1
|
Fang P, Konyali D, Fischer E, Mayer RP, Huang J, Elena AX, Orzechowski GH, Tony-Odigie A, Kneis D, Dalpke A, Krebs P, Li B, Berendonk TU, Klümper U. Effects of Cigarette-Derived Compounds on the Spread of Antimicrobial Resistance in Artificial Human Lung Sputum Medium, Simulated Environmental Media, and Wastewater. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47003. [PMID: 40032488 PMCID: PMC11980918 DOI: 10.1289/ehp14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 11/20/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Antimicrobial resistance (AMR) and smoking of tobacco products are two of the most important threats to global human health. Both are associated with millions of deaths every year. Surprisingly, the immediate interactions between these two threats remain poorly understood. OBJECTIVES We aimed to elucidate the effect of toxic compounds from cigarette smoke, ashes, and filters on the spread of antibiotic resistance genes in human lung and environmental microbiomes. METHODS Conjugation experiments using donor and recipient strain pairs of either Pseudomonas putida or Escherichia coli and AMR-encoding plasmids were conducted under exposure to different concentrations of cigarette smoke condensate in lung sputum medium, as well as cigarette ash and filter leachate in environmental media. We further measured reactive oxygen species (ROS) production of the donor strain under exposure to the cigarette-derived compounds to explore whether stress experienced by the bacteria could be one of the underlying mechanisms of change in plasmid transfer frequencies. Furthermore, used cigarette filters were submerged in a wastewater stream for several weeks, and the colonizing communities were analyzed using high-throughput sequencing and high-throughput quantitative polymerase chain reaction and compared with communities colonizing unused control filters. RESULTS Exposure to cigarette smoke condensate at relevant concentrations resulted in > 2 -fold higher transfer rates of a multidrug-resistance-encoding plasmid in artificial lung sputum medium. This was associated with higher ROS production as part of the bacterial stress response when exposed to cigarette-derived toxicants. Similar results were obtained for cigarette ash leachate in an environmental medium. Further, used cigarette filters were colonized by different microbial communities compared with unused filters. Those communities were significantly enriched with potential human pathogens and AMR. DISCUSSION The results of this study suggest that cigarette-derived compounds can indeed promote the spread of AMR within simulated human lung and environmental conditions. This study highlights that the consumption of cigarettes has not only direct but may also have indirect adverse effects on human health by promoting AMR. https://doi.org/10.1289/EHP14704.
Collapse
Affiliation(s)
- Peiju Fang
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Diala Konyali
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Emily Fischer
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Robin Pascal Mayer
- Institute of Urban and Industrial Water Management, TU Dresden, Dresden, Germany
| | - Jin Huang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Alan Xavier Elena
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | | | - Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - David Kneis
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, TU Dresden, Dresden, Germany
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Thomas U. Berendonk
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| |
Collapse
|
2
|
Shintani M, Vestergaard G, Milaković M, Kublik S, Smalla K, Schloter M, Udiković-Kolić N. Integrons, transposons and IS elements promote diversification of multidrug resistance plasmids and adaptation of their hosts to antibiotic pollutants from pharmaceutical companies. Environ Microbiol 2023; 25:3035-3051. [PMID: 37655671 DOI: 10.1111/1462-2920.16481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | | | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Croatia
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Zagreb, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Zagreb, Germany
| | | |
Collapse
|
3
|
Huang Q, Liu Z, Guo Y, Li B, Yang Z, Liu X, Ni J, Li X, Zhang X, Zhou N, Yin H, Jiang C, Hao L. Coal-source acid mine drainage reduced the soil multidrug-dominated antibiotic resistome but increased the heavy metal(loid) resistome and energy production-related metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162330. [PMID: 36813198 DOI: 10.1016/j.scitotenv.2023.162330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A recent global scale study found that mining-impacted environments have multi-antibiotic resistance gene (ARG)-dominated resistomes with an abundance similar to urban sewage but much higher than freshwater sediment. These findings raised concern that mining may increase the risk of ARG environmental proliferation. The current study assessed how typical multimetal(loid)-enriched coal-source acid mine drainage (AMD) contamination affects soil resistomes by comparing with background soils unaffected by AMD. Both contaminated and background soils have multidrug-dominated antibiotic resistomes attributed to the acidic environment. AMD-contaminated soils had a lower relative abundance of ARGs (47.45 ± 23.34 ×/Gb) than background soils (85.47 ± 19.71 ×/Gb) but held high-level heavy metal(loid) resistance genes (MRGs, 133.29 ± 29.36 ×/Gb) and transposase- and insertion sequence-dominated mobile genetic elements (MGEs, 188.51 ± 21.81 ×/Gb), which was 56.26 % and 412.12 % higher than background soils, respectively. Procrustes analysis showed that the microbial community and MGEs exerted more influence on driving heavy metal(loid) resistome variation than antibiotic resistome. The microbial community increased energy production-related metabolism to fulfill the increasing energy needs required by acid and heavy metal(loid) resistance. Horizontal gene transfer (HGT) events primarily exchanged energy- and information-related genes to adapt to the harsh AMD environment. These findings provide new insight into the risk of ARG proliferation in mining environments.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhenghua Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jianmei Ni
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| |
Collapse
|
4
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Fessler M, Madsen JS, Zhang Y. Conjugative plasmids inhibit extracellular electron transfer in Geobacter sulfurreducens. Front Microbiol 2023; 14:1150091. [PMID: 37007462 PMCID: PMC10063792 DOI: 10.3389/fmicb.2023.1150091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Geobacter sulfurreducens is part of a specialized group of microbes with the unique ability to exchange electrons with insoluble materials, such as iron oxides and electrodes. Therefore, G. sulfurreducens plays an essential role in the biogeochemical iron cycle and microbial electrochemical systems. In G. sulfurreducens this ability is primarily dependent on electrically conductive nanowires that link internal electron flow from metabolism to solid electron acceptors in the extracellular environment. Here we show that when carrying conjugative plasmids, which are self-transmissible plasmids that are ubiquitous in environmental bacteria, G. sulfurreducens reduces insoluble iron oxides at much slower rates. This was the case for all three conjugative plasmids tested (pKJK5, RP4 and pB10). Growth with electron acceptors that do not require expression of nanowires was, on the other hand, unaffected. Furthermore, iron oxide reduction was also inhibited in Geobacter chapellei, but not in Shewanella oneidensis where electron export is nanowire-independent. As determined by transcriptomics, presence of pKJK5 reduces transcription of several genes that have been shown to be implicated in extracellular electron transfer in G. sulfurreducens, including pilA and omcE. These results suggest that conjugative plasmids can in fact be very disadvantageous for the bacterial host by imposing specific phenotypic changes, and that these plasmids may contribute to shaping the microbial composition in electrode-respiring biofilms in microbial electrochemical reactors.
Collapse
Affiliation(s)
- Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Yifeng Zhang,
| |
Collapse
|
6
|
Palomino A, Gewurz D, DeVine L, Zajmi U, Moralez J, Abu-Rumman F, Smith RP, Lopatkin AJ. Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment. THE ISME JOURNAL 2023; 17:151-162. [PMID: 36261510 PMCID: PMC9750983 DOI: 10.1038/s41396-022-01329-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022]
Abstract
Conjugative plasmids often encode antibiotic resistance genes that provide selective advantages to their bacterial hosts during antibiotic treatment. Previous studies have predominantly considered these established genes as the primary benefit of antibiotic-mediated plasmid dissemination. However, many genes involved in cellular metabolic processes may also protect against antibiotic treatment and provide selective advantages. Despite the diversity of such metabolic genes and their potential ecological impact, their plasmid-borne prevalence, co-occurrence with canonical antibiotic resistance genes, and phenotypic effects remain widely understudied. To address this gap, we focused on Escherichia coli, which can often act as a pathogen, and is known to spread antibiotic resistance genes via conjugation. We characterized the presence of metabolic genes on 1,775 transferrable plasmids and compared their distribution to that of known antibiotic resistance genes. We found high abundance of genes involved in cellular metabolism and stress response. Several of these genes demonstrated statistically significant associations or disassociations with known antibiotic resistance genes at the strain level, indicating that each gene type may impact the spread of the other across hosts. Indeed, in vitro characterization of 13 statistically relevant metabolic genes confirmed that their phenotypic impact on antibiotic susceptibility was largely consistent with in situ relationships. These results emphasize the ecological importance of metabolic genes on conjugal plasmids, and that selection dynamics of E. coli pathogens arises as a complex consequence of both canonical mechanisms and their interactions with metabolic pathways.
