1
|
Han F, Li H, Lyu E, Zhang Q, Gai H, Xu Y, Bai X, He X, Khan AQ, Li X, Xie F, Li F, Fang X, Wei M. Soybean-mediated suppression of BjaI/BjaR 1 quorum sensing in Bradyrhizobium diazoefficiens impacts symbiotic nitrogen fixation. Appl Environ Microbiol 2024; 90:e0137423. [PMID: 38251894 PMCID: PMC10880635 DOI: 10.1128/aem.01374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
The acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR quorum sensing (QS) system orchestrates diverse bacterial behaviors in response to changes in population density. The role of the BjaI/BjaR1 QS system in Bradyrhizobium diazoefficiens USDA 110, which shares homology with LuxI/LuxR, remains elusive during symbiotic interaction with soybean. Here this genetic system in wild-type (WT) bacteria residing inside nodules exhibited significantly reduced activity compared to free-living cells, potentially attributed to soybean-mediated suppression. The deletion mutant strain ΔbjaR1 showed significantly enhanced nodulation induction and nitrogen fixation ability. Nevertheless, its ultimate symbiotic outcome (plant dry weight) in soybeans was compromised. Furthermore, comparative analysis of the transcriptome, proteome, and promoter activity revealed that the inactivation of BjaR1 systematically activated and inhibited genomic modules associated with nodulation and nitrogen metabolism. The former appeared to be linked to a significant decrease in the expression of NodD2, a key cell-density-dependent repressor of nodulation genes, while the latter conferred bacterial growth and nitrogen fixation insensitivity to environmental nitrogen. In addition, BjaR1 exerted a positive influence on the transcription of multiple genes involved in a so-called central intermediate metabolism within the nodule. In conclusion, our findings highlight the crucial role of the BjaI/BjaR1 QS circuit in positively regulating bacterial nitrogen metabolism and emphasize the significance of the soybean-mediated suppression of this genetic system for promoting efficient symbiotic nitrogen fixation by B. diazoefficiens.IMPORTANCEThe present study demonstrates, for the first time, that the BjaI/BjaR1 QS system of Bradyrhizobium diazoefficiens has a significant impact on its nodulation and nitrogen fixation capability in soybean by positively regulating NodD2 expression and bacterial nitrogen metabolism. Moreover, it provides novel insights into the importance of suppressing the activity of this QS circuit by the soybean host plant in establishing an efficient mutual relationship between the two symbiotic partners. This research expands our understanding of legumes' role in modulating symbiotic nitrogen fixation through rhizobial QS-mediated metabolic functioning, thereby deepening our comprehension of symbiotic coevolution theory. In addition, these findings may hold great promise for developing quorum quenching technology in agriculture.
Collapse
Affiliation(s)
- Fang Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huiquan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ermeng Lyu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qianqian Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Haoyu Gai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yunfang Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xuemei Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xueqian He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Abdul Qadir Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fengmin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiangwen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Min Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Pacheco PJ, Cabrera JJ, Jiménez-Leiva A, Bedmar EJ, Mesa S, Tortosa G, Delgado MJ. Effect of Copper on Expression of Functional Genes and Proteins Associated with Bradyrhizobium diazoefficiens Denitrification. Int J Mol Sci 2022; 23:ijms23063386. [PMID: 35328804 PMCID: PMC8951191 DOI: 10.3390/ijms23063386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.
