1
|
Arata Y, Jurica P, Parrish N, Sako Y. Bioinformatic Annotation of Transposon DNA Processing Genes on the Long-Read Genome Assembly of Caenorhabditis elegans. Bioinform Biol Insights 2024; 18:11779322241304668. [PMID: 39713040 PMCID: PMC11662393 DOI: 10.1177/11779322241304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Transposable elements (TEs) or transposons are thought to play roles in animal physiological processes, such as germline, early embryonic, and brain development, as well as aging. However, their roles have not been systematically investigated through experimental studies. In this study, we created a catalog of genes directly involved in replication, excision, or integration of transposon-coding DNA, which we refer to as transposon DNA processing genes (TDPGs). Specifically, to bridge the gap to experimental studies, we sought potentially functional TDPGs which maintain intact open reading frames and the amino acids at their catalytic cores on the latest long-read genome assembly of Caenorhabditis elegans, VC2010. Among 52 519 TE loci, we identified 145 potentially functional TDPGs encoded in long terminal repeat elements, long interspersed nuclear elements, terminal inverted repeat elements, Helitrons, and Mavericks/Polintons. Our TDPG catalog, which contains a feasible number of genes, allows for the experimental manipulation of TE mobility in vivo, regardless of whether the TEs are autonomous or non-autonomous, thereby potentially promoting the study of the physiological functions of TE mobility.
Collapse
Affiliation(s)
- Yukinobu Arata
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Peter Jurica
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Nicholas Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
2
|
Wu Y, Wang F, Lyu K, Liu R. Comparative Analysis of Transposable Elements in the Genomes of Citrus and Citrus-Related Genera. PLANTS (BASEL, SWITZERLAND) 2024; 13:2462. [PMID: 39273946 PMCID: PMC11397423 DOI: 10.3390/plants13172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Transposable elements (TEs) significantly contribute to the evolution and diversity of plant genomes. In this study, we explored the roles of TEs in the genomes of Citrus and Citrus-related genera by constructing a pan-genome TE library from 20 published genomes of Citrus and Citrus-related accessions. Our results revealed an increase in TE content and the number of TE types compared to the original annotations, as well as a decrease in the content of unclassified TEs. The average length of TEs per assembly was approximately 194.23 Mb, representing 41.76% (Murraya paniculata) to 64.76% (Citrus gilletiana) of the genomes, with a mean value of 56.95%. A significant positive correlation was found between genome size and both the number of TE types and TE content. Consistent with the difference in mean whole-genome size (39.83 Mb) between Citrus and Citrus-related genera, Citrus genomes contained an average of 34.36 Mb more TE sequences than Citrus-related genomes. Analysis of the estimated insertion time and half-life of long terminal repeat retrotransposons (LTR-RTs) suggested that TE removal was not the primary factor contributing to the differences among genomes. These findings collectively indicate that TEs are the primary determinants of genome size and play a major role in shaping genome structures. Principal coordinate analysis (PCoA) of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers revealed that the fragmented TEs were predominantly derived from ancestral genomes, while intact TEs were crucial in the recent evolutionary diversification of Citrus. Moreover, the presence or absence of intact TEs near the AdhE superfamily was closely associated with the bitterness trait in the Citrus species. Overall, this study enhances TE annotation in Citrus and Citrus-related genomes and provides valuable data for future genetic breeding and agronomic trait research in Citrus.
Collapse
Affiliation(s)
- Yilei Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fusheng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Keliang Lyu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Kawato S, Nozaki R, Kondo H, Hirono I. Integrase-associated niche differentiation of endogenous large DNA viruses in crustaceans. Microbiol Spectr 2024; 12:e0055923. [PMID: 38063384 PMCID: PMC10871703 DOI: 10.1128/spectrum.00559-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Crustacean genomes harbor sequences originating from a family of large DNA viruses called nimaviruses, but it is unclear why they are present. We show that endogenous nimaviruses selectively insert into repetitive sequences within the host genome, and this insertion specificity was correlated with different types of integrases, which are DNA recombination enzymes encoded by the nimaviruses themselves. This suggests that endogenous nimaviruses have colonized various genomic niches through the acquisition of integrases with different insertion specificities. Our results point to a novel survival strategy of endogenous large DNA viruses colonizing the host genomes. These findings may clarify the evolution and spread of nimaviruses in crustaceans and lead to measures to control and prevent the spread of pathogenic nimaviruses in aquaculture settings.
Collapse
Affiliation(s)
- Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Urquhart AS, Vogan AA, Gardiner DM, Idnurm A. Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proc Natl Acad Sci U S A 2023; 120:e2214521120. [PMID: 37023132 PMCID: PMC10104507 DOI: 10.1073/pnas.2214521120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 04/07/2023] Open
Abstract
Transposable elements in eukaryotic organisms have historically been considered "selfish," at best conferring indirect benefits to their host organisms. The Starships are a recently discovered feature in fungal genomes that are, in some cases, predicted to confer beneficial traits to their hosts and also have hallmarks of being transposable elements. Here, we provide experimental evidence that Starships are indeed autonomous transposons, using the model Paecilomyces variotii, and identify the HhpA "Captain" tyrosine recombinase as essential for their mobilization into genomic sites with a specific target site consensus sequence. Furthermore, we identify multiple recent horizontal gene transfers of Starships, implying that they jump between species. Fungal genomes have mechanisms to defend against mobile elements, which are frequently detrimental to the host. We discover that Starships are also vulnerable to repeat-induced point mutation defense, thereby having implications on the evolutionary stability of such elements.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- Applied Biosciences, Macquarie University, Macquarie Park, NSW2109, Australia
| | - Aaron A. Vogan
- Department of Organismal Biology, Uppsala University, 752 36Uppsala, Sweden
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- University of Queensland, St Lucia, QLD4067, Australia
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|
5
|
López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. Rates and spectra of de novo structural mutations in Chlamydomonas reinhardtii. Genome Res 2023; 33:45-60. [PMID: 36617667 PMCID: PMC9977147 DOI: 10.1101/gr.276957.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rory J Craig
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720, USA
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Eniolaye J Balogun
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario ON M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
6
|
Gluck-Thaler E, Ralston T, Konkel Z, Ocampos CG, Ganeshan VD, Dorrance AE, Niblack TL, Wood CW, Slot JC, Lopez-Nicora HD, Vogan AA. Giant Starship Elements Mobilize Accessory Genes in Fungal Genomes. Mol Biol Evol 2022; 39:msac109. [PMID: 35588244 PMCID: PMC9156397 DOI: 10.1093/molbev/msac109] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393 kb and last shared a common ancestor ca. 400 Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager's activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Timothy Ralston
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | | | - Veena Devi Ganeshan
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, USA
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, USA
| | - Terry L. Niblack
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Corlett W. Wood
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C. Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Horacio D. Lopez-Nicora
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
- Departamento de Producción Agrícola, Universidad San Carlos, Asunción, Paraguay
| | - Aaron A. Vogan
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
7
|
Goubert C, Craig RJ, Bilat AF, Peona V, Vogan AA, Protasio AV. A beginner's guide to manual curation of transposable elements. Mob DNA 2022; 13:7. [PMID: 35354491 PMCID: PMC8969392 DOI: 10.1186/s13100-021-00259-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In the study of transposable elements (TEs), the generation of a high confidence set of consensus sequences that represent the diversity of TEs found in a given genome is a key step in the path to investigate these fascinating genomic elements. Many algorithms and pipelines are available to automatically identify putative TE families present in a genome. Despite the availability of these valuable resources, producing a library of high-quality full-length TE consensus sequences largely remains a process of manual curation. This know-how is often passed on from mentor-to-mentee within research groups, making it difficult for those outside the field to access this highly specialised skill. RESULTS Our manuscript attempts to fill this gap by providing a set of detailed computer protocols, software recommendations and video tutorials for those aiming to manually curate TEs. Detailed step-by-step protocols, aimed at the complete beginner, are presented in the Supplementary Methods. CONCLUSIONS The proposed set of programs and tools presented here will make the process of manual curation achievable and amenable to all researchers and in special to those new to the field of TEs.
