than one-half of environmental transcripts. FDH is an essential enzyme of H2 metabolism that is ultimately important for the assimilation of lignocellulose-derived energy by the insect. Second, single-cell PCR analysis revealed that two different bacterial types expressed these two transcripts. The most commonly transcribed FDH in situ is encoded by a previously unappreciated deltaproteobacterium, whereas the other FDH is spirochetal. Third, PCR analysis of fractionated gut contents demonstrated that these bacteria reside in different spatial niches; the spirochete is free-swimming, whereas the deltaproteobacterium associates with particulates. Fourth, the deltaproteobacteria expressing FDH were localized to protozoa via hybridization chain reaction-FISH, an approach for multiplexed, spatial mapping of mRNA and rRNA targets. These results underscore the importance of making direct vs. inference-based gene-species associations, and have implications in higher termites, the most successful termite lineage, in which protozoa have been lost from the gut community. Contrary to expectations, in higher termites, FDH genes related to those from the protozoan symbiont dominate, whereas most others were absent, suggesting that a successful gene variant can persist and flourish after a gut perturbation alters a major environmental niche.
Collapse
|
11
|
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37:699-735. [DOI: 10.1111/1574-6976.12025] [Citation(s) in RCA: 1465] [Impact Index Per Article: 122.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
|
12
|
He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One 2013; 8:e61126. [PMID: 23593407 PMCID: PMC3625147 DOI: 10.1371/journal.pone.0061126] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
Termites effectively feed on many types of lignocellulose assisted by their gut microbial symbionts. To better understand the microbial decomposition of biomass with varied chemical profiles, it is important to determine whether termites harbor different microbial symbionts with specialized functionalities geared toward different feeding regimens. In this study, we compared the microbiota in the hindgut paunch of Amitermes wheeleri collected from cow dung and Nasutitermes corniger feeding on sound wood by 16S rRNA pyrotag, comparative metagenomic and metatranscriptomic analyses. We found that Firmicutes and Spirochaetes were the most abundant phyla in A. wheeleri, in contrast to N. corniger where Spirochaetes and Fibrobacteres dominated. Despite this community divergence, a convergence was observed for functions essential to termite biology including hydrolytic enzymes, homoacetogenesis and cell motility and chemotaxis. Overrepresented functions in A. wheeleri relative to N. corniger microbiota included hemicellulose breakdown and fixed-nitrogen utilization. By contrast, glycoside hydrolases attacking celluloses and nitrogen fixation genes were overrepresented in N. corniger microbiota. These observations are consistent with dietary differences in carbohydrate composition and nutrient contents, but may also reflect the phylogenetic difference between the hosts.
Collapse
Affiliation(s)
- Shaomei He
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Natalia Ivanova
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Edward Kirton
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Martin Allgaier
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Claudia Bergin
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Rudolf H. Scheffrahn
- Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, United States of America
| | - Nikos C. Kyrpides
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Falk Warnecke
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Susannah G. Tringe
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Philip Hugenholtz
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences & Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
13
|
Köhler T, Dietrich C, Scheffrahn RH, Brune A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 2012; 78:4691-701. [PMID: 22544239 PMCID: PMC3370480 DOI: 10.1128/aem.00683-12] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/13/2012] [Indexed: 11/20/2022] Open
Abstract
Higher termites are characterized by a purely prokaryotic gut microbiota and an increased compartmentation of their intestinal tract. In soil-feeding species, each gut compartment has different physicochemical conditions and is colonized by a specific microbial community. Although considerable information has accumulated also for wood-feeding species of the genus Nasutitermes, including cellulase activities and metagenomic data, a comprehensive study linking physicochemical gut conditions with the structure of the microbial communities in the different gut compartments is lacking. In this study, we measured high-resolution profiles of H(2), O(2), pH, and redox potential in the gut of Nasutitermes corniger termites, determined the fermentation products accumulating in the individual gut compartments, and analyzed the bacterial communities in detail by pyrotag sequencing of the V3-V4 region of the 16S rRNA genes. The dilated hindgut paunch (P3 compartment) was the only anoxic gut region, showed the highest density of bacteria, and accumulated H(2) to high partial pressures (up to 12 kPa). Molecular hydrogen is apparently produced by a dense community of Spirochaetes and Fibrobacteres, which also dominate the gut of other Nasutitermes species. All other compartments, such as the alkaline P1 compartment (average pH, 10.0), showed high redox potentials and comprised small but distinct populations characteristic for each gut region. In the crop and the posterior hindgut compartments, the community was even more diverse than in the paunch. Similarities in the communities of the posterior hindgut and crop suggested that proctodeal trophallaxis or coprophagy also occurs in higher termites. The large sampling depths of pyrotag sequencing in combination with the determination of important physicochemical parameters allow cautious conclusions concerning the functions of particular bacterial lineages in the respective gut sections to be drawn.