Collapse
|
3
|
Bueno E, Mania D, Mesa S, Bedmar EJ, Frostegård Å, Bakken LR, Delgado MJ. Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens. Int J Mol Sci 2022; 23:1486. [PMID: 35163408 PMCID: PMC8836242 DOI: 10.3390/ijms23031486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The greenhouse gas nitrous oxide (N2O) has strong potential to drive climate change. Soils are a major source of N2O, with microbial nitrification and denitrification being the primary processes involved in such emissions. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model microorganism to study denitrification, a process that depends on a set of reductases, encoded by the napEDABC, nirK, norCBQD, and nosRZDYFLX genes, which sequentially reduce nitrate (NO3-) to nitrite (NO2-), nitric oxide (NO), N2O, and dinitrogen (N2). In this bacterium, the regulatory network and environmental cues governing the expression of denitrification genes rely on the FixK2 and NnrR transcriptional regulators. To understand the role of FixK2 and NnrR proteins in N2O turnover, we monitored real-time kinetics of NO3-, NO2-, NO, N2O, N2, and oxygen (O2) in a fixK2 and nnrR mutant using a robotized incubation system. We confirmed that FixK2 and NnrR are regulatory determinants essential for NO3- respiration and N2O reduction. Furthermore, we demonstrated that N2O reduction by B. diazoefficiens is independent of canonical inducers of denitrification, such as the nitrogen oxide NO3-, and it is negatively affected by acidic and alkaline conditions. These findings advance the understanding of how specific environmental conditions and two single regulators modulate N2O turnover in B. diazoefficiens.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Daniel Mania
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - Socorro Mesa
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Eulogio J. Bedmar
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - María J. Delgado
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| |
Collapse
|
4
|
Cabrera JJ, Jiménez-Leiva A, Tomás-Gallardo L, Parejo S, Casado S, Torres MJ, Bedmar EJ, Delgado MJ, Mesa S. Dissection of FixK 2 protein-DNA interaction unveils new insights into Bradyrhizobium diazoefficiens lifestyles control. Environ Microbiol 2021; 23:6194-6209. [PMID: 34227211 DOI: 10.1111/1462-2920.15661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
The FixK2 protein plays a pivotal role in a complex regulatory network, which controls genes for microoxic, denitrifying, and symbiotic nitrogen-fixing lifestyles in Bradyrhizobium diazoefficiens. Among the microoxic-responsive FixK2 -activated genes are the fixNOQP operon, indispensable for respiration in symbiosis, and the nnrR regulatory gene needed for the nitric-oxide dependent induction of the norCBQD genes encoding the denitrifying nitric oxide reductase. FixK2 is a CRP/FNR-type transcription factor, which recognizes a 14 bp-palindrome (FixK2 box) at the regulated promoters through three residues (L195, E196, and R200) within a C-terminal helix-turn-helix motif. Here, we mapped the determinants for discriminatory FixK2 -mediated regulation. While R200 was essential for DNA binding and activity of FixK2 , L195 was involved in protein-DNA complex stability. Mutation at positions 1, 3, or 11 in the genuine FixK2 box at the fixNOQP promoter impaired transcription activation by FixK2 , which was residual when a second mutation affecting the box palindromy was introduced. The substitution of nucleotide 11 within the NnrR box at the norCBQD promoter allowed FixK2 -mediated activation in response to microoxia. Thus, position 11 within the FixK2 /NnrR boxes constitutes a key element that changes FixK2 targets specificity, and consequently, it might modulate B. diazoefficiens lifestyle as nitrogen fixer or as denitrifier.