Collapse
Affiliation(s)
- Clement Goubert
- Canadian Center for Computational Genomics, McGill University, Montreal, Québec Canada
- Department of Human Genetics, McGill University, Montreal, Québec Canada
| | - Rory J. Craig
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL UK
| | - Agustin F. Bilat
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Valentina Peona
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Aaron A. Vogan
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Anna V. Protasio
- Department of Pathology, Tennis Court Road, Cambridge, CB1 2PQ UK
- Christ’s College, St Andrews Street, Cambridge, CB2 3BU UK
| |
Collapse
|
8
|
Kojima KK. Diversity and Evolution of DNA Transposons Targeting Multicopy Small RNA Genes from Actinopterygian Fish. BIOLOGY 2022; 11:biology11020166. [PMID: 35205033 PMCID: PMC8869645 DOI: 10.3390/biology11020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary DNA transposons are parasitic DNA segments that can move or duplicate themselves from one site to another in the genome. Dada is a unique group of DNA transposons, which specifically insert themselves into multicopy RNA genes such as transfer RNA (tRNA) genes or small nuclear RNA (snRNA) genes to avoid the disruption of single-copy functional genes. However, only a few Dada families have been characterized along with their target sequences. Here, vertebrate genomes were surveyed to characterize new Dada transposons, and over 120 Dada families were characterized from diverse fishes. They were classified into 12 groups with confirmed target specificities. Various tRNA genes, as well as 5S ribosomal RNA (rRNA) genes were inserted by Dada transposons. Phylogenetic analysis revealed that Dada transposons inserted in the same RNA genes are closely related. Phylogenetically related Dada transposons inserted in different RNA genes show the sequence similarity around their insertion sites, indicating Dada proteins recognize DNA nucleotide sequences to find their targets. Understanding how Dada discovers the targets would help develop target-specific insertions of foreign DNA segments. Abstract Dada is a unique superfamily of DNA transposons, inserted specifically in multicopy RNA genes. The zebrafish genome harbors five families of Dada transposons, whose targets are U6 and U1 snRNA genes, and tRNA-Ala and tRNA-Leu genes. Dada-U6, which is inserted specifically in U6 snRNA genes, is found in four animal phyla, but other target-specific lineages have been reported only from one or two species. Here, vertebrate genomes and transcriptomes were surveyed to characterize Dada families with new target specificities, and over 120 Dada families were characterized from the genomes of actinopterygian fish. They were classified into 12 groups with confirmed target specificities. Newly characterized Dada families target tRNA genes for Asp, Asn, Arg, Gly, Lys, Ser, Tyr, and Val, and 5S rRNA genes. Targeted positions inside of tRNA genes are concentrated in two regions: around the anticodon and the A box of RNA polymerase III promoter. Phylogenetic analysis revealed the relationships among actinopterygian Dada families, and one domestication event in the common ancestor of carps and minnows belonging to Cyprinoidei, Cypriniformes. Sequences targeted by phylogenetically related Dada families show sequence similarities, indicating that the target specificity of Dada is accomplished through the recognition of primary nucleotide sequences.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, Cupertino, CA 95014, USA
| |
Collapse
|
9
|
A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr Biol 2022; 32:937-950.e5. [PMID: 35063120 DOI: 10.1016/j.cub.2021.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The horizontal transfer of large gene clusters by mobile elements is a key driver of prokaryotic adaptation in response to environmental stresses. Eukaryotic microbes face similar stresses; however, a parallel role for mobile elements has not been established. A stress faced by many microorganisms is toxic metal ions in their environment. In fungi, identified mechanisms for protection against metals generally rely on genes that are dispersed within an organism's genome. Here, we discover a large (∼85 kb) region that confers tolerance to five metal/metalloid ions (arsenate, cadmium, copper, lead, and zinc) in the genomes of some, but not all, strains of a fungus, Paecilomyces variotii. We name this region HEPHAESTUS (Hφ) and present evidence that it is mobile within the P. variotii genome with features characteristic of a transposable element. HEPHAESTUS contains the greatest complement of host-beneficial genes carried by a transposable element in eukaryotes, suggesting that eukaryotic transposable elements might play a role analogous to bacteria in the horizontal transfer of large regions of host-beneficial DNA. Genes within HEPHAESTUS responsible for individual metal tolerances include those encoding a P-type ATPase transporter-PcaA-required for cadmium and lead tolerance, a transporter-ZrcA-providing tolerance to zinc, and a multicopper oxidase-McoA-conferring tolerance to copper. In addition, a subregion of Hφ confers tolerance to arsenate. The genome sequences of other fungi in the Eurotiales contain further examples of HEPHAESTUS, suggesting that it is responsible for independently assembling tolerance to a diverse array of ions, including chromium, mercury, and sodium.
Collapse
|
10
|
Nowak KP, Sobolewska-Ruta A, Jagiełło A, Bierczyńska-Krzysik A, Kierył P, Wawrzyniak P. Molecular and Functional Characterization of MobK Protein-A Novel-Type Relaxase Involved in Mobilization for Conjugational Transfer of Klebsiella pneumoniae Plasmid pIGRK. Int J Mol Sci 2021; 22:5152. [PMID: 34068033 PMCID: PMC8152469 DOI: 10.3390/ijms22105152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/01/2023] Open
Abstract
Conjugation, besides transformation and transduction, is one of the main mechanisms of horizontal transmission of genetic information among bacteria. Conjugational transfer, due to its essential role in shaping bacterial genomes and spreading of antibiotics resistance genes, has been widely studied for more than 70 years. However, new and intriguing facts concerning the molecular basis of this process are still being revealed. Most recently, a novel family of conjugative relaxases (Mob proteins) was distinguished. The characteristic feature of these proteins is that they are not related to any of Mobs described so far. Instead of this, they share significant similarity to tyrosine recombinases. In this study MobK-a tyrosine recombinase-like Mob protein, encoded by pIGRK cryptic plasmid from the Klebsiella pneumoniae clinical strain, was characterized. This study revealed that MobK is a site-specific nuclease and its relaxase activity is dependent on both a conserved catalytic tyrosine residue (Y179) that is characteristic of tyrosine recombinases and the presence of Mg2+ divalent cations. The pIGRK minimal origin of transfer sequence (oriT) was also characterized. This is one of the first reports presenting tyrosine recombinase-like conjugative relaxase protein. It also demonstrates that MobK is a convenient model for studying this new protein family.
Collapse
Affiliation(s)
- Katarzyna Paulina Nowak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
| | - Agnieszka Sobolewska-Ruta
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
| | - Agata Jagiełło
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
- Central Forensic Laboratory of the Police, Biology Department, Iwicka 14, 00-735 Warsaw, Poland
| | - Anna Bierczyńska-Krzysik
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
- Curiosity Diagnostics Sp. z o.o., Duchnicka 3, Building 16, Entrance A, 01-796 Warsaw, Poland
| | - Piotr Kierył
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
| | - Paweł Wawrzyniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
| |
Collapse
|
11
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
12
|
Kojima KK. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst 2019; 94:233-252. [DOI: 10.1266/ggs.18-00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kenji K. Kojima
- Genetic Information Research Institute
- Department of Life Sciences, National Cheng Kung University
| |
Collapse
|
13
|
Transposable Elements: Classification, Identification, and Their Use As a Tool For Comparative Genomics. Methods Mol Biol 2019; 1910:177-207. [PMID: 31278665 DOI: 10.1007/978-1-4939-9074-0_6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most genomes are populated by hundreds of thousands of sequences originated from mobile elements. On the one hand, these sequences present a real challenge in the process of genome analysis and annotation. On the other hand, they are very interesting biological subjects involved in many cellular processes. Here we present an overview of transposable elements biodiversity, and we discuss different approaches to transposable elements detection and analyses.