Collapse
Affiliation(s)
- Tim Köhler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carsten Dietrich
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Rudolf H. Scheffrahn
- Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | - Andreas Brune
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
14
|
Hädrich A, Heuer VB, Herrmann M, Hinrichs KU, Küsel K. Origin and fate of acetate in an acidic fen. FEMS Microbiol Ecol 2012; 81:339-54. [DOI: 10.1111/j.1574-6941.2012.01352.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/16/2012] [Accepted: 02/26/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Anke Hädrich
- Aquatic Geomicrobiology Group; Institute of Ecology; Friedrich Schiller University Jena; Jena; Germany
| | - Verena B. Heuer
- Organic Geochemistry Group; Department of Geosciences and MARUM Center for Marine Environmental Sciences; University of Bremen; Bremen; Germany
| | - Martina Herrmann
- Aquatic Geomicrobiology Group; Institute of Ecology; Friedrich Schiller University Jena; Jena; Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group; Department of Geosciences and MARUM Center for Marine Environmental Sciences; University of Bremen; Bremen; Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology Group; Institute of Ecology; Friedrich Schiller University Jena; Jena; Germany
| |
Collapse
|
15
|
Ballor NR, Paulsen I, Leadbetter JR. Genomic analysis reveals multiple [FeFe] hydrogenases and hydrogen sensors encoded by treponemes from the H(2)-rich termite gut. MICROBIAL ECOLOGY 2012; 63:282-294. [PMID: 21811792 DOI: 10.1007/s00248-011-9922-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
We have completed a bioinformatic analysis of the hydrogenases encoded in the genomes of three termite gut treponeme isolates: hydrogenotrophic, homoacetogenic Treponema primitia strains ZAS-1 and ZAS-2, and the hydrogen-producing, sugar-fermenting Treponema azotonutricium ZAS-9. H(2) is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The spirochetes encoded 4, 8, and 5 [FeFe] hydrogenase-like proteins, identified by their H domains, respectively, but no other recognizable hydrogenases. The [FeFe] hydrogenases represented many sequence families previously proposed in an analysis of termite gut metagenomic data. Each strain encoded both putative [FeFe] hydrogenase enzymes and evolutionarily related hydrogen sensor/transducer proteins likely involved in phosphorelay or methylation pathways, and possibly even chemotaxis. A new family of [FeFe] hydrogenases (FDH-Linked) is proposed that may form a multimeric complex with formate dehydrogenase to provide reducing equivalents for reductive acetogenesis in T. primitia. The many and diverse [FeFe] hydrogenase-like proteins encoded within the sequenced genomes of the termite gut treponemes has enabled the discovery of a putative new class of [FeFe] hydrogenase proteins potentially involved in acetogenesis and furthered present understanding of many families, including sensory, of H domain proteins beyond what was possible through the use of fragmentary termite gut metagenome sequence data alone, from which they were initially defined.