Collapse
Affiliation(s)
- Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Junta de Andalucía-Pablo de Olavide University, Seville, 41013, Spain
| | - Sergio Parejo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Sara Casado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| |
Collapse
|
5
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
6
|
Gao Y, Mania D, Mousavi SA, Lycus P, Arntzen MØ, Woliy K, Lindström K, Shapleigh JP, Bakken LR, Frostegård Å. Competition for electrons favours N 2 O reduction in denitrifying Bradyrhizobium isolates. Environ Microbiol 2021; 23:2244-2259. [PMID: 33463871 DOI: 10.1111/1462-2920.15404] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Bradyrhizobia are common members of soil microbiomes and known as N2 -fixing symbionts of economically important legumes. Many are also denitrifiers, which can act as sinks or sources for N2 O. Inoculation with compatible rhizobia is often needed for optimal N2 -fixation, but the choice of inoculant may have consequences for N2 O emission. Here, we determined the phylogeny and denitrification capacity of Bradyrhizobium strains, most of them isolated from peanut-nodules. Analyses of genomes and denitrification end-points showed that all were denitrifiers, but only ~1/3 could reduce N2 O. The N2 O-reducing isolates had strong preference for N2 O- over NO3 - -reduction. Such preference was also observed in a study of other bradyrhizobia and tentatively ascribed to competition between the electron pathways to Nap (periplasmic NO3 - reductase) and Nos (N2 O reductase). Another possible explanation is lower abundance of Nap than Nos. Here, proteomics revealed that Nap was instead more abundant than Nos, supporting the hypothesis that the electron pathway to Nos outcompetes that to Nap. In contrast, Paracoccus denitrificans, which has membrane-bond NO3 - reductase (Nar), reduced N2 O and NO3 - simultaneously. We propose that the control at the metabolic level, favouring N2 O reduction over NO3 - reduction, applies also to other denitrifiers carrying Nos and Nap but lacking Nar.
Collapse
Affiliation(s)
- Yuan Gao
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Daniel Mania
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Seyed Abdollah Mousavi
- Ecosystems and Environment Research programme, Faculty of Biological and Environmental Sciences, and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Pawel Lycus
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Kedir Woliy
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Kristina Lindström
- Ecosystems and Environment Research programme, Faculty of Biological and Environmental Sciences, and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | | | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
7
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
8
|
Siqueira AF, Sugawara M, Arashida H, Minamisawa K, Sánchez C. Levels of Periplasmic Nitrate Reductase during Denitrification are Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens. Microbes Environ 2020; 35. [PMID: 32554940 PMCID: PMC7511789 DOI: 10.1264/jsme2.me19129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Soybean plants host endosymbiotic dinitrogen (N2)-fixing bacteria from the genus Bradyrhizobium. Under oxygen-limiting conditions, Bradyrhizobium diazoefficiens and Bradyrhizobium japonicum perform denitrification by sequentially reducing nitrate (NO3–) to nitrous oxide (N2O) or N2. The anaerobic reduction of NO3– to N2O was previously shown to be lower in B. japonicum than in B. diazoefficiens due to impaired periplasmic nitrate reductase (Nap) activity in B. japonicum. We herein demonstrated that impaired Nap activity in B. japonicum was due to low Nap protein levels, which may be related to a decline in the production of FixP and FixO proteins by the cbb3-type oxidase.
Collapse
|
9
|
Lu H, Yan M, Wong MH, Mo WY, Wang Y, Chen XW, Wang JJ. Effects of biochar on soil microbial community and functional genes of a landfill cover three years after ecological restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137133. [PMID: 32062262 DOI: 10.1016/j.scitotenv.2020.137133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Landfills, as the most common approach to disposing of municipal solid waste worldwide, disturb native ecosystems and create a need for ecological restoration. The restoration of landfill cover with biochar has shown immediate potential to improve soil microbial functions within one year. However, such characteristics could change after a longer period of time. Here, soil properties, microbial communities, and microbial functional genes related to nutrient cycling were investigated three years after the biochar amendment of the topsoil of a subtropical landfill cover. The results showed that the levels of soil organic matter, water content, total carbon (C), total nitrogen (N) and total phosphorus (P) of biochar-amended soils were higher than those of control soil. Different soil microbial community structures were observed in the biochar-amended and control soils. Nine phyla, including Proteobacteria and Acidobacteria, but not Actinobacteria or Chloroflexi, were enriched in the biochar-amended soil. Although the impact of biochar on shaping microbial communities increased after a longer period of restoration, no differences were observed in soils that were amended using different biochar:soil ratios. The abundances of functional genes related to C and N cycling decreased, whereas those of genes related to P cycling were higher in soils that received biochar amendment. This finding suggests that compared with the control soil, biochar-amended soils were less active in processes involved in C and N cycling but enhanced in processes related to P cycling. This study can serve as a reference for future ecological restoration of degraded lands using biochar.