Collapse
Affiliation(s)
- Alana Palomino
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Danya Gewurz
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Lela DeVine
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Ujana Zajmi
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Jenifer Moralez
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA
| | - Fatima Abu-Rumman
- grid.261241.20000 0001 2168 8324Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL 33314 USA
| | - Robert P. Smith
- grid.261241.20000 0001 2168 8324Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL 33314 USA ,grid.261241.20000 0001 2168 8324Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314 USA
| | - Allison J. Lopatkin
- grid.470930.90000 0001 2182 2351Department of Biology, Barnard College, New York, NY 10027 USA ,grid.21729.3f0000000419368729Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027 USA ,grid.21729.3f0000000419368729Data Science Institute, Columbia University, New York, NY 10027 USA ,grid.21729.3f0000000419368729Department of Systems Biology, Columbia University, New York, NY 10027 USA ,grid.16416.340000 0004 1936 9174Department of Chemical Engineering, University of Rochester, Rochester, NY 14627 USA
| |
Collapse
|
7
|
Biofilms preserve the transmissibility of a multi-drug resistance plasmid. NPJ Biofilms Microbiomes 2022; 8:95. [PMID: 36481746 PMCID: PMC9732292 DOI: 10.1038/s41522-022-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Self-transmissible multidrug resistance (MDR) plasmids are a major health concern because they can spread antibiotic resistance to pathogens. Even though most pathogens form biofilms, little is known about how MDR plasmids persist and evolve in biofilms. We hypothesize that (i) biofilms act as refugia of MDR plasmids by retaining them in the absence of antibiotics longer than well-mixed planktonic populations and that (ii) the evolutionary trajectories that account for the improvement of plasmid persistence over time differ between biofilms and planktonic populations. In this study, we evolved Acinetobacter baumannii with an MDR plasmid in biofilm and planktonic populations with and without antibiotic selection. In the absence of selection, biofilm populations were better able to maintain the MDR plasmid than planktonic populations. In planktonic populations, plasmid persistence improved rapidly but was accompanied by a loss of genes required for the horizontal transfer of plasmids. In contrast, in biofilms, most plasmids retained their transfer genes, but on average, plasmid, persistence improved less over time. Our results showed that biofilms can act as refugia of MDR plasmids and favor the horizontal mode of plasmid transfer, which has important implications for the spread of MDR.
Collapse
|
8
|
Effects of Nutrient Level and Growth Rate on the Conjugation Process That Transfers Mobile Antibiotic Resistance Genes in Continuous Cultures. Appl Environ Microbiol 2022; 88:e0112122. [PMID: 36094214 PMCID: PMC9552606 DOI: 10.1128/aem.01121-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria in the effluent of wastewater treatment plants (WWTPs) can transfer antibiotic resistance genes (ARGs) to the bacteria in receiving water through conjugation; however, there is a lack of quantitative assessment of this phenomenon in continuous cultures. Our objective was to determine the effects of background nutrient levels in river water column and growth rates of bacteria on the conjugation frequency of ARGs from effluent bacteria to river bacteria, as well as on the resulting resistance level (i.e., MICs) of the river bacteria. Chemostats were employed to simulate the discharge points of WWTPs into rivers, where effluent bacteria (donor cells) meet river bacteria (recipient cells). Both donor and recipient cells were Escherichia coli cells, and the donor cells were constructed by filter mating with bacteria in the effluent of a local WWTP. Results showed that higher bacterial growth rate (0.45 h-1 versus 0.15 h-1) led to higher conjugation frequencies (10-4 versus 10-6 transconjugant per recipient). The nutrient level also significantly affected the conjugation frequency, albeit to a lesser extent than the growth rate. The MIC against tetracycline increased from 2 mg/L in the recipient to 64 to 128 mg/L in transconjugants. In comparison, the MIC only increased to as high as 8 mg/L in mutants. Whole-genome sequencing showed that the tet-containing plasmid in both the donor and the transconjugant cells also occur in other fecal bacterial genera. The quantitative information obtained from this study can inform hazard identification related to the proliferation of wastewater-associated ARGs in surface water. IMPORTANCE WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment. The use of batch cultures in previous studies cannot adequately simulate the nutrient conditions and growth rates in receiving water. In this study, chemostats were employed to simulate the continuous growth of bacteria in receiving water. Furthermore, the experimental setup allowed for separate investigations on the effects of nutrient levels (i.e., simulating background nutrients in river water) and bacterial growth rates on conjugation frequencies and resulting resistance levels. The study generates statistically sound ecological data that can be used to estimate the risk of wastewater-originated ARGs as part of the One Health framework.
Collapse
|
9
|
Weise K, Winter L, Fischer E, Kneis D, de la Cruz Barron M, Kunze S, Berendonk TU, Jungmann D, Klümper U. Multiwalled Carbon Nanotubes Promote Bacterial Conjugative Plasmid Transfer. Microbiol Spectr 2022; 10:e0041022. [PMID: 35384690 PMCID: PMC9045119 DOI: 10.1128/spectrum.00410-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) regularly enter aquatic environments due to their ubiquity in consumer products and engineering applications. However, the effects of MWCNT pollution on the environmental microbiome are poorly understood. Here, we evaluated whether these carbon nanoparticles can elevate the spread of antimicrobial resistance by promoting bacterial plasmid transfer, which has previously been observed for copper nanomaterials with antimicrobial properties as well as for microplastics. Through a combination of experimental liquid mating assays between Pseudomonas putida donor and recipient strains with plasmid pKJK5::gfpmut3b and mathematical modeling, we here demonstrate that the presence of MWCNTs leads to increased plasmid transfer rates in a concentration-dependent manner. The percentage of transconjugants per recipient significantly increased from 0.21 ± 0.04% in absence to 0.41 ± 0.09% at 10 mg L-1 MWCNTs. Similar trends were observed when using an Escherichia coli donor hosting plasmid pB10. The identified mechanism underlying the observed dynamics was the agglomeration of MWCNTs. A significantly increased number of particles with >6 μm diameter was detected in the presence of MWCNTs, which can in turn provide novel surfaces for bacterial interactions between donor and recipient cells after colonization. Fluorescence microscopy confirmed that MWCNT agglomerates were indeed covered in biofilms that contained donor bacteria as well as elevated numbers of green fluorescent transconjugant cells containing the plasmid. Consequently, MWCNTs provide bacteria with novel surfaces for intense cell-to-cell interactions in biofilms and can promote bacterial plasmid transfer, hence potentially elevating the spread of antimicrobial resistance. IMPORTANCE In recent decades, the use of carbon nanoparticles, especially multiwalled carbon nanotubes (MWCNTs), in a variety of products and engineering applications has been growing exponentially. As a result, MWCNT pollution into environmental compartments has been increasing. We here demonstrate that the exposure to MWCNTs can affect bacterial plasmid transfer rates in aquatic environments, an important process connected to the spread of antimicrobial resistance genes in microbial communities. This is mechanistically explained by the ability of MWCNTs to form bigger agglomerates, hence providing novel surfaces for bacterial interactions. Consequently, increasing pollution with MWCNTs has the potential to elevate the ongoing spread of antimicrobial resistance, a major threat to human health in the 21st century.
Collapse
Affiliation(s)
- Katrin Weise
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Lena Winter
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Emily Fischer
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - David Kneis
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Magali de la Cruz Barron
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of River Ecology, Magdeburg, Germany
| | - Steffen Kunze
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | | | - Dirk Jungmann
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| |
Collapse
|
10
|
Hung WC, Rugh M, Feraud M, Avasarala S, Kurylo J, Gutierrez M, Jimenez K, Truong N, Holden PA, Grant SB, Liu H, Ambrose RF, Jay JA. Influence of soil characteristics and metal(loid)s on antibiotic resistance genes in green stormwater infrastructure in Southern California. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127469. [PMID: 34655877 DOI: 10.1016/j.jhazmat.2021.127469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/14/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The synergetic effects of metal(loid)s and soil characteristics on bacterial antibiotic resistance genes (ARGs) in green stormwater infrastructure (GSI) has been relatively understudied. Surface soil samples from six GSIs in Southern California over three time periods were assessed for selected ARGs, class 1 integron-integrase genes (intI1), 16S rRNA genes, and bioavailable and total concentrations of nine metal(loid)s, to investigate the relationships among ARGs, soil characteristics, and co-occurring metal(loid)s. Significant correlations existed among relative gene abundances (sul1, sul2, tetW, and intI1), total metal(loid)s (arsenic, copper, lead, vanadium, and zinc), and bioavailable metal(loid) (arsenic) (r = 0.29-0.61, padj < 0.05). Additionally, soil texture, organic matter, and nutrients within GSI appeared to be significantly correlated with relative gene abundances of sul1, sul2, and tetW (r = -0.57 to 0.59, padj < 0.05). Multiple regression models significantly improved the estimation of ARGs in GSI when considering multiple effects of soil characteristics and metal(loid)s (r = 0.74, padj < 0.001) compared to correlation results. Total arsenic was a significant (positive) correlate in all the regression models of relative gene abundances. This work provides new insights into co-dependencies between GSI ARGs and co-occurring metal(loid)s, indicating the need for risk assessment of metal(loid)-influenced ARG proliferation.