Collapse
Affiliation(s)
- Nicholas R Ballor
- Biochemistry & Molecular Biophysics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
16
|
Ottesen EA, Leadbetter JR. Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles. Appl Environ Microbiol 2011; 77:3461-7. [PMID: 21441328 PMCID: PMC3126463 DOI: 10.1128/aem.02657-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/17/2011] [Indexed: 11/20/2022] Open
Abstract
In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The "higher" termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the "lower" termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches.
Collapse
Affiliation(s)
| | - Jared R. Leadbetter
- Environmental Science & Engineering, W. M. Keck Laboratories, M/C 138-78, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
17
|
Matson EG, Gora KG, Leadbetter JR. Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of lower termites and the wood roach. PLoS One 2011; 6:e19316. [PMID: 21541298 PMCID: PMC3082573 DOI: 10.1371/journal.pone.0019316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/30/2011] [Indexed: 11/18/2022] Open
Abstract
Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities.
Collapse
Affiliation(s)
- Eric G Matson
- Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, California, United States of America.
| | | | | |
Collapse
|
18
|
Hori T, Sasaki D, Haruta S, Shigematsu T, Ueno Y, Ishii M, Igarashi Y. Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling. MICROBIOLOGY-SGM 2011; 157:1980-1989. [PMID: 21474532 DOI: 10.1099/mic.0.049189-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Syntrophic oxidation of acetate, so-called reversed reductive acetogenesis, is one of the most important degradation steps in anaerobic digesters. However, little is known about the genetic diversity of the micro-organisms involved. Here we investigated the activity and composition of potentially acetate-oxidizing syntrophs using a combinatorial approach of flux measurement and transcriptional profiling of the formyltetrahydrofolate synthetase (FTHFS) gene, an ecological biomarker for reductive acetogenesis. During the operation of a thermophilic anaerobic digester, volatile fatty acids were mostly depleted, suggesting a high turnover rate for dissolved H(2), and hydrogenotrophic methanogens were the dominant archaeal members. Batch cultivation of the digester microbiota with (13)C-labelled acetate indicated that syntrophic oxidation accounted for 13.1-21.3 % of methane production from acetate. FTHFS genes were transcribed in the absence of carbon monoxide, methoxylated compounds and inorganic electron acceptors other than CO(2), which is implicated in the activity of reversed reductive acetogenesis; however, expression itself does not distinguish whether biosynthesis or biodegradation is functioning. The mRNA- and DNA-based terminal RFLP and clone library analyses indicated that, out of nine FTHFS phylotypes detected, the FTHFS genes from the novel phylotypes I-IV in addition to the known syntroph Thermacetogenium phaeum (i.e. phylotype V) were specifically expressed. These transcripts arose from phylogenetically presumed homoacetogens. The results of this study demonstrate that hitherto unidentified phylotypes of homoacetogens are responsible for syntrophic acetate oxidation in an anaerobic digester.
Collapse
Affiliation(s)
- Tomoyuki Hori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukisamu-Higashi 2-17-2-1, Toyohira-ku, Sapporo 062-8517, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daisuke Sasaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin Haruta
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toru Shigematsu
- Department of Food Science, Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Yoshiyuki Ueno
- Kajima Technical Research Institute, Tobitakyu 2-19-1, Chofu-shi, Tokyo 182-0036, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Igarashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
19
|
Hongoh Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 2011; 68:1311-25. [PMID: 21365277 PMCID: PMC11114660 DOI: 10.1007/s00018-011-0648-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 11/29/2022]
Abstract
Termites thrive on dead plant matters with the aid of microorganisms resident in their gut. The gut microbiota comprises protists (single-celled eukaryotes), bacteria, and archaea, most of which are unique to the termite gut ecosystem. Although this symbiosis has long been intriguing researchers of both basic and applied sciences, its detailed mechanism remains unclear due to the enormous complexity and the unculturability of the microbiota. In the effort to overcome the difficulty, recent advances in omics, such as metagenomics, metatranscriptomics, and metaproteomics have gradually unveiled the black box of this symbiotic system. Genomics targeting a single species of the unculturable microbial members has also provided a great progress in the understanding of the symbiotic interrelationships among the gut microorganisms. In this review, the symbiotic system organized by wood-feeding termites and their gut microorganisms is outlined, focusing on the recent achievement in omics studies of this multilayered symbiotic system.