Collapse
Affiliation(s)
- Hang Lu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengxue Yan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Wing Yin Mo
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Yinghui Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xun Wen Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jun-Jian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Salas A, Tortosa G, Hidalgo-García A, Delgado A, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. The Hemoglobin Bjgb From Bradyrhizobium diazoefficiens Controls NO Homeostasis in Soybean Nodules to Protect Symbiotic Nitrogen Fixation. Front Microbiol 2020; 10:2915. [PMID: 31998252 PMCID: PMC6965051 DOI: 10.3389/fmicb.2019.02915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
Legume-rhizobia symbiotic associations have beneficial effects on food security and nutrition, health and climate change. Hypoxia induced by flooding produces nitric oxide (NO) in nodules from soybean plants cultivated in nitrate-containing soils. As NO is a strong inhibitor of nitrogenase expression and activity, this negatively impacts symbiotic nitrogen fixation in soybean and limits crop production. In Bradyrhizobium diazoefficiens, denitrification is the main process involved in NO formation by soybean flooded nodules. In addition to denitrification, nitrate assimilation is another source of NO in free-living B. diazoefficiens cells and a single domain hemoglobin (Bjgb) has been shown to have a role in NO detoxification during nitrate-dependent growth. However, the involvement of Bjgb in protecting nitrogenase against NO in soybean nodules remains unclear. In this work, we have investigated the effect of inoculation of soybean plants with a bjgb mutant on biological nitrogen fixation. By analyzing the proportion of N in shoots derived from N2-fixation using the 15N isotope dilution technique, we found that plants inoculated with the bjgb mutant strain had higher tolerance to flooding than those inoculated with the parental strain. Similarly, reduction of nitrogenase activity and nifH expression by flooding was less pronounced in bjgb than in WT nodules. These beneficial effects are probably due to the reduction of NO accumulation in bjgb flooded nodules compared to the wild-type nodules. This decrease is caused by an induction of expression and activity of the denitrifying NO reductase enzyme in bjgb bacteroids. As bjgb deficiency promotes NO-tolerance, the negative effect of NO on nitrogenase is partially prevented and thus demonstrates that inoculation of soybean plants with the B. diazoefficiens bjgb mutant confers protection of symbiotic nitrogen fixation during flooding.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alba Hidalgo-García
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Antonio Delgado
- Laboratory of Stable Isotopes Biogeochemistry, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
11
|
Obando M, Correa-Galeote D, Castellano-Hinojosa A, Gualpa J, Hidalgo A, Alché JD, Bedmar E, Cassán F. Analysis of the denitrification pathway and greenhouse gases emissions in Bradyrhizobium sp. strains used as biofertilizers in South America. J Appl Microbiol 2019; 127:739-749. [PMID: 30803109 DOI: 10.1111/jam.14233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 02/02/2023]
Abstract
AIMS Greenhouse gases are considered as potential atmospheric pollutants, with agriculture being one of the main emission sources. The practice of inoculating soybean seeds with Bradyrhizobium sp. might contribute to nitrous oxide (N2 O) emissions. We analysed this capacity in five of the most used strains of Bradyrhizobium sp. in South America. METHODS AND RESULTS We analysed the denitrification pathway and N2 O production by Bradyrhizobium japonicum E109 and CPAC15, Bradyrhizobium diazoefficiens CPAC7 and B. elkanii SEMIA 587 and SEMIA 5019, both in free-living conditions and in symbiosis with soybean. The in silico analysis indicated the absence of nosZ genes in B. japonicum and the presence of all denitrification genes in B. diazoefficiens strains, as well as the absence of nirK, norC and nosZ genes in B. elkanii. The in planta analysis confirmed N2 O production under saprophytic conditions or symbiosis with soybean root nodules. In the case of symbiosis, up to 26.1 and 18.4 times higher in plants inoculated with SEMIA5019 and E109, respectively, than in those inoculated with USDA110. CONCLUSIONS The strains E109, SEMIA 5019, CPAC15 and SEMIA 587 showed the highest N2 O production both as free-living cells and in symbiotic conditions in comparison with USDA110 and CPAC7, which do have the nosZ gene. Although norC and nosZ could not be identified in silico or in vitro in SEMIA 587 and SEMIA 5019, these strains showed the capacity to produce N2 O in our experimental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to analyse and confirm the incomplete denitrification capacity and N2 O production in four of the five most used strains of Bradyrhizobium sp. for soybean inoculation in South America.