Collapse
Affiliation(s)
- Wei-Cheng Hung
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA, 90095, USA
| | - Megyn Rugh
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA, 90095, USA
| | - Marina Feraud
- Bren School of Environmental Science and Management, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sumant Avasarala
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37916, USA
| | - Jessica Kurylo
- Department of Environmental Health Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Mathew Gutierrez
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA, 90095, USA
| | - Karina Jimenez
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA, 90095, USA
| | - Nhi Truong
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA, 90095, USA
| | - Patricia A Holden
- Bren School of Environmental Science and Management, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stanley B Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, VA 24061, USA
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, Bourns Hall A239, UC Riverside, Riverside, CA 92521, USA
| | - Richard F Ambrose
- Department of Environmental Health Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Jennifer A Jay
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Long range PCR reveals the genetic cargo of IncP-1 plasmids in the complex microbial community of an on-farm biopurification system treating pesticide contaminated wastewater. Appl Environ Microbiol 2021; 88:e0164821. [PMID: 34878814 DOI: 10.1128/aem.01648-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA. In this study, we optimized long range PCR to directly access and identify the cargo carried by IncP-1 plasmids in environmental DNA. The DNA between the IncP-1 backbone genes trbP and traC, a main insertion site of adaptive trait determinants, is amplified and its content analysed by high-throughput sequencing. The method was applied to DNA of an on-farm biopurification system (BPS), treating pesticide contaminated wastewater, to examine whether horizontal gene exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. The cargo recovered from BPS community DNA, encoded catabolic but also resistance traits and various other (un)known functions. Unexpectedly, catabolic traits composed only a minor fraction of the cargo, indicating that the IncP-1 region between trbP and traC is not a major contributor to catabolic adaptation of the BPS microbiome. Instead, it contains a functionally diverse set of genes which either may assist biodegradation functions, be remnants of random gene recruitment, or confer other crucial functions for proliferation in the BPS environment. IMPORTANCE This study presents a long range PCR for direct and cultivation-independent access to the identity of the cargo of a major insertion hot spot of adaptive genes in IncP-1 plasmids and hence a new mobilome tool for understanding the role of IncP-1 plasmids in complex communities. The method was applied to DNA of an on-farm biopurification system (BPS) treating pesticide-contaminated wastewater, aiming at new insights on whether horizontal exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. Unexpectedly, catabolic functions represented a small fraction of the cargo genes while multiple other gene functions were recovered. These results show that the cargo of the target insertion hot spot in IncP-1 plasmids in a community, not necessarily relates to the main selective trait imposed on that community. Instead these functions might contribute to adaptation to unknown selective forces or represent remnants of random gene recruitment.
Collapse
|
12
|
Mishra S, Klümper U, Voolaid V, Berendonk TU, Kneis D. Simultaneous estimation of parameters governing the vertical and horizontal transfer of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149174. [PMID: 34375245 DOI: 10.1016/j.scitotenv.2021.149174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The accelerated spread of antibiotic resistance genes (ARG) in the environment occurs mainly through plasmid transfer facilitated via bacterial conjugation. To predict and efficiently counteract the problems associated with ARG transmission, it is important to estimate conjugation rates under different experimental conditions. The classical models typically used to estimate parameters for mating experiments, while pragmatic in calculating growth and plasmid transfer, often ignore processes such as the reduction in growth due to plasmid bearing costs and are non-inclusive of environmental influences like temperature effects. Here, we present a process-based numerical model taking into account the fitness cost associated with plasmid carriage and temperature dependencies in vertical and horizontal gene transfer processes. Observations from liquid culture conjugation experiments using Escherichia coli and the plasmid pB10 were used to validate our proposed model. We present a comparison between the parameters estimated using the existing and the proposed model. Uncertainties in the estimated parameters were quantified using classical and advanced Bayesian methods. For our mating experiments, we found that at temperatures between 20 and 37 °C, the plasmid bearing costs reduced the growth rates by > 35%. The temperature dependency model of conjugation showed a good fit (mean absolute percentage error < 10%) independent of the bacteria and the plasmid under study. The proposed model simultaneously estimates growth and plasmid transfer rate constants for all three strains (donor, recipient, and transconjugant). Simultaneous estimation of growth and conjugation parameters is particularly useful to estimate the spread of ARG when one of the mating partners inhibits the growth of the other, which is common in multi-species mating or when the incurred plasmid costs are situation dependent (e.g., increased plasmid cost in a mating environment) as observed in this study.
Collapse
Affiliation(s)
- Sulagna Mishra
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany.
| | - Uli Klümper
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany
| | - Veiko Voolaid
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany
| | - Thomas U Berendonk
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany
| | - David Kneis
- Institute of Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden 01217, Germany
| |
Collapse
|
13
|
Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126618. [PMID: 34329102 DOI: 10.1016/j.jhazmat.2021.126618] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Rakesh Bhatt
- Department of Civil Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
14
|
Hu D, Baskin JM, Baskin CC, Liu R, Yang X, Huang Z. A Seed Mucilage-Degrading Fungus From the Rhizosphere Strengthens the Plant-Soil-Microbe Continuum and Potentially Regulates Root Nutrients of a Cold Desert Shrub. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:538-546. [PMID: 33596107 DOI: 10.1094/mpmi-01-21-0014-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Seed mucilage plays important roles in the adaptation of desert plants to the stressful environment. Artemisia sphaerocephala is an important pioneer plant in the Central Asian cold desert, and it produces a large quantity of seed mucilage. Seed mucilage of A. sphaerocephala can be degraded by soil microbes, but it is unknown which microorganisms can degrade mucilage or how the mucilage-degrading microorganisms affect rhizosphere microbial communities or root nutrients. Here, mucilage-degrading microorganisms were isolated from the rhizosphere of A. sphaerocephala, were screened by incubation with mucilage stained with Congo red, and were identified by sequencing and phylogenetic analyses. Fungal-bacterial networks based on high-throughput sequencing of rhizosphere microbes were constructed to explore the seasonal dynamic of interactions between a mucilage-degrading microorganism and its closely related microorganisms. The structural equation model was used to analyze effects of the mucilage-degrading microorganism, rhizosphere fungal-bacterial communities, and soil physicochemical properties on root C and N. The fungus Phanerochaete chrysosporium was identified as a mucilage-degrading microorganism. Relative abundance of the mucilage-degrading fungus (MDF) was highest in May. Subnetworks showed that the abundance of fungi and bacteria closely related to the MDF also were highest in May. Interactions between the MDF and related fungi and bacteria were positive, which might enhance mucilage degradation. In addition, the MDF might regulate root C and N by affecting rhizosphere microbial community structure. Our results suggest that MDF from the rhizosphere strengthens the plant-soil-microbe continuum, thereby potentially regulating microbial interactions and root nutrients of A. sphaerocephala.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dandan Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Rong Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
15
|
Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat Ecol Evol 2021; 5:431-441. [PMID: 33526890 DOI: 10.1038/s41559-020-01385-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023]
Abstract
Tackling antibiotic resistance necessitates deep understanding of how resource competition within and between species modulates the fitness of resistant microbes. Recent advances in ecological coexistence theory offer a powerful framework to probe the mechanisms regulating intra- and interspecific competition, but the significance of this body of theory to the problem of antibiotic resistance has been largely overlooked. In this Perspective, we draw on emerging ecological theory to illustrate how changes in resource niche overlap can be equally important as changes in competitive ability for understanding costs of resistance and the persistence of resistant pathogens in microbial communities. We then show how different temporal patterns of resource and antibiotic supply, alongside trade-offs in competitive ability at high and low resource concentrations, can have diametrically opposing consequences for the coexistence and exclusion of resistant and susceptible strains. These insights highlight numerous opportunities for innovative experimental and theoretical research into the ecological dimensions of antibiotic resistance.
Collapse
|
16
|
Shintani M, Nour E, Elsayed T, Blau K, Wall I, Jechalke S, Spröer C, Bunk B, Overmann J, Smalla K. Plant Species-Dependent Increased Abundance and Diversity of IncP-1 Plasmids in the Rhizosphere: New Insights Into Their Role and Ecology. Front Microbiol 2020; 11:590776. [PMID: 33329469 PMCID: PMC7728920 DOI: 10.3389/fmicb.2020.590776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1β, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Eman Nour
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Tarek Elsayed
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Inessa Wall
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Cathrin Spröer
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
17
|
Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2020; 96:5766226. [PMID: 32109282 PMCID: PMC7189800 DOI: 10.1093/femsec/fiaa031] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms in water environments are thought to be hot spots for horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). ARGs can be spread via HGT, though mechanisms are known and have been shown to depend on the environment, bacterial communities and mobile genetic elements. Classically, HGT mechanisms include conjugation, transformation and transduction; more recently, membrane vesicles (MVs) have been reported as DNA reservoirs implicated in interspecies HGT. Here, we review the current knowledge on the HGT mechanisms with a focus on the role of MVs and the methodological innovations in the HGT research.
Collapse
Affiliation(s)
- Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577 Japan
| |
Collapse
|
18
|
Molale-Tom LG, Bezuidenhout CC. Prevalence, antibiotic resistance and virulence of Enterococcus spp. from wastewater treatment plant effluent and receiving waters in South Africa. JOURNAL OF WATER AND HEALTH 2020; 18:753-765. [PMID: 33095198 DOI: 10.2166/wh.2020.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poorly operating wastewater treatment plants (WWTPs) result in faecal pollution of receiving waters, posing a health risk to humans and animals. The aim of this study was to determine the antimicrobial resistance patterns and presence of virulent genes in Enterococcus spp. isolated from three WWTPs' final effluent and receiving waters in the North West Province, South Africa. Sixty-three Enterococcus spp. were identified and their antimicrobial susceptibility, as well as the presence of five virulence genes, determined. The antibiotic inhibition zone diameter data were subject to cluster analysis. Sixty-eight percent of the screened Enterococcus spp. were resistant to three or more antibiotics and harboured plasmids. Five virulence genes were detected and six multi-virulence profiles observed. Cluster analysis indicated groupings of isolates from all three effluent points downstream together, and between plants 1 and 2 together. The findings of this study have demonstrated that Enterococcus spp. harbouring virulence factors and plasmids that mediate multiple antibiotic resistance are present in effluent and receiving water systems that support various social needs. This is a cause for concern and it is recommended that Enterococcus be used as an additional faecal indicator when microbiological quality of water is assessed.