Collapse
Affiliation(s)
- Yuichi Hongoh
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
20
|
Zhang X, Matson EG, Leadbetter JR. Genes for selenium dependent and independent formate dehydrogenase in the gut microbial communities of three lower, wood-feeding termites and a wood-feeding roach. Environ Microbiol 2010; 13:307-23. [PMID: 20819103 DOI: 10.1111/j.1462-2920.2010.02330.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial Wood-Ljungdahl pathway for CO(2)-reductive acetogenesis is important for the nutritional mutualism occurring between wood-feeding insects and their hindgut microbiota. A key step in this pathway is the reduction of CO(2) to formate, catalysed by the enzyme formate dehydrogenase (FDH). Putative selenocysteine- (Sec) and cysteine- (Cys) containing paralogues of hydrogenase-linked FDH (FDH(H)) have been identified in the termite gut acetogenic spirochete, Treponema primitia, but knowledge of their relevance in the termite gut environment remains limited. In this study, we designed degenerate PCR primers for FDH(H) genes (fdhF) and assessed fdhF diversity in insect gut bacterial isolates and the gut microbial communities of termites and cockroaches. The insects examined herein represent three wood-feeding termite families, Termopsidae, Kalotermitidae and Rhinotermitidae (phylogenetically 'lower' termite taxa); the wood-feeding roach family Cryptocercidae (the sister taxon to termites); and the omnivorous roach family Blattidae. Sec and Cys FDH(H) variants were identified in every wood-feeding insect but not the omnivorous roach. Of 68 novel alleles obtained from inventories, 66 affiliated phylogenetically with enzymes from T. primitia. These formed two subclades (37 and 29 phylotypes) almost completely comprised of Sec-containing and Cys-containing enzymes respectively. A gut cDNA inventory showed transcription of both variants in the termite Zootermopsis nevadensis (family Termopsidae). The gene patterns suggest that FDH(H) enzymes are important for the CO(2)-reductive metabolism of uncultured acetogenic treponemes and imply that the availability of selenium, a trace element, shaped microbial gene content in the last common ancestor of dictyopteran, wood-feeding insects, and continues to shape it to this day.
Collapse
Affiliation(s)
- Xinning Zhang
- Ronald and Maxine Linde Center for Global Environmental Science, Mailcode 138-78, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
21
|
Diversity of formyltetrahydrofolate synthetases in the guts of the wood-feeding cockroach Cryptocercus punctulatus and the omnivorous cockroach Periplaneta americana. Appl Environ Microbiol 2010; 76:4909-13. [PMID: 20495046 DOI: 10.1128/aem.00299-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the diversity of a marker gene for homoacetogens in two cockroach gut microbial communities. Formyltetrahydrofolate synthetase (FTHFS or fhs) libraries prepared from a wood-feeding cockroach, Cryptocercus punctulatus, were dominated by sequences that affiliated with termite gut treponemes. No spirochete-like sequences were recovered from the omnivorous roach Periplaneta americana, which was dominated by Firmicutes-like sequences.