Collapse
Affiliation(s)
- M Obando
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - D Correa-Galeote
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - A Castellano-Hinojosa
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - J Gualpa
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Hidalgo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - J D Alché
- Departamento de Protection Vegetal, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - E Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - F Cassán
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
12
|
Jiménez-Leiva A, Cabrera JJ, Bueno E, Torres MJ, Salazar S, Bedmar EJ, Delgado MJ, Mesa S. Expanding the Regulon of the Bradyrhizobium diazoefficiens NnrR Transcription Factor: New Insights Into the Denitrification Pathway. Front Microbiol 2019; 10:1926. [PMID: 31481951 PMCID: PMC6710368 DOI: 10.3389/fmicb.2019.01926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Denitrification in the soybean endosymbiont Bradyrhizobium diazoefficiens is controlled by a complex regulatory network composed of two hierarchical cascades, FixLJ-FixK2-NnrR and RegSR-NifA. In the former cascade, the CRP/FNR-type transcription factors FixK2 and NnrR exert disparate control on expression of core denitrifying systems encoded by napEDABC, nirK, norCBQD, and nosRZDFYLX genes in response to microoxia and nitrogen oxides, respectively. To identify additional genes controlled by NnrR and involved in the denitrification process in B. diazoefficiens, we compared the transcriptional profile of an nnrR mutant with that of the wild type, both grown under anoxic denitrifying conditions. This approach revealed more than 170 genes were simultaneously induced in the wild type and under the positive control of NnrR. Among them, we found the cycA gene which codes for the c550 soluble cytochrome (CycA), previously identified as an intermediate electron donor between the bc1 complex and the denitrifying nitrite reductase NirK. Here, we demonstrated that CycA is also required for nitrous oxide reductase activity. However, mutation in cycA neither affected nosZ gene expression nor NosZ protein steady-state levels. Furthermore, cycA, nnrR and its proximal divergently oriented nnrS gene, are direct targets for FixK2 as determined by in vitro transcription activation assays. The dependence of cycA expression on FixK2 and NnrR in anoxic denitrifying conditions was validated at transcriptional level, determined by quantitative reverse transcription PCR, and at the level of protein by performing heme c-staining of soluble cytochromes. Thus, this study expands the regulon of NnrR and demonstrates the role of CycA in the activity of the nitrous oxide reductase, the key enzyme for nitrous oxide mitigation.
Collapse
Affiliation(s)
- Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sergio Salazar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
13
|
Mania D, Woliy K, Degefu T, Frostegård Å. A common mechanism for efficient N2O reduction in diverse isolates of nodule‐forming bradyrhizobia. Environ Microbiol 2019; 22:17-31. [DOI: 10.1111/1462-2920.14731] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Mania
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| | - Kedir Woliy
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| | - Tulu Degefu
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
- International Crops Research Institute for the Semi‐Arid Tropics Addis Ababa Ethiopia
| | - åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| |
Collapse
|
14
|
Sánchez C, Siqueira AF, Mitsui H, Minamisawa K. Identification of Genes Regulated by the Antitermination Factor NasT during Denitrification in Bradyrhizobium diazoefficiens. Microbes Environ 2019; 34:260-267. [PMID: 31257307 PMCID: PMC6759348 DOI: 10.1264/jsme2.me19033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The soybean symbiont Bradyrhizobium diazoefficiens grows anaerobically in the presence of nitrate using the denitrification pathway, which involves the nap, nir, nor, and nos genes. We previously showed that NasT acts as a transcription antitermination regulator for nap and nos gene expression. In the present study, we investigated the targets of NasT in B. diazoefficiens during denitrifying growth by performing transcription profiling with RNA-seq and quantitative reverse-transcription PCR. Most of the genes with altered expression in the absence of NasT were related to nitrogen metabolism, specifically several systems for branched-chain amino acid transport. The present results suggest that the reduced expression of genes involved in nitrogen acquisition leads to the induction of alternative sets of genes with similar functions. The ΔnasT mutant of B. diazoefficiens grew better than the wild type under denitrifying conditions. However, this enhanced growth was completely abolished by an additional loss of the narK or bjgb genes, which encode cytoplasmic systems for nitrite and nitric oxide detoxification, respectively. Since the expression of narK and bjgb was increased in the ΔnasT mutant, the growth of the ΔnasT mutant may be promoted by increased detoxification activity.