Collapse
Affiliation(s)
- L G Molale-Tom
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| | - C C Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| |
Collapse
|
19
|
Alam M, Imran M, Ahmad SS. Screening of Metal and Antibiotic Resistance in Beta-lactamase Producing Coliform Bacteria from Hospital Wastewater of Northern India. Recent Pat Biotechnol 2020; 14:63-77. [PMID: 31577211 DOI: 10.2174/1872208313666191002130406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
AIMS Our exploration work has uncovered the different anti-toxin/metal tolerance and patterns against the heavy metal resistant coliform microscopic organisms from the aquatic waste of the hospital. It might give new routes for the treatment of irresistible ailments particularly by coliform and critical for hazard evaluation as well as hazard management associated with the effluents of the hospital. BACKGROUND The higher use of pharmaceuticals, Radionuclides, and other antimicrobial solvents are the major source of metals in hospital wastewater. The hospital aquatic environment has a high content of both organic and inorganic matter with living organisms. Bacteria can resist an antimicrobial agent by producing extracellular enzymes that eliminate antibiotics and metal toxicity. In this study, we covered the existing patent literature in this area. New patents in the areas of topically applied antibiotics and agents that can potentiate the achievement of existing antibiotics may extend their helpful lifetime. METHODS Samples were collected from three different Departments of King George Medical University, Lucknow during the month of December to May (2015-16). Isolation and metal tolerance of coliform isolates were done on metal amended plates. The antibiotic sensitivity test was done by disc diffusion method. The plasmid DNA of bacterial isolates was done by the alkaline lysis method. The conjugation study was also performed in wastewater as well as a nutrient medium. RESULTS Maximum isolates demonstrated their MICs at 400, 800 and 1600 μg/ml against all the metals, respectively. The high level of resistance was observed against Methicillin (88.32%, 80.60%) followed by penicillin (75%, 76%), Cephradin (59.52%, 28.84%) and least to Gentamycine (1.92%, 5.76) in E. coli and Enterobacter, respectively. Of 70%, 78% E. coli and Enterobacter isolates produce beta-lactamase activity. Six amino acid residues namely, Glu104, Tyr105, Asn132, Asn170, Ala237, and Gly238 of the beta-lactamase were found in the common interaction with the selected drugs. Plasmid DNA size ranged between 48-58.8 kb. The conjugation experiments showed a higher transfer frequency (5.5×10-1 and 3.6×10-1) rate among antibiotics and metals tested. CONCLUSION The finding of this study presents a potential health problem as the predominant coliform species have increasingly been associated with outbreaks of hospital infections. It is recommended that hospital waste must be properly treated before its release into the environment.
Collapse
Affiliation(s)
- Manzar Alam
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Imran
- Department of Biosciences, Integral University, Lucknow, India
| | | |
Collapse
|
20
|
Mutai WC, Waiyaki PG, Kariuki S, Muigai AWT. Plasmid profiling and incompatibility grouping of multidrug resistant Salmonella enterica serovar Typhi isolates in Nairobi, Kenya. BMC Res Notes 2019; 12:422. [PMID: 31311578 PMCID: PMC6636098 DOI: 10.1186/s13104-019-4468-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Plasmids harbour antibiotic resistance genes which contribute to the emergence of multidrug resistant pathogens. We detected the presence of plasmids in multidrug resistant Salmonella enterica serovar Typhi (S. Typhi) isolates from our previous study and consequently determined their incompatibility groups and possibility of conjugation transmission. Plasmids were extracted from 98 multidrug resistant S. Typhi isolates based on alkaline lysis technique. Plasmid incompatibility grouping was established by PCR replicon typing using 18 pairs of primers to amplify FIA, FIB, FIC, HI1, HI2, I1-Iγ, L/M, N, P, W, T, A/C, K, B/O, X, Y, F and FIIA replicons. Antibiotic resistance phenotypes were conjugally transferred from S. Typhi isolates with plasmids to Escherichia coli K12F strain devoid of plasmids. RESULTS Approximately 79.6% of the MDR S. Typhi isolates were related to the existence of plasmids. We detected 93.6% of plasmids belonging to incompatibility (Inc) group HI1. The other incompatibility groups identified included IncFIC (16.7%), IncP (1.3%), and IncI1 (1.3%) which appeared together with Inc HI1. MDR S. Typhi isolated carried a homologous plasmid of incompatibility group HI1 most of which transferred the resistance phenotypes of ampicillin, tetracycline and chloramphenicol to the transconjugants.
Collapse
Affiliation(s)
- Winnie C Mutai
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya.
| | - Peter G Waiyaki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Anne W T Muigai
- School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| |
Collapse
|
21
|
Gralka M, Hallatschek O. Environmental heterogeneity can tip the population genetics of range expansions. eLife 2019; 8:e44359. [PMID: 30977724 PMCID: PMC6513619 DOI: 10.7554/elife.44359] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
The population genetics of most range expansions is thought to be shaped by the competition between Darwinian selection and random genetic drift at the range margins. Here, we show that the evolutionary dynamics during range expansions is highly sensitive to additional fluctuations induced by environmental heterogeneities. Tracking mutant clones with a tunable fitness effect in bacterial colonies grown on randomly patterned surfaces we found that environmental heterogeneity can dramatically reduce the efficacy of selection. Time-lapse microscopy and computer simulations suggest that this effect arises generically from a local 'pinning' of the expansion front, whereby stretches of the front are slowed down on a length scale that depends on the structure of the environmental heterogeneity. This pinning focuses the range expansion into a small number of 'lucky' individuals with access to expansion paths, altering the neutral evolutionary dynamics and increasing the importance of chance relative to selection.
Collapse
Affiliation(s)
- Matti Gralka
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Oskar Hallatschek
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
22
|
Abstract
Understanding the mechanisms underlying plasmid behavior under conditions of various environments is important to predict the fate of plasmids in nature. Most previous studies on plasmid transfer employed two strains: one as a donor and the other as a recipient. However, in natural environments, there are usually different recipient cells available to which plasmid can be transferred. In this study, to reveal the underlying mechanisms, we assessed the transferability of plasmids from one donor strain to either of two recipient candidates as the most simplified model. We used Pseudomonas putida KT2440 and Pseudomonas resinovorans CA10dm4 as model hosts and pCAR1 (IncP-7), NAH7 (IncP-9), pB10 (IncP-1β), and R388 (IncW) as model plasmids. As expected, in most cases these plasmids were generally transferred more frequently to a recipient of the same species than to a recipient of a different one under conditions of liquid and filter mating, although NAH7 was transferred from P. resinovorans more frequently to P. putida than to P. resinovorans during filter mating. With the exception of pCAR1, which was less affected, the coexistence of other recipients enhanced the preferences of conjugative transfer to the same species. In particular, preferences corresponding to transfer from P. putida to a different recipient (P. resinovorans) were reduced by the presence of a coexisting same recipient (P. putida) during transfer of NAH7 in liquid and transfer of R388 in filter mating. We determined that large cell aggregates and substances secreted into culture supernatant were not responsible for this phenomenon. Overall, the results of this study suggest the existence of unknown factors determining optimal plasmid transfer to native recipients.IMPORTANCE Most previous studies on plasmid conjugal transfer employed experimental setups with two strains: one as a donor and the other as a recipient. However, the results obtained sometimes failed to agree with observations obtained under natural environmental conditions or in a model microcosm using natural soil and water samples. Therefore, we consider that there is a "gap" in our understanding of plasmid behavior in the context of bacterial consortia that exist under the actual environmental conditions. In this study, we clearly showed that the conjugation selectivity of a plasmid can be affected by the recipient candidates existing around the donor strain by the use of a simplified experimental setup with one strain as the donor and two strains as recipients. These phenomena could not be explained by factors known to affect plasmid transfer as suggested by previous studies. Therefore, we suggest the presence of novel elements regulating plasmid transfer within consortia.
Collapse
|
23
|
Dunon V, Bers K, Lavigne R, Top EM, Springael D. Targeted metagenomics demonstrates the ecological role of IS1071in bacterial community adaptation to pesticide degradation. Environ Microbiol 2018; 20:4091-4111. [DOI: 10.1111/1462-2920.14404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Vincent Dunon
- Division of Soil and Water Management; KU Leuven; Kasteelpark Arenberg 20 Box 2459 3001 Heverlee Belgium
| | - Karolien Bers
- Division of Soil and Water Management; KU Leuven; Kasteelpark Arenberg 20 Box 2459 3001 Heverlee Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology; KU Leuven; Kasteelpark Arenberg 21 Box 2462 3001 Heverlee Belgium
| | - Eva M. Top
- Department of Biological Sciences; Institute for Bioinformatics and Evolutionary Studies, University of Idaho; Moscow Idaho USA
| | - Dirk Springael
- Division of Soil and Water Management; KU Leuven; Kasteelpark Arenberg 20 Box 2459 3001 Heverlee Belgium
| |
Collapse
|
24
|
Cai Q, Hu J. Effect of UVA/LED/TiO 2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. WATER RESEARCH 2018; 140:251-260. [PMID: 29723814 DOI: 10.1016/j.watres.2018.04.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Controlling of antibiotics is the crucial step for preventing antibiotic resistance genes (ARGs) dissemination; UV photocatalysis has been identified as a promising pre-treatment technology for antibiotics removal. However, information about the effects of intermediates present in the treated antibiotics wastewater on the downstream biological treatment processes or ARGs development is very limited. In the present study, continuous UVA/LED/TiO2 photocatalysis removed more than 90% of 100 ppb sulfamethoxazole (SMX)/trimethoprim (TMP), the treated wastewater was fed into SBR systems for over one year monitoring. Residual SMX/TMP (2-3 ppb) and intermediates present in the treated wastewater did not adversely affect SBR performance in terms of TOC and TN removal. SMX and TMP resistance genes (sulI, sulII, sulIII, dfrII, dfrV and dfr13) were also quantified in SBRs microbial consortia. Results suggested that continuous feeding of treated SMX/TMP containing wastewaters did not trigger any ARGs promotion during the one year operation. By stopping the input of 100 ppb SMX/TMP, abundance of sulII and dfrV genes were reduced by 83% and 100%, respectively. sulI gene was identified as the most persistence ARG, and controlling of 100 ppb SMX input did not achieve significant removal of sulI gene. A significant correlation between sulI gene and class 1 integrons was found at the level of p = 1.4E-10 (r = 0.94), and sulII gene positively correlated with the plasmid transfer efficiency (r = 2.442E-10, r = 0.87). Continuous input of 100 ppb SMX enhanced plasmid transfer efficiency in the SBR system, resulting in sulII gene abundance increasing more than 40 times.