Collapse
|
22
|
Matson EG, Zhang X, Leadbetter JR. Selenium controls transcription of paralogous formate dehydrogenase genes in the termite gut acetogen, Treponema primitia. Environ Microbiol 2010; 12:2245-58. [PMID: 21966917 DOI: 10.1111/j.1462-2920.2010.02188.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The termite gut spirochete, Treponema primitia, is a CO(2)-reductive acetogen that is phylogenetically distinct from other distantly related and more extensively studied acetogens such as Moorella thermoacetica. Research on T. primitia has revealed details about the role of spirochetes in CO(2)-reductive acetogenesis, a process important to the mutualism occurring between termites and their gut microbial communities. Here, a locus of the T. primitia genome containing Wood-Ljungdahl pathway genes for CO(2)-reductive acetogenesis was sequenced. This locus contained methyl-branch genes of the pathway (i.e. for the reduction of CO(2) to the level of methyl-tetrahydrofolate) including paralogous genes for cysteine and selenocysteine (Sec) variants of formate dehydrogenase (FDH) and genes for Sec incorporation. The FDH variants affiliated phylogenetically with hydrogenase-linked FDH enzymes, suggesting that T. primitia FDH enzymes utilize electrons derived directly from molecular H(2). Sub-nanomolar concentrations of selenium decreased transcript levels of the cysteine variant FDH gene. Selenium concentration did not markedly influence the level of mRNA upstream of the Sec-codon in the Sec variant FDH; however, the level of transcript extending downstream of the Sec-codon increased incrementally with increasing selenium concentrations. The features and regulation of these FDH genes are an indication that T. primitia may experience dynamic selenium availability in its H(2)-rich gut environment.
Collapse
Affiliation(s)
- Eric G Matson
- Ronald and Maxine Linde Center for Global Environmental Science, Mailcode 138-78, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
23
|
Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 2010; 76:2058-66. [PMID: 20118378 DOI: 10.1128/aem.02580-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homoacetogens produce acetate from H(2) and CO(2) via the Wood-Ljungdahl pathway. Some homoacetogens have been isolated from the rumen, but these organisms are expected to be only part of the full diversity present. To survey the presence of rumen homoacetogens, we analyzed sequences of formyltetrahydrofolate synthetase (FTHFS), a key enzyme of the Wood-Ljungdahl pathway. A total of 275 partial sequences of genes encoding FTHFS were PCR amplified from rumen contents of a cow, two sheep, and a deer. Phylogenetic trees were constructed using these FTHFS gene sequences and the translated amino acid sequences, together with other sequences from public databases and from novel nonhomoacetogenic bacteria isolated from the rumen. Over 90% of the FTHFS sequences fell into 34 clusters defined with good bootstrap support. Few rumen-derived FTHFS sequences clustered with sequences of known homoacetogens. Conserved residues were identified in the deduced FTHFS amino acid sequences from known homoacetogens, and their presence in the other sequences was used to determine a "homoacetogen similarity" (HS) score. A homoacetogen FTHFS profile hidden Markov model (HoF-HMM) was used to assess the homology of rumen and homoacetogen FTHFS sequences. Many clusters had low HS scores and HoF-HMM matches, raising doubts about whether the sequences originated from homoacetogens. In keeping with these findings, FTHFS sequences from nonhomoacetogenic bacterial isolates grouped in these clusters with low scores. However, sequences that formed 10 clusters containing no known isolates but representing 15% of our FTHFS sequences from rumen samples had high HS scores and HoF-HMM matches and so could represent novel homoacetogens.