Collapse
|
15
|
Fernández N, Cabrera JJ, Varadarajan AR, Lutz S, Ledermann R, Roschitzki B, Eberl L, Bedmar EJ, Fischer HM, Pessi G, Ahrens CH, Mesa S. An Integrated Systems Approach Unveils New Aspects of Microoxia-Mediated Regulation in Bradyrhizobium diazoefficiens. Front Microbiol 2019; 10:924. [PMID: 31134003 PMCID: PMC6515984 DOI: 10.3389/fmicb.2019.00924] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/11/2019] [Indexed: 01/31/2023] Open
Abstract
The adaptation of rhizobia from the free-living state in soil to the endosymbiotic state comprises several physiological changes in order to cope with the extremely low oxygen availability (microoxia) within nodules. To uncover cellular functions required for bacterial adaptation to microoxia directly at the protein level, we applied a systems biology approach on the key rhizobial model and soybean endosymbiont Bradyrhizobium diazoefficiens USDA 110 (formerly B. japonicum USDA 110). As a first step, the complete genome of B. diazoefficiens 110spc4, the model strain used in most prior functional genomics studies, was sequenced revealing a deletion of a ~202 kb fragment harboring 223 genes and several additional differences, compared to strain USDA 110. Importantly, the deletion strain showed no significantly different phenotype during symbiosis with several host plants, reinforcing the value of previous OMICS studies. We next performed shotgun proteomics and detected 2,900 and 2,826 proteins in oxically and microoxically grown cells, respectively, largely expanding our knowledge about the inventory of rhizobial proteins expressed in microoxia. A set of 62 proteins was significantly induced under microoxic conditions, including the two nitrogenase subunits NifDK, the nitrogenase reductase NifH, and several subunits of the high-affinity terminal cbb3 oxidase (FixNOQP) required for bacterial respiration inside nodules. Integration with the previously defined microoxia-induced transcriptome uncovered a set of 639 genes or proteins uniquely expressed in microoxia. Finally, besides providing proteogenomic evidence for novelties, we also identified proteins with a regulation similar to that of FixK2: transcript levels of these protein-coding genes were significantly induced, while the corresponding protein abundance remained unchanged or was down-regulated. This suggested that, apart from fixK2, additional B. diazoefficiens genes might be under microoxia-specific post-transcriptional control. This hypothesis was indeed confirmed for several targets (HemA, HemB, and ClpA) by immunoblot analysis.