Collapse
|
14
|
Kojima KK. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA 2018; 9:2. [PMID: 29308093 PMCID: PMC5753468 DOI: 10.1186/s13100-017-0107-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Repbase is a comprehensive database of eukaryotic transposable elements (TEs) and repeat sequences, containing over 1300 human repeat sequences. Recent analyses of these repeat sequences have accumulated evidences for their contribution to human evolution through becoming functional elements, such as protein-coding regions or binding sites of transcriptional regulators. However, resolving the origins of repeat sequences is a challenge, due to their age, divergence, and degradation. Ancient repeats have been continuously classified as TEs by finding similar TEs from other organisms. Here, the most comprehensive picture of human repeat sequences is presented. The human genome contains traces of 10 clades (L1, CR1, L2, Crack, RTE, RTEX, R4, Vingi, Tx1 and Penelope) of non-long terminal repeat (non-LTR) retrotransposons (long interspersed elements, LINEs), 3 types (SINE1/7SL, SINE2/tRNA, and SINE3/5S) of short interspersed elements (SINEs), 1 composite retrotransposon (SVA) family, 5 classes (ERV1, ERV2, ERV3, Gypsy and DIRS) of LTR retrotransposons, and 12 superfamilies (Crypton, Ginger1, Harbinger, hAT, Helitron, Kolobok, Mariner, Merlin, MuDR, P, piggyBac and Transib) of DNA transposons. These TE footprints demonstrate an evolutionary continuum of the human genome.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, 465 Fairchild Drive, Suite 201, Mountain View, CA 94043 USA.,Department of Life Sciences, National Cheng Kung University, No. 1, Daxue Rd, East District, Tainan, 701 Taiwan
| |
Collapse
|
15
|
Ye L, Jiao N, Tang X, Chen Y, Ye X, Ren L, Hu F, Wang S, Wen M, Zhang C, Tao M, Liu S. Chimeras Linked to Tandem Repeats and Transposable Elements in Tetraploid Hybrid Fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:401-409. [PMID: 28681105 DOI: 10.1007/s10126-017-9764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
The formation of the allotetraploid hybrid lineage (4nAT) encompasses both distant hybridization and polyploidization processes. The allotetraploid offspring have two sets of sub-genomes inherited from both parental species, and therefore, it is important to explore its genetic structure. Herein, we construct a bacterial artificial chromosome library of allotetraploids, and then sequence and analyze the full-length sequences of 19 bacterial artificial chromosomes. Sixty-eight DNA chimeras are identified, which are divided into four models according to the distribution of the genomic DNA derived from the parents. Among the 68 genetic chimeras, 44 (64.71%) are linked to tandem repeats (TRs) and 23 (33.82%) are linked to transposable elements (TEs). The chimeras linked to TRs are related to slipped-strand mispairing and double-strand break repair while the chimeras linked to TEs benefit from the intervention of recombinases. In addition, TRs and TEs can also result in insertions/deletions of DNA segments. We conclude that DNA chimeras accompanied by TRs and TEs coordinate a balance between the sub-genomes derived from the parents. It is the first report on the relationship between formation of the DNA chimeras and TRs and TEs in the polyploid animals.
Collapse
Affiliation(s)
- Lihai Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ni Jiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaojun Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yiyi Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaolan Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
16
|
|
17
|
Szitenberg A, Cha S, Opperman CH, Bird DM, Blaxter ML, Lunt DH. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements. Genome Biol Evol 2016; 8:2964-2978. [PMID: 27566762 PMCID: PMC5635653 DOI: 10.1093/gbe/evw208] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host's genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes.
Collapse
Affiliation(s)
- Amir Szitenberg
- Evolutionary Biology Group, School of Environmental Sciences, University of Hull, England, United Kingdom The Dead Sea and Arava Science Center, Israel
| | - Soyeon Cha
- Department of Plant Pathology, North Carolina State University
| | | | - David M Bird
- Department of Plant Pathology, North Carolina State University
| | - Mark L Blaxter
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Scotland
| | - David H Lunt
- Evolutionary Biology Group, School of Environmental Sciences, University of Hull, England, United Kingdom
| |
Collapse
|
18
|
Abstract
Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes.
Collapse
|
19
|
Krupovic M, Shmakov S, Makarova KS, Forterre P, Koonin EV. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity. Genome Biol Evol 2016; 8:375-86. [PMID: 26764427 PMCID: PMC4779613 DOI: 10.1093/gbe/evw006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Casposons are a superfamily of putative self-synthesizing transposable elements that are predicted to employ a homolog of Cas1 protein as a recombinase and could have contributed to the origin of the CRISPR-Cas adaptive immunity systems in archaea and bacteria. Casposons remain uncharacterized experimentally, except for the recent demonstration of the integrase activity of the Cas1 homolog, and given their relative rarity in archaea and bacteria, original comparative genomic analysis has not provided direct indications of their mobility. Here, we report evidence of casposon mobility obtained by comparison of the genomes of 62 strains of the archaeon Methanosarcina mazei. In these genomes, casposons are variably inserted in three distinct sites indicative of multiple, recent gains, and losses. Some casposons are inserted into other mobile genetic elements that might provide vehicles for horizontal transfer of the casposons. Additionally, many M. mazei genomes contain previously undetected solo terminal inverted repeats that apparently are derived from casposons and could resemble intermediates in CRISPR evolution. We further demonstrate the sequence specificity of casposon insertion and note clear parallels with the adaptation mechanism of CRISPR-Cas. Finally, besides identifying additional representatives in each of the three originally defined families, we describe a new, fourth, family of casposons.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire Du Gène Chez Les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Sergey Shmakov
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Kira S Makarova
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| | - Patrick Forterre
- Unité Biologie Moléculaire Du Gène Chez Les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Eugene V Koonin
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 2015; 86:90-109. [PMID: 25797922 DOI: 10.1016/j.ympev.2015.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 10/25/2022]
Abstract
The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE).
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Solenne Bire
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Institute of Biotechnology, University of Lausanne, Center for Biotechnology UNIL-EPFL, 1015 Lausanne, Switzerland
| | - Peter Arensburger
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, United States.