Collapse
Affiliation(s)
- Qinqing Cai
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jiangyong Hu
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
25
|
De la Cruz Barrón M, Merlin C, Guilloteau H, Montargès-Pelletier E, Bellanger X. Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments. Front Microbiol 2018; 9:1443. [PMID: 30013540 PMCID: PMC6036612 DOI: 10.3389/fmicb.2018.01443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
Aquatic ecosystems are frequently considered as the final receiving environments of anthropogenic pollutants such as pharmaceutical residues or antibiotic resistant bacteria, and as a consequence tend to form reservoirs of antibiotic resistance genes. Considering the global threat posed by the antibiotic resistance, the mechanisms involved in both the formation of such reservoirs and their remobilization are a concern of prime importance. Antibiotic resistance genes are strongly associated with mobile genetic elements that are directly involved in their dissemination. Most mobile genetic element-mediated gene transfers involve replicative mechanisms and, as such, localized gene transfers should participate in the local increase in resistance gene abundance. Additionally, the carriage of conjugative mobile elements encoding cell appendages acting as adhesins has already been demonstrated to increase biofilm-forming capability of bacteria and, therefore, should also contribute to their selective enrichment on surfaces. In the present study, we investigated the occurrence of two families of mobile genetic elements, IncP-1 plasmids and class 1 integrons, in the water column and bank sediments of the Orne River, in France. We show that these mobile elements, especially IncP-1 plasmids, are enriched in the bacteria attached on the suspended matters in the river waters, and that a similar abundance is found in freshly deposited sediments. Using the IncP-1 plasmid pB10 as a model, in vitro experiments demonstrated that local enrichment of plasmid-bearing bacteria on artificial surfaces mainly resulted from an increase in bacterial adhesion properties conferred by the plasmid rather than an improved dissemination frequency of the plasmid between surface-attached bacteria. We propose plasmid-mediated adhesion to particles to be one of the main contributors in the formation of mobile genetic element-reservoirs in sediments, with adhesion to suspended matter working as a selective enrichment process of antibiotic resistant genes and bacteria.
Collapse
|
26
|
Nakazawa S, Haramiishi A, Fukuda K, Kanayama Y, Watanabe T, Yuki M, Ohkuma M, Takeda K, Kimbara K, Shintani M. Different transferability of incompatibility (Inc) P-7 plasmid pCAR1 and IncP-1 plasmid pBP136 in stirring liquid conditions. PLoS One 2017; 12:e0186248. [PMID: 29023575 PMCID: PMC5638413 DOI: 10.1371/journal.pone.0186248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023] Open
Abstract
Self-transmissible plasmids are classified into two types based on their sex pili: short and rigid pili, and long and flexible pili. The transferability of two plasmids with different types of sex pili, pBP136 and pCAR1, was compared in stirring liquid conditions with different cell density. The most probable number method to count transconjugants could detect differences in the transfer frequency with higher resolution in comparison with the conventional CFU counting method. Both plasmids showed higher transfer frequency in high stirring rates than static liquid conditions when the donor and recipient density was 106−107 CFU mL-1. The probability of donor-initiated plasmid transfer was investigated by a single-cell-level analysis using a cell sorter. The probability was >36-fold higher for pBP136 than for pCAR1; thus, the simulated transfer frequency of pBP136 was much higher than that of pCAR1 in stirring liquid conditions. Nevertheless, the transfer frequency of pCAR1 was as high as that of pBP136 when the donor and recipient cell density was 106 CFU mL-1. This fact indicates that the lower probability of the donor pCAR1 to initiate transfer could be overcome by its high tolerance to the shearing force between donor and recipient cells under higher stirring liquid conditions. Our findings can explain the different survival strategies of these two types of plasmids based on their preferences of transfer conditions.
Collapse
Affiliation(s)
- Shunsuke Nakazawa
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Akira Haramiishi
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Kohei Fukuda
- Department of Bioscience, Graduated School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Yukie Kanayama
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Toshinori Watanabe
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Masahiro Yuki
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Moriya Ohkuma
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
| | - Kazuhiro Takeda
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Kazuhide Kimbara
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Bioscience, Graduated School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
27
|
Ridenhour BJ, Metzger GA, France M, Gliniewicz K, Millstein J, Forney LJ, Top EM. Persistence of antibiotic resistance plasmids in bacterial biofilms. Evol Appl 2017; 10:640-647. [PMID: 28616070 PMCID: PMC5469168 DOI: 10.1111/eva.12480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/20/2017] [Indexed: 11/28/2022] Open
Abstract
The emergence and spread of antibiotic resistance is a crisis in health care today. Antibiotic resistance is often horizontally transferred to susceptible bacteria by means of multidrug resistance plasmids that may or may not persist in the absence of antibiotics. Because bacterial pathogens often grow as biofilms, there is a need to better understand the evolution of plasmid persistence in these environments. Here we compared the evolution of plasmid persistence in the pathogen Acinetobacter baumannii when grown under antibiotic selection in biofilms versus well-mixed liquid cultures. After 4 weeks, clones in which the plasmid was more stably maintained in the absence of antibiotic selection were present in both populations. On average plasmid persistence increased more in liquid batch cultures, but variation in the degree of persistence was greater among biofilm-derived clones. The results of this study show for the first time that the persistence of MDR plasmids improves in biofilms.
Collapse
Affiliation(s)
- Benjamin J Ridenhour
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| | - Genevieve A Metzger
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| | - Michael France
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| | - Karol Gliniewicz
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA
| | - Jack Millstein
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA
| | - Larry J Forney
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| | - Eva M Top
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| |
Collapse
|
28
|
Zhi XY, Jiang Z, Yang LL, Huang Y. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach. Mol Phylogenet Evol 2017; 107:246-255. [DOI: 10.1016/j.ympev.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
|
29
|
Salcedo DE, Kim S. Fate of tetracycline resistance in synthetic livestock carcass leachate for two years. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 187:220-228. [PMID: 27912133 DOI: 10.1016/j.jenvman.2016.11.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
To simulate the fate of antibiotic resistance in leachate from anaerobic carcass landfill site, anaerobic reactors were set-up and their antibiotic resistance activities were monitored for 2 years. Initially, Escherichia coli DH5α with tetracycline resistance pB10 plasmid was inoculated in nutrient rich anaerobic reactors. The fate of tetracycline resistant bacteria (TRB) was tracked by analysis using culture-based method, EC50 (half maximal effective concentration), and quantitative polymerase chain reaction (qPCR). Based on the temporal pattern of EC50 during the study period, TRB continuously increased during Phase I (0-250th day), went down in Phase II (after 250th day to 500th day), and then increased again by the end of Phase III (after 500th day to the 774th day). Interestingly, pB10 plasmid accumulated in the system as the community diversities increased over time. At the end of experiment, the tetracycline resistance microbial communities were investigated by 16s RNA gene-based pyro sequencing. The results of this study indicated that leachate with high organic strength in anaerobic conditions could be an antibiotic resistant point source in several year periods.
Collapse
Affiliation(s)
- Dennis Espineli Salcedo
- Program in Environmental Technology and Policy, Korea University, Sejong, 30019, Republic of Korea
| | - Sungpyo Kim
- Program in Environmental Technology and Policy, Korea University, Sejong, 30019, Republic of Korea; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
30
|
De Sotto RB, Medriano CAD, Salcedo DE, Lee H, Cho Y, Kim S. Effects of solids retention time on the fate of tetracycline resistance in SBRs for the treatment of carcass leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:298-303. [PMID: 27372252 DOI: 10.1016/j.jenvman.2016.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 05/21/2023]
Abstract
In the event of a foot and mouth disease outbreak, further spread of the virus is generally prevented by culling of infected animals in burial pits. This practice may eventually lead to groundwater contamination through leaching of wastewater from the animal carcasses. Wastewater from carcass leachate often contains antibiotic resistant bacteria and genes as well as traces of pharmaceuticals, and a high nutrient content. The role of operational parameters used in activated sludge treatment of this wastewater in the spread of antibiotic resistance has not been fully understood. This study investigated the fate of tetracycline-resistant bacteria and genes in sequencing batch reactors with synthetic carcass leachate at different solid retention times. Escherichia coli DH5α was used as the representative tetracycline-resistant bacteria with multiple antibiotic-resistant genes encoded in plasmid pB10. Solids retention time contributed to an increase in antibiotic resistance in SBRC (SRT = 25 days) with TRB values up to 1.25 × 10(7) CFU/mL which is one log higher than the influent. Microbial community analysis of the DNA samples from effluent of SBRC showed four major phyla: Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria under which are ecologically-important microbial species. It was shown that antibiotic resistance genes cannot be eliminated during treatment of synthetic carcass leachate in a lab-scale sequencing batch reactor.