Collapse
Affiliation(s)
- Noemí Fernández
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Adithi R Varadarajan
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland.,Department of Health Sciences and Technology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | | | - Bernd Roschitzki
- Functional Genomics Center Zurich, ETH & UZH Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
16
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
17
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
18
|
Mitra S, Das A, Sen S, Mahanty B. Potential of metabolic engineering in bacterial nanosilver synthesis. World J Microbiol Biotechnol 2018; 34:138. [DOI: 10.1007/s11274-018-2522-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|
19
|
Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS. Appl Environ Microbiol 2018; 84:AEM.02173-17. [PMID: 29500257 DOI: 10.1128/aem.02173-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/20/2018] [Indexed: 11/20/2022] Open
Abstract
Most isolated nitrate-reducing Fe(II)-oxidizing microorganisms are mixotrophic, meaning that Fe(II) is chemically oxidized by nitrite that forms during heterotrophic denitrification, and it is debated to which extent Fe(II) is enzymatically oxidized. One exception is the chemolithoautotrophic enrichment culture KS, a consortium consisting of a dominant Fe(II) oxidizer, Gallionellaceae sp., and less abundant heterotrophic strains (e.g., Bradyrhizobium sp., Nocardioides sp.). Currently, this is the only nitrate-reducing Fe(II)-oxidizing culture for which autotrophic growth has been demonstrated convincingly for many transfers over more than 2 decades. We used 16S rRNA gene amplicon sequencing and physiological growth experiments to analyze the community composition and dynamics of culture KS with various electron donors and acceptors. Under autotrophic conditions, an operational taxonomic unit (OTU) related to known microaerophilic Fe(II) oxidizers within the family Gallionellaceae dominated culture KS. With acetate as an electron donor, most 16S rRNA gene sequences were affiliated with Bradyrhizobium sp. Gallionellaceae sp. not only was able to oxidize Fe(II) under autotrophic and mixotrophic conditions but also survived over several transfers of the culture on only acetate, although it then lost the ability to oxidize Fe(II). Bradyrhizobium spp. became and remained dominant when culture KS was cultivated for only one transfer under heterotrophic conditions, even when conditions were reverted back to autotrophic in the next transfer. This study showed a dynamic microbial community in culture KS that responded to changing substrate conditions, opening up questions regarding carbon cross-feeding, metabolic flexibility of the individual strains in KS, and the mechanism of Fe(II) oxidation by a microaerophile in the absence of O2IMPORTANCE Nitrate-reducing Fe(II)-oxidizing microorganisms are present in aquifers, soils, and marine and freshwater sediments. Most nitrate-reducing Fe(II) oxidizers known are mixotrophic, meaning that they need organic carbon to continuously oxidize Fe(II) and grow. In these microbes, Fe(II) was suggested to be chemically oxidized by nitrite that forms during heterotrophic denitrification, and it remains unclear whether or to what extent Fe(II) is enzymatically oxidized. In contrast, the enrichment culture KS was shown to oxidize Fe(II) autotrophically coupled to nitrate reduction. This culture contains the designated Fe(II) oxidizer Gallionellaceae sp. and several heterotrophic strains (e.g., Bradyrhizobium sp.). We showed that culture KS is able to metabolize Fe(II) and a variety of organic substrates and is able to adapt to dynamic environmental conditions. When the community composition changed and Bradyrhizobium became the dominant community member, Fe(II) was still oxidized by Gallionellaceae sp., even when culture KS was cultivated with acetate/nitrate [Fe(II) free] before being switched back to Fe(II)/nitrate.