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France.
| |
Collapse
|
21
|
|
22
|
Dhillon B, Gill N, Hamelin RC, Goodwin SB. The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola. BMC Genomics 2014; 15:1132. [PMID: 25519841 PMCID: PMC4522978 DOI: 10.1186/1471-2164-15-1132] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/12/2014] [Indexed: 01/23/2023] Open
Abstract
Background In addition to gene identification and annotation, repetitive sequence analysis has become an integral part of genome sequencing projects. Identification of repeats is important not only because it improves gene prediction, but also because of the role that repetitive sequences play in determining the structure and evolution of genes and genomes. Several methods using different repeat-finding strategies are available for whole-genome repeat sequence analysis. Four independent approaches were used to identify and characterize the repetitive fraction of the Mycosphaerella graminicola (synonym Zymoseptoria tritici) genome. This ascomycete fungus is a wheat pathogen and its finished genome comprises 21 chromosomes, eight of which can be lost with no obvious effects on fitness so are dispensable. Results Using a combination of four repeat-finding methods, at least 17% of the M. graminicola genome was estimated to be repetitive. Class I transposable elements, that amplify via an RNA intermediate, account for about 70% of the total repetitive content in the M. graminicola genome. The dispensable chromosomes had a higher percentage of repetitive elements as compared to the core chromosomes. Distribution of repeats across the chromosomes also varied, with at least six chromosomes showing a non-random distribution of repetitive elements. Repeat families showed transition mutations and a CpA → TpA dinucleotide bias, indicating the presence of a repeat-induced point mutation (RIP)-like mechanism in M. graminicola. One gene family and two repeat families specific to subtelomeres also were identified in the M. graminicola genome. A total of 78 putative clusters of nested elements was found in the M. graminicola genome. Several genes with putative roles in pathogenicity were found associated with these nested repeat clusters. This analysis of the transposable element content in the finished M. graminicola genome resulted in a thorough and highly curated database of repetitive sequences. Conclusions This comprehensive analysis will serve as a scaffold to address additional biological questions regarding the origin and fate of transposable elements in fungi. Future analyses of the distribution of repetitive sequences in M. graminicola also will be able to provide insights into the association of repeats with genes and their potential role in gene and genome evolution. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1132) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Braham Dhillon
- Department of Forest and Conservation Sciences, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Navdeep Gill
- Department of Botany, Beaty Biodiversity Centre, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. .,Natural Resources Canada, Laurentian Forestry Centre, 1055 du PEPS, Stn. Sainte-Foy, P.O. Box 10380, Quebec, QC, G1V 4C7, Canada.
| | - Stephen B Goodwin
- USDA-ARS, Crop Production and Pest Control Research Unit, Purdue University, 915 W. State Street, West Lafayette, Indiana, 47907-2054, USA.
| |
Collapse
|
23
|
The evolution of tyrosine-recombinase elements in Nematoda. PLoS One 2014; 9:e106630. [PMID: 25197791 PMCID: PMC4157794 DOI: 10.1371/journal.pone.0106630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022] Open
Abstract
Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum.
Collapse
|
24
|
First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta). Protist 2014; 165:730-44. [PMID: 25250954 DOI: 10.1016/j.protis.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Mariner-like elements (MLEs) are transposable elements able to move in the host genomes by a "cut and paste" mechanism. They have been found in numerous organisms. We succeeded in amplifying complete and truncated MLEs in the marine diatom Amphora acutiuscula. Full-length MLEs of 2,100bp delimited by imperfect Terminal Inverted Repeats revealed an intact Open Reading Frame, suggesting that the MLEs could be active. The DNA binding domain of the corresponding putative transposase could have two Helix-Turn-Helix and a Nuclear Location Site motifs, and its catalytic domain includes a particular triad of aspartic acids DD43D not previously reported. The number of copies was estimated to be 38, including approximately 20 full-length elements. Phylogenetic analysis shows that these peculiar MLEs differ from plant and other stramenopile MLEs and that they could constitute a new sub-family of Tc1-mariner elements.
Collapse
|
25
|
Comparison of phylogenetically distinct Histoplasma strains reveals evolutionarily divergent virulence strategies. mBio 2014; 5:e01376-14. [PMID: 24987093 PMCID: PMC4161242 DOI: 10.1128/mbio.01376-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with the dimorphic fungus Histoplasma capsulatum results from the inhalation of contaminated soil. Disease outcome is variable and depends on the immune status of the host, number of organisms inhaled, and the H. capsulatum strain. H. capsulatum is divided into seven distinct clades based on phylogenetic analyses, and strains from two separate clades have been identified in North America (denoted as NAm strains). We characterized an H. capsulatum isolate (WU24) from the NAm 1 lineage in relation to two other well-characterized Histoplasma isolates, the Panamanian strain G186A and the NAm 2 strain G217B. We determined that WU24 is a chemotype II strain and requires cell wall α-(1,3)-glucan for successful in vitro infection of macrophages. In a mouse model of histoplasmosis, WU24 exhibited a disease profile that was very similar to that of strain G186A at a high sublethal dose; however, at this dose G217B had markedly different kinetics. Surprisingly, infection with a lower dose mitigated many of the differences during the course of infection. The observed differences in fungal burden, disease kinetics, symptomology, and cytokine responses all indicate that there is a sophisticated relationship between host and fungus that drives the development and progression of histoplasmosis. Importance: Histoplasmosis has a wide range of clinical manifestations, presenting as mild respiratory distress, acute respiratory infection, or a life-threatening disseminated disease most often seen in immunocompromised patients. Additionally, the outcome appears to be dependent on the amount and strain of fungus inhaled. In this study, we characterized a recent clinical H. capsulatum isolate that was collected from an HIV(+) individual in North America. In contrast to other isolates from the same lineage, this strain, WU24, infected both macrophages and wild-type mice. We determined that in contrast to many other North American strains, WU24 infection of macrophages is dependent on the presence of cell wall α-(1,3)-glucan. Surprisingly, comparison of WU24 with two previously characterized isolates revealed that many conclusions regarding relative strain virulence and certain hallmarks of histoplasmosis are dependent on the inoculum size.
Collapse
|
26
|
Krupovic M, Makarova KS, Forterre P, Prangishvili D, Koonin EV. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol 2014; 12:36. [PMID: 24884953 PMCID: PMC4046053 DOI: 10.1186/1741-7007-12-36] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/13/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diverse transposable elements are abundant in genomes of cellular organisms from all three domains of life. Although transposons are often regarded as junk DNA, a growing body of evidence indicates that they are behind some of the major evolutionary innovations. With the growth in the number and diversity of sequenced genomes, previously unnoticed mobile elements continue to be discovered. RESULTS We describe a new superfamily of archaeal and bacterial mobile elements which we denote casposons because they encode Cas1 endonuclease, a key enzyme of the CRISPR-Cas adaptive immunity systems of archaea and bacteria. The casposons share several features with self-synthesizing eukaryotic DNA transposons of the Polinton/Maverick class, including terminal inverted repeats and genes for B family DNA polymerases. However, unlike any other known mobile elements, the casposons are predicted to rely on Cas1 for integration and excision, via a mechanism similar to the integration of new spacers into CRISPR loci. We identify three distinct families of casposons that differ in their gene repertoires and evolutionary provenance of the DNA polymerases. Deep branching of the casposon-encoded endonuclease in the Cas1 phylogeny suggests that casposons played a pivotal role in the emergence of CRISPR-Cas immunity. CONCLUSIONS The casposons are a novel superfamily of mobile elements, the first family of putative self-synthesizing transposons discovered in prokaryotes. The likely contribution of capsosons to the evolution of CRISPR-Cas parallels the involvement of the RAG1 transposase in vertebrate immunoglobulin gene rearrangement, suggesting that recruitment of endonucleases from mobile elements as ready-made tools for genome manipulation is a general route of evolution of adaptive immunity.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Patrick Forterre
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France
| | - David Prangishvili
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
27
|
A superfamily of DNA transposons targeting multicopy small RNA genes. PLoS One 2013; 8:e68260. [PMID: 23874566 PMCID: PMC3706591 DOI: 10.1371/journal.pone.0068260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/29/2013] [Indexed: 01/29/2023] Open
Abstract
Target-specific integration of transposable elements for multicopy genes, such as ribosomal RNA and small nuclear RNA (snRNA) genes, is of great interest because of the relatively harmless nature, stable inheritance and possible application for targeted gene delivery of target-specific transposable elements. To date, such strict target specificity has been observed only among non-LTR retrotransposons. We here report a new superfamily of sequence-specific DNA transposons, designated Dada. Dada encodes a DDE-type transposase that shows a distant similarity to transposases encoded by eukaryotic MuDR, hAT, P and Kolobok transposons, as well as the prokaryotic IS256 insertion element. Dada generates 6-7 bp target site duplications upon insertion. One family of Dada DNA transposons targets a specific site inside the U6 snRNA genes and are found in various fish species, water flea, oyster and polycheate worm. Other target sequences of the Dada transposons are U1 snRNA genes and different tRNA genes. The targets are well conserved in multicopy genes, indicating that copy number and sequence conservation are the primary constraints on the target choice of Dada transposons. Dada also opens a new frontier for target-specific gene delivery application.