Collapse
Affiliation(s)
- R B De Sotto
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea
| | - C A D Medriano
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea
| | - D E Salcedo
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea
| | - H Lee
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea
| | - Y Cho
- Department of Environmental Engineering, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 300-716, South Korea.
| | - S Kim
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea.
| |
Collapse
|
31
|
Pak G, Salcedo DE, Lee H, Oh J, Maeng SK, Song KG, Hong SW, Kim HC, Chandran K, Kim S. Comparison of Antibiotic Resistance Removal Efficiencies Using Ozone Disinfection under Different pH and Suspended Solids and Humic Substance Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7590-600. [PMID: 27389869 DOI: 10.1021/acs.est.6b01340] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study mainly evaluated the effectiveness of ozonation toward the enhancement of the removal efficiencies of antibiotic-resistant bacteria (ARB), pB10 plasmid transfer, and pB10 plasmids under different pH and suspended solids (SS) and humic acid concentrations. First, chlorination was tested as a reference disinfection process. Chlorination at a very high dose concentration of Cl2 (75 mg L(-1)) and a long contact time (10 min) were required to achieve approximately 90% ARB and pB10 plasmid transfer removal efficiencies. However, even these stringent conditions only resulted in a 78.8% reduction of pB10 plasmid concentrations. In case of ozonation, the estimated CT (concentration × contact time) value (at C0 = 7 mg L(-1)) for achieving 4-log pB10 plasmid removal efficiency was 127.15 mg·min L(-1), which was 1.04- and 1.25-fold higher than those required for ARB (122.73 mg·min L(-1)) and a model nonantibiotic resistant bacterial strain, E. coli K-12, (101.4 mg·min L(-1)), respectively. In preventing pB10 plasmid transfer, ozonation achieved better performance under conditions of higher concentrations of humic acid and lower pH. Our study results demonstrated that the applicability of CT concept in practice, conventionally used for disinfection, might not be appropriate for antibiotic resistance control in the wastewater treatment process. Further studies should be conducted in wastewater engineering on how to implement multiple barriers including disinfection to prevent ARB and ARG discharge into the environment.
Collapse
Affiliation(s)
| | | | - Hansaem Lee
- Water & Environment R&D Team, Research & Development Division, Hyundai Engineering & Construction Co., Ltd. , Seoul 110-920, Republic of Korea
| | | | | | - Kyung Guen Song
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea
| | - Seok Won Hong
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea
| | | | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University , 500 West 120th Street, New York, New York 10027, United States
| | | |
Collapse
|
32
|
Zhang M, Brons JK, van Elsas JD. The Complete Sequences and Ecological Roles of Two IncP-1β Plasmids, pHB44 and pBS64, Isolated from the Mycosphere of Laccaria proxima. Front Microbiol 2016; 7:909. [PMID: 27445994 PMCID: PMC4914505 DOI: 10.3389/fmicb.2016.00909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/27/2016] [Indexed: 11/25/2022] Open
Abstract
Two novel plasmids, coined pHB44 and pBS64, were recently found in Variovorax paradoxus strains HB44 and BS64 isolated from the mycosphere of Laccaria proxima, on two different sampling occasions. We here describe the full sequences of pHB44 and pBS64 and establish their evolutionary placement and ecological function. Both plasmids, unique for mycospheric V. paradoxus, were around 58 kb in size. They possessed, in a very similar fashion, three main plasmid backbone regions, which were predicted to be involved in plasmid replication, central control of maintenance, and conjugational transfer. Phylogenetic inference on the basis of seven selected and concatenated plasmid backbone genes provided solid evidence for the placement of the two plasmids in the IncP-1β1 group, with the recently isolated IncP-1β1 plasmid pMBUI8 as the closest relative. A comparative analysis of the sequences present in each of the recombinational hot spots (RHS) I to III across plasmids pHB44, pBS64, and pMBUI8 revealed the insertions found in plasmids pHB44 and pBS64 to be different from those of pMBUI8. Whereas, in the former two plasmids, RHS I and III were devoid of any major inserts, their RHS II regions contained inserts of 15,043 (pHB44) and 16,406 kb (pBS64), against about 9,3 kb for pMBUI8. Interestingly, these regions were highly similar across plasmids pHB44 and pBS64, and differed from that of pMBUI8. Closer inspection revealed the insert in the former plasmids to contain, next to transposases, an “mmf” gene cassette previously reported to encode metal “responsiveness” in the PromA plasmid pMOL98. Whereas the plasmid pHB44 RHS II contained the canonical mmf sequence, that in pBS64 contained, in addition, a “two-gene duplicated region” flanking the mmf C2 gene. In vitro experiments on the growth and survival of strains with or without plasmid pHB44 suggested this plasmid was involved in the binding and import of Fe3+ as well as V3+ ions into the host cells, thus yielding a growth advantage under “metal ion-limiting” conditions. In addition, pHB44 was found to confer a bacitracin resistance phenotype to its host strain HB44. The metal import and bacitracin resistance traits were tentatively attributed to specific genes present in the RHS II inserts.
Collapse
Affiliation(s)
- Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen Groningen, Netherlands
| | - Jolanda K Brons
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen Groningen, Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen Groningen, Netherlands
| |
Collapse
|
33
|
Dang B, Mao D, Luo Y. Complete Nucleotide Sequence of IncP-1β Plasmid pDTC28 Reveals a Non-Functional Variant of the blaGES-Type Gene. PLoS One 2016; 11:e0154975. [PMID: 27152950 PMCID: PMC4859535 DOI: 10.1371/journal.pone.0154975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/21/2016] [Indexed: 01/02/2023] Open
Abstract
Plasmid pDTC28 was isolated from the sediments of Haihe River using E. coli CV601 (gfp-tagged) as recipient and indigenous bacteria from the sediment as donors. This plasmid confers reduced susceptibility to tetracycline and sulfamethoxazole. The complete sequence of plasmid pDTC28 was 61,503 bp in length with an average G+C content of 64.09%. Plasmid pDTC28 belongs to the IncP-1β group by phylogenetic analysis. The backbones of plasmid pDTC28 and other IncP-1β plasmids are very classical and conserved, whereas the accessory regions of these plasmids are diverse. A blaGES-5-like gene was found on the accessory region, and this blaGES-5-like gene contained 18 silent mutations and 7 missense mutations compared with the blaGES-5 gene. The mutations resulted in 7 amino acid substitutions in GES-5 carbapenemase, causing the loss of function of the blaGES-5-like gene on plasmid pDTC28 against carbapenems and even β-lactams. The enzyme produced by the blaGES-5-like gene cassette may be a new variant of GES-type enzymes. Thus, the plasmid sequenced in this study will expand our understanding of GES-type β-lactamases and provide insights into the genetic platforms used for the dissemination of GES-type genes.
Collapse
Affiliation(s)
- Bingjun Dang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- * E-mail: (YL); (DM)
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
- * E-mail: (YL); (DM)
| |
Collapse
|
34
|
Yanagida K, Sakuda A, Suzuki-Minakuchi C, Shintani M, Matsui K, Okada K, Nojiri H. Comparisons of the transferability of plasmids pCAR1, pB10, R388, and NAH7 among Pseudomonas putida at different cell densities. Biosci Biotechnol Biochem 2016; 80:1020-3. [DOI: 10.1080/09168451.2015.1127131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
The transferability of plasmids pCAR1, pB10, R388, and NAH7 was compared using the same donor-recipient system at different cell density combinations in liquid or on a solid surface. pCAR1 was efficiently transferred in liquid, whereas the other plasmids were preferentially transferred on a solid surface. Difference of liquid or solid affected the transfer frequency especially at lower cell densities.
Collapse
Affiliation(s)
- Kosuke Yanagida
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Ayako Sakuda
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | | | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University , Hamamatsu, Japan
| | - Kazuhiro Matsui
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
35
|
Rahube TO, Marti R, Scott A, Tien YC, Murray R, Sabourin L, Duenk P, Lapen DR, Topp E. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest. Can J Microbiol 2016; 62:600-7. [PMID: 27277701 DOI: 10.1139/cjm-2016-0034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.