Collapse
|
24
|
Termite Gut Flagellates and Their Methanogenic and Eubacterial Symbionts. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Brune A. Methanogens in the Digestive Tract of Termites. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Xu K, Liu H, Du G, Chen J. Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments. Anaerobe 2009; 15:204-13. [PMID: 19328859 DOI: 10.1016/j.anaerobe.2009.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 01/05/2009] [Accepted: 03/14/2009] [Indexed: 10/21/2022]
Abstract
Acetogens are ubiquitous in many anaerobic habitats and play a very important role in bioconversion and biodegradation of organic compounds. Methods for rapid detection and quantification of acetogens in different environments are urgently needed to understand the in situ activities in complicated microbial communities. To overcome the limitations of culture-dependent methods and provide enhanced diagnostic tools for determination of the ecological roles of acetogens in different habitats, a quantitative real-time PCR (qrt-PCR) approach targeting functional FTHFS (fhs) gene encoding the formyltetrahydrofolate synthetase was developed. Novel primers flanking the FTHFS fragment were designed and tested. High specificity and sensitivity for estimation of the abundance of acetogens were confirmed analysis of a collection of acetogens, clone libraries and melting curves. The utility of the assay was validated and used in quantifying the FTHFS gene present in different anoxic and oxic habitats, including anoxic and oxic sludges, lake sediment, sewage sullage as well as flooded rice field soils. The abundance of FTHFS gene recovered by fhs1 assay was in the order of magnitude of 10(5) up to 10(7) copies per gram of dry weight sample, and the maximum calculated abundance of acetogens relative to Eubacteria was 0.6-0.9%, confirming the low proportion of acetogens to total bacteria in environments.
Collapse
Affiliation(s)
- Kewei Xu
- Laboratory of Environmental Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW. The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 2008; 10:2550-73. [PMID: 18631365 PMCID: PMC2575129 DOI: 10.1111/j.1462-2920.2008.01679.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This paper describes the genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum), which is the model acetogenic bacterium that has been widely used for elucidating the Wood-Ljungdahl pathway of CO and CO(2) fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into 3 mol of acetate and to grow autotrophically using H(2) and CO as electron donors and CO(2) as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO(2). Acetogenic bacteria also couple the Wood-Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols and aromatic compounds) and electron acceptors (CO(2), nitrate, nitrite, thiosulfate, dimethylsulfoxide and aromatic carboxyl groups). The genome consists of a single circular 2 628 784 bp chromosome encoding 2615 open reading frames (ORFs), which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. A total of 2384 (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in orthologue clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Elizabeth Pierce
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Gary Xie
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
- Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Ravi D. Barabote
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
- Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Elizabeth Saunders
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
- Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Cliff S. Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
- Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - John C. Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
- Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Paul Richardson
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
- Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Thomas S. Brettin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
- Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Amaresh Das
- Department of Biochemistry and Molecular Biology, University of Georgia
| | - Lars G. Ljungdahl
- Department of Biochemistry and Molecular Biology, University of Georgia
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Abstract
Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO(2)-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO(2)-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and was used to resolve the enzymology of the acetyl-CoA pathway in the laboratories of Harland Goff Wood and Lars Gerhard Ljungdahl. Although acetogenesis initially intrigued few scientists, this novel process fostered several scientific milestones, including the first (14)C-tracer studies in biology and the discovery that tungsten is a biologically active metal. The acetyl-CoA pathway is now recognized as a fundamental component of the global carbon cycle and essential to the metabolic potentials of many different prokaryotes. The acetyl-CoA pathway and variants thereof appear to be important to primary production in certain habitats and may have been the first autotrophic process on earth and important to the evolution of life. The purpose of this article is to (1) pay tribute to those who discovered acetogens and acetogenesis, and to those who resolved the acetyl-CoA pathway, and (2) highlight the ecology and physiology of acetogens within the framework of their scientific roots.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | |
Collapse
|
29
|
Ohkuma M. Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 2008; 16:345-52. [PMID: 18513972 DOI: 10.1016/j.tim.2008.04.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/30/2022]
Abstract
The microbial community in the gut of phylogenetically lower termites, comprising both flagellated protists and prokaryotes, has fascinated many scientists because of the symbiotic relationships that are responsible for the efficient degradation of lignocellulose. However, the complex nature of this microbial community and the formidable unculturability of most members have hampered detailed microbial studies. Comprehensive phylogenetic descriptions of the community members in the past decade still provide little information about their functions because the community contains diverse novel microbial species. Recent advances in molecular approaches have shed new light on species-specific spatial distributions, particularly the cellular associations of flagellated protists and prokaryotes, their functional interactions and coevolutionary relationships. These advances have gradually unveiled how this symbiotic complex functions to efficiently utilize lignocellulose.