Collapse
|
28
|
Bao W, Jurka J. Homologues of bacterial TnpB_IS605 are widespread in diverse eukaryotic transposable elements. Mob DNA 2013; 4:12. [PMID: 23548000 PMCID: PMC3627910 DOI: 10.1186/1759-8753-4-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/20/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bacterial insertion sequences (IS) of IS200/IS605 and IS607 family often encode a transposase (TnpA) and a protein of unknown function, TnpB. RESULTS Here we report two groups of TnpB-like proteins (Fanzor1 and Fanzor2) that are widespread in diverse eukaryotic transposable elements (TEs), and in large double-stranded DNA (dsDNA) viruses infecting eukaryotes. Fanzor and TnpB proteins share the same conserved amino acid motif in their C-terminal half regions: D-X(125, 275)-[TS]-[TS]-X-X-[C4 zinc finger]-X(5,50)-RD, but are highly variable in their N-terminal regions. Fanzor1 proteins are frequently captured by DNA transposons from different superfamilies including Helitron, Mariner, IS4-like, Sola and MuDr. In contrast, Fanzor2 proteins appear only in some IS607-type elements. We also analyze a new Helitron2 group from the Helitron superfamily, which contains elements with hairpin structures on both ends. Non-autonomous Helitron2 elements (CRe-1, 2, 3) in the genome of green alga Chlamydomonas reinhardtii are flanked by target site duplications (TSDs) of variable length (approximately 7 to 19 bp). CONCLUSIONS The phylogeny and distribution of the TnpB/Fanzor proteins indicate that they may be disseminated among eukaryotic species by viruses. We hypothesize that TnpB/Fanzor proteins may act as methyltransferases.
Collapse
Affiliation(s)
- Weidong Bao
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA, 94043, USA.
| | | |
Collapse
|
29
|
Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S, Chellappan B, Boeren S, Takken FLW, Rep M. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 2013; 14:119. [PMID: 23432788 PMCID: PMC3599309 DOI: 10.1186/1471-2164-14-119] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/11/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this pathogenicity chromosome confers virulence to a previously non-pathogenic recipient strain. We hypothesize that expression and evolution of effector genes is influenced by their genomic context. RESULTS To gain a better understanding of the genomic context of the effector genes, we manually curated the annotated genes on the pathogenicity chromosome and identified and classified transposable elements. Both retro- and DNA transposons are present with no particular overrepresented class. Retrotransposons appear evenly distributed over the chromosome, while DNA transposons tend to concentrate in large chromosomal subregions. In general, genes on the pathogenicity chromosome are dispersed within the repeat landscape. Effector genes are present within subregions enriched for DNA transposons. A miniature Impala (mimp) is always present in their promoters. Although promoter deletion studies of two effector gene loci did not reveal a direct function of the mimp for gene expression, we were able to use proximity to a mimp as a criterion to identify new effector gene candidates. Through xylem sap proteomics we confirmed that several of these candidates encode proteins secreted during plant infection. CONCLUSIONS Effector genes in Fol reside in characteristic subregions on a pathogenicity chromosome. Their genomic context allowed us to develop a method for the successful identification of novel effector genes. Since our approach is not based on effector gene similarity, but on unique genomic features, it can easily be extended to identify effector genes in Fo strains with different host specificities.
Collapse
Affiliation(s)
- Sarah M Schmidt
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Petra M Houterman
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Ines Schreiver
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
- Current address: Fachgebiet Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Lisong Ma
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Stefan Amyotte
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, 40546-0312, Lexington, KY, USA
| | - Biju Chellappan
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Sjef Boeren
- Laboratory for Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, the Netherlands
| | - Frank L W Takken
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Martijn Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Pereira JF, Almeida APMM, Cota J, Pamphile JA, Ferreira da Silva G, de Araújo EF, Gramacho KP, Brommonschenkel SH, Pereira GAG, de Queiroz MV. Boto, a class II transposon in Moniliophthora perniciosa, is the first representative of the PIF/Harbinger superfamily in a phytopathogenic fungus. Microbiology (Reading) 2013; 159:112-125. [DOI: 10.1099/mic.0.062901-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jorge Fernando Pereira
- Universidade Federal de Viçosa, Departamento de Microbiologia, CEP 36571-000, Viçosa, MG, Brazil
| | | | - Júnio Cota
- Universidade Federal de Viçosa, Departamento de Microbiologia, CEP 36571-000, Viçosa, MG, Brazil
| | - João Alencar Pamphile
- Universidade Estadual de Maringá, Departamento de Biologia Celular e Genética, CEP 87020-900, Maringá, PR, Brazil
| | - Gilvan Ferreira da Silva
- Universidade Federal de Viçosa, Departamento de Microbiologia, CEP 36571-000, Viçosa, MG, Brazil
| | - Elza Fernandes de Araújo
- Universidade Federal de Viçosa, Departamento de Microbiologia, CEP 36571-000, Viçosa, MG, Brazil
| | | | | | | | - Marisa Vieira de Queiroz
- Universidade Federal de Viçosa, Departamento de Microbiologia, CEP 36571-000, Viçosa, MG, Brazil
| |
Collapse
|
31
|
Iyer LM, Aravind L. ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. Biol Direct 2012; 7:39. [PMID: 23146749 PMCID: PMC3537659 DOI: 10.1186/1745-6150-7-39] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/30/2012] [Indexed: 11/10/2022] Open
Abstract
Members of the Arabidopsis LSH1 and Oryza G1 (ALOG) family of proteins have been shown to function as key developmental regulators in land plants. However, their precise mode of action remains unclear. Using sensitive sequence and structure analysis, we show that the ALOG domains are a distinct version of the N-terminal DNA-binding domain shared by the XerC/D-like, protelomerase, topoisomerase-IA, and Flp tyrosine recombinases. ALOG domains are distinguished by the insertion of an additional zinc ribbon into this DNA-binding domain. In particular, we show that the ALOG domain is derived from the XerC/D-like recombinases of a novel class of DIRS-1-like retroposons. Copies of this element, which have been recently inactivated, are present in several marine metazoan lineages, whereas the stramenopile Ectocarpus, retains an active copy of the same. Thus, we predict that ALOG domains help establish organ identity and differentiation by binding specific DNA sequences and acting as transcription factors or recruiters of repressive chromatin. They are also found in certain plant defense proteins, where they are predicted to function as DNA sensors. The evolutionary history of the ALOG domain represents a unique instance of a domain, otherwise exclusively found in retroelements, being recruited as a specific transcription factor in the streptophyte lineage of plants. Hence, they add to the growing evidence for derivation of DNA-binding domains of eukaryotic specific TFs from mobile and selfish elements.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
32
|
Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 2012; 19:787-808. [PMID: 21850457 DOI: 10.1007/s10577-011-9230-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
Collapse
Affiliation(s)
- Mateusz Janicki
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L1C6, Canada
| | | | | |
Collapse
|
33
|
Abstract
Most genomes are populated by thousands of sequences that originated from mobile elements. On the one hand, these sequences present a real challenge in the process of genome analysis and annotation. On the other hand, there are very interesting biological subjects involved in many cellular processes. Here, we present an overview of transposable elements (TEs) biodiversity and their impact on genomic evolution. Finally, we discuss different approaches to the TEs detection and analyses.