Collapse
Affiliation(s)
- Teddie O Rahube
- a Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada.,b Department of Biology and Biotechnological Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Romain Marti
- a Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada
| | - Andrew Scott
- a Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada
| | - Yuan-Ching Tien
- a Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada
| | - Roger Murray
- a Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada
| | - Lyne Sabourin
- a Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada
| | - Peter Duenk
- c Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - David R Lapen
- d Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Edward Topp
- a Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada.,c Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
36
|
Comparison of Four Comamonas Catabolic Plasmids Reveals the Evolution of pBHB To Catabolize Haloaromatics. Appl Environ Microbiol 2015; 82:1401-1411. [PMID: 26682859 DOI: 10.1128/aem.02930-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Comamonas plasmids play important roles in shaping the phenotypes of their hosts and the adaptation of these hosts to changing environments, and understanding the evolutionary strategy of these plasmids is thus of great concern. In this study, the sequence of the 119-kb 3,5-dibromo-4-hydroxybenzonitrile-catabolizing plasmid pBHB from Comamonas sp. strain 7D-2 was studied and compared with those of three other Comamonas haloaromatic catabolic plasmids. Incompatibility group determination based on a phylogenetic analysis of 24 backbone gene proteins, as well as TrfA, revealed that these four plasmids all belong to the IncP-1β subgroup. Comparison of the four plasmids revealed a conserved backbone region and diverse genetic-load regions. The four plasmids share a core genome consisting of 40 genes (>50% similarities) and contain 12 to 50 unique genes each, most of which are xenobiotic-catabolic genes. Two functional reductive dehalogenase gene clusters are specifically located on pBHB, showing distinctive evolution of pBHB for haloaromatics. The higher catabolic ability of the bhbA2B2 cluster than the bhbAB cluster may be due to the transcription levels and the character of the dehalogenase gene itself rather than that of its extracytoplasmic binding receptor gene. The plasmid pBHB is riddled with transposons and insertion sequence (IS) elements, and ISs play important roles in the evolution of pBHB. The analysis of the origin of the bhb genes on pBHB suggested that these accessory genes evolved independently. Our work provides insights into the evolutionary strategies of Comamonas plasmids, especially into the adaptation mechanism employed by pBHB for haloaromatics.
Collapse
|
37
|
Li X, Wang Y, Brown CJ, Yao F, Jiang Y, Top EM, Li H. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes. FEMS Microbiol Ecol 2015; 92:fiv151. [PMID: 26635412 DOI: 10.1093/femsec/fiv151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 11/13/2022] Open
Abstract
The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history.
Collapse
Affiliation(s)
- Xiaobin Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Celeste J Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844-3051, USA
| | - Fei Yao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844-3051, USA
| | - Hui Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| |
Collapse
|
38
|
Qiu Z, Shen Z, Qian D, Jin M, Yang D, Wang J, Zhang B, Yang Z, Chen Z, Wang X, Ding C, Wang D, Li JW. Effects of nano-TiO2on antibiotic resistance transfer mediated by RP4 plasmid. Nanotoxicology 2015; 9:895-904. [DOI: 10.3109/17435390.2014.991429] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Zhang M, Warmink J, Pereira E Silva MC, Brons J, Smalla K, van Elsas JD. IncP-1β Plasmids Are Important Carriers of Fitness Traits for Variovorax Species in the Mycosphere--Two Novel Plasmids, pHB44 and pBS64, with Differential Effects Unveiled. MICROBIAL ECOLOGY 2015; 70:141-153. [PMID: 25542203 DOI: 10.1007/s00248-014-0550-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
The Laccaria proxima mycosphere strongly selects Variovorax paradoxus cells. Fifteen independent V. paradoxus strains, isolated from mycospheres sampled at two occasions, were investigated with respect to the occurrence of plasmids of sizes <60-100 kb. Two V. paradoxus strains, HB44 and BS64, were found to contain such plasmids, which were coined pHB44 and pBS64. Replicon typing using a suite of plasmid-specific PCR systems indicated that both plasmids belong to the IncP-1β group. Also, both were able to mobilize selectable IncQ group plasmids into Escherichia coli as well as Pseudomonas fluorescens. Moreover, they showed stable replication in these organisms, confirming their broad host range. Strain BS64 was cured of pBS64 and plasmid pHB44 was subsequently moved into this cured strain by making use of the IncQ group tracer plasmid pSUP104, which was then removed at elevated temperature. Thus, both plasmids could be screened for their ability to confer a phenotype upon strain BS64. No evidence for the presence of genes for xenobiotic degradation and/or antibiotic or heavy metal resistances was found for either of the two plasmids. Remarkably, both could stimulate the production of biofilm material by strain BS64. Also, the population densities of pBS64-containing strain BS64 were temporarily raised in liquid as well as soil systems (versus the plasmid-cured strain), both in the presence of the fungal host Lyophyllum sp. strain Karsten. Strikingly, plasmid pHB44 significantly enhanced the fitness of strain BS64 in soil containing Lyophyllum sp. strain Karsten, but decreased its fitness in soil supplemented with extra FeCl3. The effect was noted both in separate (no inter-strain competition) and joint (competition) inoculations.
Collapse
Affiliation(s)
- Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Yoshii A, Omatsu T, Katayama Y, Koyama S, Mizutani T, Moriyama H, Fukuhara T. Two types of genetic carrier, the IncP genomic island and the novel IncP-1β plasmid, for the aac(2')-IIa gene that confers kasugamycin resistance in Acidovorax avenae ssp. avenae. MOLECULAR PLANT PATHOLOGY 2015; 16:288-300. [PMID: 25131295 PMCID: PMC6638534 DOI: 10.1111/mpp.12182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A unique aminoglycoside antibiotic, kasugamycin (KSM), has been used to control many plant bacterial and fungal diseases in several countries. The emergence of KSM-resistant Acidovorax avenae ssp. avenae and Burkholderia glumae, which cause rice bacterial brown stripe and rice bacterial grain and seedling rot, respectively, is a serious threat for the effective control of these diseases. Previously, we have identified the aac(2')-IIa gene, encoding a KSM 2'-N-acetyltransferase, from both KSM-resistant pathogens. Although all KSM-resistant isolates from both species possess the aac(2')-IIa gene, only A. avenae strain 83 showed higher resistance than other strains. In this research, kinetic analysis indicates that an amino acid substitution from serine to threonine at position 146 of AAC(2')-IIa in strain 83 is not involved in this increased resistance. Whole draft genome analysis of A. avenae 83 shows that the aac(2')-IIa gene is carried by the novel IncP-1β plasmid pAAA83, whereas the genetic carrier of other strains, the IncP genomic island, is inserted into their chromosomes. The difference in the nucleotides of the promoter region of aac(2')-IIa between strain 83 and other strains indicates an additional transcription start site and results in the increased transcription of aac(2')-IIa in strain 83. Moreover, biological characterization of pAAA83 demonstrates that it can be transferred by conjugation and maintained in the host cells. These results demonstrate that acquisition of the aac(2')-IIa gene takes place in at least two ways and that the gene module, which includes aac(2')-IIa and the downstream gene, may be an important unit for the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Atsushi Yoshii
- Central Research Laboratories, Hokko Chemical Industry Co., Ltd., Toda 2165, Atsugi, Kanagawa, 243-0023, Japan; Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Li X, Top EM, Wang Y, Brown CJ, Yao F, Yang S, Jiang Y, Li H. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family. Front Microbiol 2015; 5:777. [PMID: 25628616 PMCID: PMC4290620 DOI: 10.3389/fmicb.2014.00777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs), 29 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102) and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331), based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T, and pTer331, suggesting these hypothetical orfs may represent “essential” plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.
Collapse
Affiliation(s)
- Xiaobin Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China ; College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho Moscow, ID, USA
| | - Yafei Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Celeste J Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho Moscow, ID, USA
| | - Fei Yao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China ; College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China
| | - Shan Yang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Yong Jiang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Hui Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| |
Collapse
|
42
|
IMP-1 encoded by a novel Tn402-like class 1 integron in clinical Achromobacter xylosoxidans, China. Sci Rep 2014; 4:7212. [PMID: 25428613 PMCID: PMC4245530 DOI: 10.1038/srep07212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023] Open
Abstract
Achromobacter xylosoxidans strain A22732 is isolated from a pneumonia patient in China and produces carbapenemases OXA-114e and IMP-1, which are encoded by chromosome and plasmid, respectively, and confer resistance to multiple ß-lactam antibiotics including carbapenems. The blaIMP-1 gene together with aacA7 and orfE is captured by a novel Tn402-like class 1 integron in a conjugative IncP-1ß plasmid. In addition to the intrinsic integron promoter PcW, there is still a blaIMP-1 gene cassette-specific promoter. This is the first report of carbapenemase-encoding IncP-1ß plasmid in clinical bacterial isolate.
Collapse
|
43
|
Bellanger X, Guilloteau H, Breuil B, Merlin C. Natural microbial communities supporting the transfer of the IncP-1β plasmid pB10 exhibit a higher initial content of plasmids from the same incompatibility group. Front Microbiol 2014; 5:637. [PMID: 25505458 PMCID: PMC4241820 DOI: 10.3389/fmicb.2014.00637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/05/2014] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance gene transfer mediated by plasmids is a matter of concern for public health, but permissive environments supporting plasmid dissemination are still quite difficult to identify. Lately, we have reported a molecular approach based on quantitative PCR (qPCR) to monitor the fate of the IncP-1β plasmid pB10 in natural microbial communities maintained in microcosms. Such plasmid transfer experiments were carried out with 13 different environmental matrices, and demonstrated that the transfer of the conjugative-proficient plasmid pB10 in complex environments is relatively rare and is strongly matrix dependent. An attempt to link the microbial community structure and the matrix permissiveness showed that TTGE analysis is not resolutive enough to point out common features among comparable communities supporting pB10 transfer. However, an estimation of the IncP-1α/IncP-1β plasmids abundance by qPCR demonstrated that pB10 transfer tends to be supported by environmental matrices exhibiting a higher content of IncP-1 plasmids. We suggest that the relative abundance of IncP-1 plasmids in a given microbial community reflects its permissiveness to the transfer of plasmids belonging to the same incompatibility group, which prevails over transfer limitation due to a phenomenon known as superinfection immunity.