Collapse
Affiliation(s)
- Moriya Ohkuma
- Ecomolecular Biorecycling Science Research Team, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
30
|
Hattori S. Syntrophic Acetate-Oxidizing Microbes in Methanogenic Environments. Microbes Environ 2008; 23:118-27. [DOI: 10.1264/jsme2.23.118] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Satoshi Hattori
- Department of Bioresource Engineering, Faculty of Agriculture, Yamagata University
| |
Collapse
|
31
|
Pester M, Brune A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME JOURNAL 2007; 1:551-65. [DOI: 10.1038/ismej.2007.62] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Ohashi Y, Igarashi T, Kumazawa F, Fujisawa T. Analysis of Acetogenic Bacteria in Human Feces with Formyltetrahydrofolate Synthetase Sequences. Biosci Microflora 2007. [DOI: 10.12938/bifidus.26.37] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuji Ohashi
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| | - Tomoko Igarashi
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| | - Fumi Kumazawa
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| | - Tomohiko Fujisawa
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| |
Collapse
|
33
|
Ottesen EA, Hong JW, Quake SR, Leadbetter JR. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 2006; 314:1464-7. [PMID: 17138901 DOI: 10.1126/science.1131370] [Citation(s) in RCA: 485] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gene inventory and metagenomic techniques have allowed rapid exploration of bacterial diversity and the potential physiologies present within microbial communities. However, it remains nontrivial to discover the identities of environmental bacteria carrying two or more genes of interest. We have used microfluidic digital polymerase chain reaction (PCR) to amplify and analyze multiple, different genes obtained from single bacterial cells harvested from nature. A gene encoding a key enzyme involved in the mutualistic symbiosis occurring between termites and their gut microbiota was used as an experimental hook to discover the previously unknown ribosomal RNA-based species identity of several symbionts. The ability to systematically identify bacteria carrying a particular gene and to link any two or more genes of interest to single species residing in complex ecosystems opens up new opportunities for research on the environment.
Collapse
Affiliation(s)
- Elizabeth A Ottesen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
34
|
Pester M, Brune A. Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 2006; 8:1261-70. [PMID: 16817934 DOI: 10.1111/j.1462-2920.2006.01020.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reductive acetogenesis is an important metabolic process in the hindgut of wood-feeding termites. We analysed diversity and expression profiles of the bacterial fhs gene, a marker gene encoding a key enzyme of reductive acetogenesis, formyl tetrahydrofolate synthetase (FTHFS), to identify the active homoacetogenic populations in representatives of three different termite families. Clone libraries of polymerase chain reaction-amplified fhs genes from hindgut contents of Reticulitermes santonensis (Rhinotermitidae) and Cryptotermes secundus (Kalotermitidae) were compared with previously published fhs gene sequences obtained from Zootermopsis nevadensis (Termopsidae). Most of the clones clustered among the 'Termite Treponemes', which comprise also the fhs genes of the two strains of the homoacetogenic spirochaete Treponema primitia. The high abundance of treponemal fhs genes in all clone libraries was in agreement with the results of DNA-based terminal-restriction fragment length polymorphism (T-RFLP) analysis. Moreover, in mRNA-based T-RFLP profiles of the three termites, only expression of fhs genes of 'Termite Treponemes' was detected, albeit at different levels. In C. secundus, only one of the dominating phylotypes was transcribed, while in R. santonensis, the apparently less abundant fhs genes were the most actively expressed. Our results strongly support the hypothesis that spirochaetes are responsible for reductive acetogenesis in the hindgut of lower, wood-feeding termites.