Collapse
|
34
|
Cho US, Harrison SC. Ndc10 is a platform for inner kinetochore assembly in budding yeast. Nat Struct Mol Biol 2011; 19:48-55. [PMID: 22139014 PMCID: PMC3252399 DOI: 10.1038/nsmb.2178] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/20/2011] [Indexed: 01/21/2023]
Abstract
Kinetochores link centromeric DNA to spindle microtubules and ensure faithful chromosome segregation during mitosis. In point-centromere yeasts, the CBF3 complex, Skp1:Ctf13:(Cep3)2:(Ndc10)2, recognizes a conserved centromeric DNA element through contacts made by Cep3 and Ndc10. We describe here the five-domain organization of Kluyveromyces lactis Ndc10 and the structure at 2.8 Å resolution of domains I–II (residues 1–402) bound to DNA. The structure resembles tyrosine DNA recombinases, although it lacks both endonuclease and ligase activities. Structural and biochemical data demonstrate that each subunit of the Ndc10 dimer binds a separate fragment of DNA, suggesting that Ndc10 stabilizes a DNA loop at the centromere. We describe in vitro association experiments showing that specific domains of Ndc10 interact with each of the known inner-kinetochore proteins or protein complexes in budding yeast. We propose that Ndc10 provides a central platform for inner-kinetochore assembly.
Collapse
Affiliation(s)
- Uhn-Soo Cho
- Jack and Eileen Connors Structural Biology Laboratory and Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
35
|
Edwards JA, Rappleye CA. Histoplasma mechanisms of pathogenesis--one portfolio doesn't fit all. FEMS Microbiol Lett 2011; 324:1-9. [PMID: 22092757 PMCID: PMC3228276 DOI: 10.1111/j.1574-6968.2011.02363.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/15/2023] Open
Abstract
Histoplasma capsulatum is the leading cause of endemic mycosis in the world. Analyses of clinical isolates from different endemic regions show important diversity within the species. Recent molecular studies of two isolates, the Chemotype I NAm2 strain G217B and the Chemotype II Panamanian strain G186A, reveal significant genetic, structural, and molecular differences between these representative Histoplasma strains. Some of these variations have functional consequences, representing distinct molecular mechanisms that facilitate Histoplasma pathogenesis. The realization of Histoplasma strain diversity highlights the importance of characterizing Histoplasma virulence factors in the context of specific clinical strain isolates.
Collapse
Affiliation(s)
- Jessica A. Edwards
- Departments of Microbiology and Internal Medicine, The Center for Microbial Interface Biology, Ohio State University, 484 W. 12Avenue, Columbus, OH 43210, USA
| | - Chad A. Rappleye
- Departments of Microbiology and Internal Medicine, The Center for Microbial Interface Biology, Ohio State University, 484 W. 12Avenue, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Kojima KK, Jurka J. Crypton transposons: identification of new diverse families and ancient domestication events. Mob DNA 2011; 2:12. [PMID: 22011512 PMCID: PMC3212892 DOI: 10.1186/1759-8753-2-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/19/2011] [Indexed: 01/27/2023] Open
Abstract
Background "Domestication" of transposable elements (TEs) led to evolutionary breakthroughs such as the origin of telomerase and the vertebrate adaptive immune system. These breakthroughs were accomplished by the adaptation of molecular functions essential for TEs, such as reverse transcription, DNA cutting and ligation or DNA binding. Cryptons represent a unique class of DNA transposons using tyrosine recombinase (YR) to cut and rejoin the recombining DNA molecules. Cryptons were originally identified in fungi and later in the sea anemone, sea urchin and insects. Results Herein we report new Cryptons from animals, fungi, oomycetes and diatom, as well as widely conserved genes derived from ancient Crypton domestication events. Phylogenetic analysis based on the YR sequences supports four deep divisions of Crypton elements. We found that the domain of unknown function 3504 (DUF3504) in eukaryotes is derived from Crypton YR. DUF3504 is similar to YR but lacks most of the residues of the catalytic tetrad (R-H-R-Y). Genes containing the DUF3504 domain are potassium channel tetramerization domain containing 1 (KCTD1), KIAA1958, zinc finger MYM type 2 (ZMYM2), ZMYM3, ZMYM4, glutamine-rich protein 1 (QRICH1) and "without children" (WOC). The DUF3504 genes are highly conserved and are found in almost all jawed vertebrates. The sequence, domain structure, intron positions and synteny blocks support the view that ZMYM2, ZMYM3, ZMYM4, and possibly QRICH1, were derived from WOC through two rounds of genome duplication in early vertebrate evolution. WOC is observed widely among bilaterians. There could be four independent events of Crypton domestication, and one of them, generating WOC/ZMYM, predated the birth of bilaterian animals. This is the third-oldest domestication event known to date, following the domestication generating telomerase reverse transcriptase (TERT) and Prp8. Many Crypton-derived genes are transcriptional regulators with additional DNA-binding domains, and the acquisition of the DUF3504 domain could have added new regulatory pathways via protein-DNA or protein-protein interactions. Conclusions Cryptons have contributed to animal evolution through domestication of their YR sequences. The DUF3504 domains are domesticated YRs of animal Crypton elements.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
| | | |
Collapse
|
37
|
Nakayashiki H. The Trickster in the genome: contribution and control of transposable elements. Genes Cells 2011; 16:827-41. [DOI: 10.1111/j.1365-2443.2011.01533.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
39
|
Clutterbuck AJ. Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol 2011; 48:306-26. [PMID: 20854921 DOI: 10.1016/j.fgb.2010.09.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022]
Affiliation(s)
- A John Clutterbuck
- School of Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
40
|
Singh V, Mishra RK. RISCI--Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes. BMC Bioinformatics 2010; 11:609. [PMID: 21184688 PMCID: PMC3024322 DOI: 10.1186/1471-2105-11-609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/26/2010] [Indexed: 01/19/2023] Open
Abstract
Background - The availability of multiple whole genome sequences has facilitated in silico identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects. Results - We showcase the utility of RISCI by comparing full length and truncated L1HS and AluYa5 retrotransposons in the reference human genome with the chimpanzee genome and the alternate human assemblies (Celera and HuRef). Comparison of the reference human genome with alternate human assemblies using RISCI predicts 14 novel polymorphisms in full length L1HS, 24 in truncated L1HS and 140 novel polymorphisms in AluYa5 insertions, besides several insertion and post insertion changes. We present comparison with two previous studies to show that RISCI predictions are broadly in agreement with earlier reports. We also demonstrate its versatility by comparing various strains of Mycobacterium tuberculosis for IS 6100 insertion polymorphism. Conclusions - RISCI combines comparative genomics with subtractive hybridization, inferring changes only when exclusive to one of the two genomes being compared. The pipeline is generic and may be applied to most transposons and to any two or more genomes sharing high sequence similarity. Such comparisons, when performed on a larger scale, may pull out a few critical events, which may have seeded the divergence between the two species under comparison.