Collapse
Affiliation(s)
- Xavier Bellanger
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564 Université de Lorraine - Centre National de la Recherche Scientifique, Nancy France
| | - Hélène Guilloteau
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564 Université de Lorraine - Centre National de la Recherche Scientifique, Nancy France
| | - Bérengère Breuil
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564 Université de Lorraine - Centre National de la Recherche Scientifique, Nancy France
| | - Christophe Merlin
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564 Université de Lorraine - Centre National de la Recherche Scientifique, Nancy France
| |
Collapse
|
44
|
Rahube TO, Viana LS, Koraimann G, Yost CK. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant. Front Microbiol 2014; 5:558. [PMID: 25389419 PMCID: PMC4211555 DOI: 10.3389/fmicb.2014.00558] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ.
Collapse
Affiliation(s)
- Teddie O Rahube
- Department of Biology, University of Regina Regina, SK, Canada ; Department of Biology and Biotechnological Sciences, Botswana International University of Science and Technology Palapye, Botswana
| | - Laia S Viana
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | | |
Collapse
|
45
|
Sumrall ET, Gallo EB, Aboderin AO, Lamikanra A, Okeke IN. Dissemination of the transmissible quinolone-resistance gene qnrS1 by IncX plasmids in Nigeria. PLoS One 2014; 9:e110279. [PMID: 25340787 PMCID: PMC4207749 DOI: 10.1371/journal.pone.0110279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/16/2014] [Indexed: 11/29/2022] Open
Abstract
The plasmid-encoded quinolone resistance gene qnrS1 was recently found to be commonly associated with ciprofloxacin resistance in Nigeria. We mapped the qnrS1 gene from an Escherichia coli isolate obtained in Nigeria to a 43.5 Kb IncX2 plasmid. The plasmid, pEBG1, was sufficient to confer ciprofloxacin non-susceptibility, as well as tetracycline and trimethoprim resistance, on E. coli K-12. Deletion analysis confirmed that qnrS1 accounted for all the ciprofloxacin non-suceptibility conferred by pEBG1 and tetracycline and trimethoprim resistance could be attributed to tetAR and dfrA14 genes respectively. While it contained a complete IncX conjugation system, pEBG1 was not self-transmissible likely due to an IS3 element inserted between the pilX5 and pilX6 genes. The plasmid was however efficiently mobilizable. pEBG1 was most similar to another qnrS1-bearing IncX2 plasmid from Nigeria, but both plasmids acquired qnrS1 independently and differ in their content of other resistance genes. Screening qnrS1–positive isolates from other individuals in Nigeria revealed that they carried neither pEBG1 nor pNGX2-QnrS1 but that IncX plasmids were prevalent. This study demonstrates that the IncX backbone is a flexible platform that has contributed to qnrS1 dissemination in Nigeria.
Collapse
Affiliation(s)
- Eric T. Sumrall
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Elizabeth B. Gallo
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Aaron Oladipo Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Adebayo Lamikanra
- Department of Pharmaceutics, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Iruka N. Okeke
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Bellanger X, Guilloteau H, Bonot S, Merlin C. Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: a practical approach for a critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:872-82. [PMID: 25000583 DOI: 10.1016/j.scitotenv.2014.06.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 05/26/2023]
Abstract
Plasmid-based dissemination of antibiotic resistance genes in environmental microbial communities is a matter of concern for public health, but it remains difficult to study for methodological reasons. In this study, we used the broad host range plasmid pB10 to compare and to point out the main drawbacks of the three different approaches currently used to evaluate plasmid transfer in natural communities. Culture-based selection of transconjugants appeared to be compromised by high prevalence of antibiotic resistances among natural communities, unless high loads of initial pB10-donor inocula were used. Fluorescence-based detection of transconjugants reached a dead-end consequently to the narrow host range of bacteria expressing fluorescent proteins from a genetically modified pB10 plasmid, in addition to the relatively high background level of fluorescence exhibited by some environmental matrices. The molecular-based approach was the only one to provide a mean to detect rare plasmid transfer events following a low but realistic initial pB10-donor inoculation. Whatever the method, culture-based or molecular-based, the detection of successful transfer events in a given environmental matrix seemed to be linked to the initial stability of the donor inoculum. Depending on the matrix considered, eukaryotic predation plays a significant role in either limiting or promoting the plasmid transfer events.
Collapse
Affiliation(s)
- Xavier Bellanger
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Hélène Guilloteau
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Sébastien Bonot
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Christophe Merlin
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
47
|
Ferrand J, Patron K, Legrand-Frossi C, Frippiat JP, Merlin C, Alauzet C, Lozniewski A. Comparison of seven methods for extraction of bacterial DNA from fecal and cecal samples of mice. J Microbiol Methods 2014; 105:180-5. [PMID: 25093756 DOI: 10.1016/j.mimet.2014.07.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 01/22/2023]
Abstract
Analysis of bacterial DNA from fecal samples of mice is commonly performed in experimental studies. Although DNA extraction is a critical step in various molecular approaches, the efficiency of methods that may be used for DNA extraction from mice fecal samples has never been evaluated. We compared the efficiencies of six widely used commercial kits (MasterPure™ Gram Positive DNA Purification Kit, QIAamp® DNA Stool Mini Kit; NucliSENS® easyMAG®, ZR Fecal DNA MiniPrep™, FastDNA® SPIN Kit for Feces and FastDNA® SPIN Kit for Soil) and a non-commercial method for DNA isolation from mice feces and cecal contents. DNA quantity and quality were assessed by fluorometry, spectrophotometry, gel electrophoresis and qPCR. Cell lysis efficiencies were evaluated by qPCR targeting three relevant bacteria in spiked specimens. For both feces and intestinal contents, the most efficient extraction method was the FastDNA® SPIN Kit for Soil.
Collapse
Affiliation(s)
- Janina Ferrand
- EA 7300 Stress Immunité Pathogènes, Université de Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Kevin Patron
- EA 7300 Stress Immunité Pathogènes, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | | | - Jean-Pol Frippiat
- EA 7300 Stress Immunité Pathogènes, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christophe Merlin
- Université de Lorraine-CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR, 7564 Vandœuvre-lès-Nancy, France
| | - Corentine Alauzet
- EA 7300 Stress Immunité Pathogènes, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Alain Lozniewski
- EA 7300 Stress Immunité Pathogènes, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
48
|
Burska UL, Fletcher JN. Two plasmid-encoded genes of enteropathogenic Escherichia coli strain K798 promote invasion and survival within HEp-2 cells. APMIS 2014; 122:922-30. [PMID: 24939568 DOI: 10.1111/apm.12234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/24/2013] [Indexed: 11/27/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) are considered to be extracellular pathogens, inducing attaching and effacing lesions following their attachment to the surface of eukaryotic cells; however, in vitro and in vivo invasion by EPEC has been reported in several studies. A cloned 4.6 kb fragment of EPEC plasmid pLV501 has been shown to facilitate invasion of E. coli K-12, and here we further investigate the nature of this process. Two of the three complete open reading frames contained within the plasmid fragment have been cloned to E. coli, and in HEp-2 adherence assays both tniA2 and pecM were shown to be expressed during the first 3 h of infection from a plac promoter. Escherichia coli transformants carrying pecM alone or in combination with tniA2 were able to both survive intracellularly and escape eukaryotic cells to re-establish themselves within the medium, whereas those bacterial cells carrying tniA2 alone could not be isolated from within HEp-2 cells after 24 h of infection, but were present in the previously sterile medium surrounding the cells. Bacteria carrying pecM and tniA2 adhered to HEp-2 cells with sites of adhesion characterized by underlying actin polymerization. The invasive potential conferred by these genes may give EPEC strains a survival advantage during prolonged infection.
Collapse
Affiliation(s)
- Urszula L Burska
- School of Medical Sciences, University of Bradford, Bradford, UK
| | | |
Collapse
|
49
|
Kim S, Yun Z, Ha UH, Lee S, Park H, Kwon EE, Cho Y, Choung S, Oh J, Medriano CA, Chandran K. Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:813-820. [PMID: 24076502 DOI: 10.1016/j.scitotenv.2013.08.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
The presence of antibiotics in the natural environment has been a growing issue. This presence could also account for the influence that affects microorganisms in such a way that they develop resistance against these antibiotics. The aim of this study was to evaluate whether the antibiotic resistant gene (ARG) plasmid transfer can be facilitated by the impact of 1) environmentally representative micro-contaminant concentrations in ppb (part per billion) levels and 2) donor-recipient microbial complexity (pure vs. mixed). For this purpose, the multidrug resistant plasmid, pB10, and Escherichia coli DH5α were used as a model plasmid and a model donor, respectively. Based on conjugation experiments with pure (Pseudomonas aeruginosa PAKexoT) and mixed (activated sludge) cultures as recipients, increased relative plasmid transfer frequencies were observed at ppb (μg/L) levels of tetracycline and sulfamethoxazole micro-contaminant exposure. When sludge, a more complex community, was used as a recipient, the increases of the plasmid transfer rate were always statistically significant but not always in P. aeruginosa. The low concentration (10 ppb) of tetracycline exposure led to the pB10 transfer to enteric bacteria, which are clinically important pathogens.
Collapse
Affiliation(s)
- Sungpyo Kim
- Department of Environmental Engineering, Korea University, Sejong 339-700, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Antibiotic Resistance Pattern Among Gram Negative Mercury Resistant Bacteria Isolated From Contaminated Environments. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.8085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|