Collapse
Affiliation(s)
- Michael Pester
- Max Planck Institute for Terrestrial Microbiology, Department of Biogeochemistry, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | |
Collapse
|
35
|
Abstract
Increasing globalization may pave the way for reemergence of relapsing fever. Relapsing fever Borrelia infections have attracted little attention in recent years; however, where endemic, these infections still result in considerable illness and death. Despite the marked antimicrobial drug susceptibility of these organisms, therapy is often delayed through lack of clinical suspicion. With increasing travel, infections may be imported, through exotic relapsing fever infection or through resurgence of infected disease vectors. Although louseborne relapsing fever is now geographically limited, it was once of global importance. The possibility for reemergence was recently highlighted by the probable reemergence of louseborne relapsing fever in homeless persons from France. Host limitations enforced through louseborne transmission are less applicable for the tickborne forms of relapsing fever. Although the latter have reduced potential for epidemic spread, they have the ability to infect diverse hosts, thus establishing reservoirs of infection and presenting greater challenges for their control.
Collapse
Affiliation(s)
- Sally J Cutler
- Bacterial Zoonoses, Statutory & Exotic Bacterial Diseases, Veterinary Laboratories Agency, Surrey, United Kingdom.
| |
Collapse
|
36
|
Lovell CR, Leaphart AB. Community-level analysis: key genes of CO2-reductive acetogenesis. Methods Enzymol 2005; 397:454-69. [PMID: 16260309 DOI: 10.1016/s0076-6879(05)97028-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CO2-reductive acetogenic bacteria are ubiquitous in anaerobic habitats and are physiologically and phylogenetically diverse. The latter characteristics have rendered their diversity in natural environments, their distributions, and their ecological function(s) difficult to assess. Recently introduced polymerase chain reaction (PCR) primers for specific amplification of the structural gene encoding formyltetrahydrofolate synthetase (FTHFS, EC 6.3.4.3), a key enzyme in the acetyl-CoA pathway of acetogenesis, have facilitated studies of acetogen diversity and ecology. These primers amplify an approximately 1100-bp segment of the FTHFS gene. FTHFS sequences have been recovered from authentic acetogens, from sulfate reducing bacteria, and from a variety of other nonacetogenic bacteria. Phylogenetic analyses segregated these sequences into distinct clusters, only one of which contained sequences from known acetogens. This chapter describes the PCR primers, defines conditions for successful amplification of FTHFS sequences, and details the phylogenetic analysis of the FTHFS sequences. Information on the types of sequences that have been recovered from natural acetogen habitats and how they have been interpreted is also included.
Collapse
Affiliation(s)
- Charles R Lovell
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | | |
Collapse
|
37
|
Abstract
Treponema primitia, an H2-consuming CO2-reducing homoacetogenic spirochete in termite hindguts, requires an exogenous source of folate for growth. Tetrahydrofolate (THF) acts as a C1 carrier in CO2-reductive acetogenesis, a microbially mediated process important to the carbon and energy requirements of termites. To examine the hypothesis that other termite gut microbes probably supply some form of folate to T. primitia in situ, we used a bioassay to screen for and isolate folate-secreting bacteria from hindguts of Zootermopsis angusticollis, which is the host of T. primitia. Based on morphology, physiology, and 16S rRNA gene sequences, the major folate secretors were identified as strains of Lactococcus lactis and Serratia grimesii. During growth, these isolates secreted 5-formyl-THF at levels up to 146 ng/ml, and their cell-free culture fluids satisfied the folate requirement of T. primitia strains in vitro. Analysis of Z. angusticollis hindgut fluid revealed that 5-formyl-THF was the only detectable folate compound and occurred at an in situ concentration (1.3 mug/ml) which was more than sufficient to support the growth of T. primitia. These results imply that cross-feeding of 5-formyl-THF by other community members is important for growth of symbiotic hindgut spirochetes and thus termite nutrition and survival.
Collapse
Affiliation(s)
- Joseph R Graber
- Department of Microbiology and Molecular Genetics and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|