Collapse
Affiliation(s)
- Vipin Singh
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | |
Collapse
|
41
|
Janbon G, Maeng S, Yang DH, Ko YJ, Jung KW, Moyrand F, Floyd A, Heitman J, Bahn YS. Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genet Biol 2010; 47:1070-80. [PMID: 21067947 DOI: 10.1016/j.fgb.2010.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 10/03/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
The RNA interference (RNAi) mediated by homology-dependent degradation of the target mRNA with small RNA molecules plays a key role in controlling transcription and translation processes in a number of eukaryotic organisms. The RNAi machinery is also evolutionarily conserved in a wide variety of fungal species, including pathogenic fungi. To elucidate the physiological functions of the RNAi pathway in Cryptococcus neoformans that causes fungal meningitis, here we performed genetic analyses for genes encoding Argonaute (AGO1 and AGO2), RNA-dependent RNA polymerase (RDP1), and Dicers (DCR1 and DCR2) in both serotype A and D C. neoformans. The present study shows that Ago1, Rdp1, and Dcr2 are the major components of the RNAi process occurring in C. neoformans. However, the RNAi machinery is not involved in regulation of production of two virulence factors (capsule and melanin), sexual differentiation, and diverse stress response. Comparative transcriptome analysis of the serotype A and D RNAi mutants revealed that only modest changes occur in the genome-wide transcriptome profiles when the RNAi process was perturbed. Notably, the serotype D rdp1Δ mutants showed an increase in transcript abundance of active retrotransposons and transposons, such as T2 and T3, the latter of which is a novel serotype D-specific transposon of C. neoformans. In a wild type background both T2 and T3 were found to be weakly active mobile elements, although we found no evidence of Cnl1 retrotransposon mobility. In contrast, all three transposable elements exhibited enhanced mobility in the rdp1Δ mutant strain. In conclusion, the RNAi pathway plays an important role in controlling transposon activity and genome integrity of C. neoformans.
Collapse
Affiliation(s)
- Guilhem Janbon
- Unité des Aspergillus, Institut Pasteur, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The yeast-phase virulence requirement for α-glucan synthase differs among Histoplasma capsulatum chemotypes. EUKARYOTIC CELL 2010; 10:87-97. [PMID: 21037179 DOI: 10.1128/ec.00214-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histoplasma capsulatum strains can be classified into two chemotypes based on cell wall composition. The cell wall of chemotype II yeast contains a layer of α-(1,3)-glucan that masks immunostimulatory β-(1,3)-glucans from detection by the Dectin-1 receptor on host phagocytes. This α-(1,3)-glucan cell wall component is essential for chemotype II Histoplasma virulence. In contrast, chemotype I yeast cells lack α-(1,3)-glucan in vitro, yet they remain fully virulent in vivo. Analysis of the chemotype I α-glucan synthase (AGS1) locus revealed a 2.7-kb insertion in the promoter region that diminishes AGS1 expression. Nonetheless, AGS1 mRNA can be detected during respiratory infection with chemotype I yeast, suggesting that α-(1,3)-glucan could be produced during in vivo growth despite its absence in vitro. To directly test whether AGS1 contributes to chemotype I strain virulence, we prevented AGS1 function by RNA interference and by insertional mutation. Loss of AGS1 function in chemotype I does not impair the cytotoxicity of ags1(-) mutant yeast to cultured macrophages, nor does it affect the intracellular growth of yeast. In a murine model of histoplasmosis, the ags1(-) chemotype I mutant strains show no defect in lung infection or in extrapulmonary dissemination. Together, these studies demonstrate that AGS1 expression is dispensable for chemotype I yeast virulence, in contrast to the case for chemotype II yeast. Despite the absence of cell wall α-(1,3)-glucan, chemotype I yeast can avoid detection by Dectin-1 in a growth stage-dependent manner. This suggests the production of a unique Histoplasma chemotype I factor that, at least partially, circumvents the α-(1,3)-glucan requirement for yeast virulence.
Collapse
|
43
|
Kumar RP, Senthilkumar R, Singh V, Mishra RK. Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays 2010; 32:165-74. [PMID: 20091758 DOI: 10.1002/bies.200900111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-coding DNA has consistently increased during evolution of higher eukaryotes. Since the number of genes has remained relatively static during the evolution of complex organisms, it is believed that increased degree of sophisticated regulation of genes has contributed to the increased complexity. A higher proportion of non-coding DNA, including repeats, is likely to provide more complex regulatory potential. Here, we propose that repeats play a regulatory role by contributing to the packaging of the genome during cellular differentiation. Repeats, and in particular the simple sequence repeats, are proposed to serve as landmarks that can target regulatory mechanisms to a large number of genomic sites with the help of very few factors and regulate the linked loci in a coordinated manner. Repeats may, therefore, function as common target sites for regulatory mechanisms involved in the packaging and dynamic compartmentalization of the chromatin into active and inactive regions during cellular differentiation.
Collapse
Affiliation(s)
- Ram Parikshan Kumar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
44
|
Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 2010; 45:50-69. [PMID: 20067338 DOI: 10.3109/10409230903505596] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA rearrangements are important in genome function and evolution. Genetic material can be rearranged inadvertently during processes such as DNA repair, or can be moved in a controlled manner by enzymes specifically dedicated to the task. DNA transposases comprise one class of such enzymes. These move DNA segments known as transposons to new locations, without the need for sequence homology between transposon and target site. Several biochemically distinct pathways have evolved for DNA transposition, and genetic and biochemical studies have provided valuable insights into many of these. However, structural information on transposases - particularly with DNA substrates - has proven elusive in most cases. On the other hand, large-scale genome sequencing projects have led to an explosion in the number of annotated prokaryotic and eukaryotic mobile elements. Here, we briefly review biochemical and mechanistic aspects of DNA transposition, and propose that integrating sequence information with structural information using bioinformatics tools such as secondary structure prediction and protein threading can lead not only to an additional level of understanding but possibly also to testable hypotheses regarding transposition mechanisms. Detailed understanding of transposition pathways is a prerequisite for the long-term goal of exploiting DNA transposons as genetic tools and as a basis for genetic medical applications.
Collapse
Affiliation(s)
- Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
45
|
Marini MM, Zanforlin T, Santos PC, Barros RRM, Guerra ACP, Puccia R, Felipe MSS, Brigido M, Soares CMA, Ruiz JC, Silveira JF, Cisalpino PS. Identification and characterization of Tc1/mariner-like DNA transposons in genomes of the pathogenic fungi of the Paracoccidioides species complex. BMC Genomics 2010; 11:130. [PMID: 20178623 PMCID: PMC2836289 DOI: 10.1186/1471-2164-11-130] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 02/23/2010] [Indexed: 12/18/2022] Open
Abstract
Background Paracoccidioides brasiliensis (Eukaryota, Fungi, Ascomycota) is a thermodimorphic fungus, the etiological agent of paracoccidioidomycosis, the most important systemic mycoses in Latin America. Three isolates corresponding to distinct phylogenetic lineages of the Paracoccidioides species complex had their genomes sequenced. In this study the identification and characterization of class II transposable elements in the genomes of these fungi was carried out. Results A genomic survey for DNA transposons in the sequence assemblies of Paracoccidioides, a genus recently proposed to encompass species P. brasiliensis (harboring phylogenetic lineages S1, PS2, PS3) and P. lutzii (Pb01-like isolates), has been completed. Eight new Tc1/mariner families, referred to as Trem (Transposable element mariner), labeled A through H were identified. Elements from each family have 65-80% sequence similarity with other Tc1/mariner elements. They are flanked by 2-bp TA target site duplications and different termini. Encoded DDD-transposases, some of which have complete ORFs, indicated that they could be functionally active. The distribution of Trem elements varied between the genomic sequences characterized as belonging to P. brasiliensis (S1 and PS2) and P. lutzii. TremC and H elements would have been present in a hypothetical ancestor common to P. brasiliensis and P. lutzii, while TremA, B and F elements were either acquired by P. brasiliensis or lost by P. lutzii after speciation. Although TremD and TremE share about 70% similarity, they are specific to P. brasiliensis and P. lutzii, respectively. This suggests that these elements could either have been present in a hypothetical common ancestor and have evolved divergently after the split between P. brasiliensis and P. Lutzii, or have been independently acquired by horizontal transfer. Conclusions New families of Tc1/mariner DNA transposons in the genomic assemblies of the Paracoccidioides species complex are described. Families were distinguished based on significant BLAST identities between transposases and/or TIRs. The expansion of Trem in a putative ancestor common to the species P. brasiliensis and P. lutzii would have given origin to TremC and TremH, while other elements could have been acquired or lost after speciation had occurred. The results may contribute to our understanding of the organization and architecture of genomes in the genus Paracoccidioides.
Collapse
Affiliation(s)
- Marjorie M Marini
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bao W, Kapitonov VV, Jurka J. Ginger DNA transposons in eukaryotes and their evolutionary relationships with long terminal repeat retrotransposons. Mob DNA 2010; 1:3. [PMID: 20226081 PMCID: PMC2836005 DOI: 10.1186/1759-8753-1-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/25/2010] [Indexed: 12/12/2022] Open
Abstract
Background In eukaryotes, long terminal repeat (LTR) retrotransposons such as Copia, BEL and Gypsy integrate their DNA copies into the host genome using a particular type of DDE transposase called integrase (INT). The Gypsy INT-like transposase is also conserved in the Polinton/Maverick self-synthesizing DNA transposons and in the 'cut and paste' DNA transposons known as TDD-4 and TDD-5. Moreover, it is known that INT is similar to bacterial transposases that belong to the IS3, IS481, IS30 and IS630 families. It has been suggested that LTR retrotransposons evolved from a non-LTR retrotransposon fused with a DNA transposon in early eukaryotes. In this paper we analyze a diverse superfamily of eukaryotic cut and paste DNA transposons coding for INT-like transposase and discuss their evolutionary relationship to LTR retrotransposons. Results A new diverse eukaryotic superfamily of DNA transposons, named Ginger (for 'Gypsy INteGrasE Related') DNA transposons is defined and analyzed. Analogously to the IS3 and IS481 bacterial transposons, the Ginger termini resemble those of the Gypsy LTR retrotransposons. Currently, Ginger transposons can be divided into two distinct groups named Ginger1 and Ginger2/Tdd. Elements from the Ginger1 group are characterized by approximately 40 to 270 base pair (bp) terminal inverted repeats (TIRs), and are flanked by CCGG-specific or CCGT-specific target site duplication (TSD) sequences. The Ginger1-encoded transposases contain an approximate 400 amino acid N-terminal portion sharing high amino acid identity to the entire Gypsy-encoded integrases, including the YPYY motif, zinc finger, DDE domain, and, importantly, the GPY/F motif, a hallmark of Gypsy and endogenous retrovirus (ERV) integrases. Ginger1 transposases also contain additional C-terminal domains: ovarian tumor (OTU)-like protease domain or Ulp1 protease domain. In vertebrate genomes, at least two host genes, which were previously thought to be derived from the Gypsy integrases, apparently have evolved from the Ginger1 transposase genes. We also introduce a second Ginger group, designated Ginger2/Tdd, which includes the previously reported DNA transposon TDD-4. Conclusions The Ginger superfamily represents eukaryotic DNA transposons closely related to LTR retrotransposons. Ginger elements provide new insights into the evolution of transposable elements and certain transposable element (TE)-derived genes.
Collapse
Affiliation(s)
- Weidong Bao
- Genetic Information Research Institute, Mountain View, CA, USA.
| | | | | |
Collapse
|
47
|
Pritham EJ. Transposable elements and factors influencing their success in eukaryotes. J Hered 2009; 100:648-55. [PMID: 19666747 DOI: 10.1093/jhered/esp065] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent advances in genome sequencing have led to a vast accumulation of transposable element data. Consideration of the genome sequencing projects in a phylogenetic context reveals that despite the hundreds of eukaryotic genomes that have been sequenced, a strong bias in sampling exists. There is a general under-representation of unicellular eukaryotes and a dearth of genome projects in many branches of the eukaryotic phylogeny. Among sequenced genomes, great variation in genome size exists, however, little difference in the total number of cellular genes is observed. For many eukaryotes, the remaining genomic space is extremely dynamic and predominantly composed of a menagerie of populations of transposable elements. Given the dynamic nature of the genomic niche filled by transposable elements, it is evident that these elements have played an important role in genome evolution. The contribution of transposable elements to genome architecture and to the advent of genetic novelty is likely to be dependent, at least in part, on the transposition mechanism, diversity, number, and rate of turnover of transposable elements in the genome at any given time. The focus of this review is the discussion of some of the forces that act to shape transposable element diversity within and between genomes.
Collapse
Affiliation(s)
- Ellen J Pritham
- Department of Biology, University of Texas, Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
48
|
Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007; 8:241-59. [PMID: 17506661 DOI: 10.1146/annurev.genom.8.080706.092416] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes contain vast amounts of repetitive DNA derived from transposable elements (TEs). Large-scale sequencing of these genomes has produced an unprecedented wealth of information about the origin, diversity, and genomic impact of what was once thought to be "junk DNA." This has also led to the identification of two new classes of DNA transposons, Helitrons and Polintons, as well as several new superfamilies and thousands of new families. TEs are evolutionary precursors of many genes, including RAG1, which plays a role in the vertebrate immune system. They are also the driving force in the evolution of epigenetic regulation and have a long-term impact on genomic stability and evolution. Remnants of TEs appear to be overrepresented in transcription regulatory modules and other regions conserved among distantly related species, which may have implications for our understanding of their impact on speciation.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California 94043, USA.
| | | | | | | |
Collapse
|
49
|
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007; 8:973-82. [PMID: 17984973 DOI: 10.1038/nrg2165] [Citation(s) in RCA: 1894] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.
Collapse
Affiliation(s)
- Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aravind L, Iyer LM, Wu C. Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle 2007; 6:2511-5. [PMID: 17704645 PMCID: PMC2394858 DOI: 10.4161/cc.6.20.4793] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently, Scm3p has been shown to be a nonhistone component of centromeric chromatin that binds stoichiometrically to CenH3-H4 histones, and to be required for the assembly of kinetochores in Saccharomyces cerevisiae. Scm3p is conserved across fungi, and displays a remarkable variation in protein size, ranging from approximately 200 amino acids in S. cerevisiae to approximately 1300 amino acids in Neurospora crassa. This is primarily due a variable C-terminal segment that is linked to a conserved N-terminal, CenH3-interacting domain. We have discovered that the extended C-terminal region of Scm3p is strikingly characterized by lineage-specific fusions of single or multiple predicted DNA-binding domains different versions of the MYB and C2H2 zinc finger domains, AT-hooks, and a novel cysteine-rich metal-chelating cluster that are absent from the small versions of Scm3. Instead, S. cerevisiae point centromeres are recognized by components of the CBF3 DNA binding complex, which are conserved amongst close relatives of budding yeast, but are correspondingly absent from more distant fungi that possess regional centromeres. Hence, the C-terminal DNA binding motifs found in large Scm3p proteins may, along with CenH3, serve as a key epigenetic signal by recognizing and accommodating the lineage-specific diversity of centromere DNA in course of evolution.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA.
| | | | | |
Collapse
|