Collapse
|
20
|
Torres MJ, Avila S, Bedmar EJ, Delgado MJ. Overexpression of the periplasmic nitrate reductase supports anaerobic growth by Ensifer meliloti. FEMS Microbiol Lett 2018; 365:4867969. [DOI: 10.1093/femsle/fny041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/15/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- María J Torres
- Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | - Sergio Avila
- Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | - Eulogio J Bedmar
- Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | - María J Delgado
- Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
21
|
Strodtman KN, Stevenson SE, Waters JK, Mawhinney TP, Thelen JJ, Polacco JC, Emerich DW. The Bacteroid Periplasm in Soybean Nodules Is an Interkingdom Symbiotic Space. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:997-1008. [PMID: 29028412 DOI: 10.1094/mpmi-12-16-0264-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The functional role of the periplasm of nitrogen-fixing bacteroids has not been determined. Proteins were isolated from the periplasm and cytoplasm of Bradyrhizobium diazoefficiens bacteroids and were analyzed using liquid chromatography tandem mass spectrometry proteomics. Identification of bacteroid periplasmic proteins was aided by periplasm prediction programs. Approximately 40% of all the proteins identified as periplasmic in the B. diazoefficiens genome were found expressed in the bacteroid form of the bacteria, indicating the periplasm is a metabolically active symbiotic space. The bacteroid periplasm possesses many fatty acid metabolic enzymes, which was in contrast to the bacteroid cytoplasm. Amino acid analysis of the periplasm revealed an abundance of phosphoserine, phosphoethanolamine, and glycine, which are metabolites of phospholipid metabolism. These results suggest the periplasm is a unique space and not a continuum with the peribacteroid space. A number of plant proteins were found in the periplasm fraction, which suggested contamination. However, antibodies to two of the identified plant proteins, histone H2A and lipoxygenase, yielded immunogold labeling that demonstrated the plant proteins were specifically targeted to the bacteroids. This suggests that the periplasm is an interkingdom symbiotic space containing proteins from both the bacteroid and the plant.
Collapse
Affiliation(s)
- Kent N Strodtman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Severin E Stevenson
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - James K Waters
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Joseph C Polacco
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - David W Emerich
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
22
|
Torres MJ, Bueno E, Jiménez-Leiva A, Cabrera JJ, Bedmar EJ, Mesa S, Delgado MJ. FixK 2 Is the Main Transcriptional Activator of Bradyrhizobium diazoefficiens nosRZDYFLX Genes in Response to Low Oxygen. Front Microbiol 2017; 8:1621. [PMID: 28912756 PMCID: PMC5582078 DOI: 10.3389/fmicb.2017.01621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
The powerful greenhouse gas, nitrous oxide (N2O) has a strong potential to drive climate change. Soils are the major source of N2O and microbial nitrification and denitrification the main processes involved. The soybean endosymbiont Bradyrhizobium diazoefficiens is considered a model to study rhizobial denitrification, which depends on the napEDABC, nirK, norCBQD, and nosRZDYFLX genes. In this bacterium, the role of the regulatory cascade FixLJ-FixK2-NnrR in the expression of napEDABC, nirK, and norCBQD genes involved in N2O synthesis has been previously unraveled. However, much remains to be discovered regarding the regulation of the respiratory N2O reductase (N2OR), the key enzyme that mitigates N2O emissions. In this work, we have demonstrated that nosRZDYFLX genes constitute an operon which is transcribed from a major promoter located upstream of the nosR gene. Low oxygen was shown to be the main inducer of expression of nosRZDYFLX genes and N2OR activity, FixK2 being the regulatory protein involved in such control. Further, by using an in vitro transcription assay with purified FixK2 protein and B. diazoefficiens RNA polymerase we were able to show that the nosRZDYFLX genes are direct targets of FixK2.
Collapse
Affiliation(s)
- María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
23
|
Bueno E, Robles EF, Torres MJ, Krell T, Bedmar EJ, Delgado MJ, Mesa S. Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide 2017; 68:137-149. [DOI: 10.1016/j.niox.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023]
|
24
|
Duan G, Hakoyama T, Kamiya T, Miwa H, Lombardo F, Sato S, Tabata S, Chen Z, Watanabe T, Shinano T, Fujiwara T. LjMOT1, a high-affinity molybdate transporter from Lotus japonicus, is essential for molybdate uptake, but not for the delivery to nodules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1108-1119. [PMID: 28276145 DOI: 10.1111/tpj.13532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Molybdenum (Mo) is an essential nutrient for plants, and is required for nitrogenase activity of legumes. However, the pathways of Mo uptake from soils and then delivery to the nodules have not been characterized in legumes. In this study, we characterized a high-affinity Mo transporter (LjMOT1) from Lotus japonicus. Mo concentrations in an ethyl methanesulfonate-mutagenized line (ljmot1) decreased by 70-95% compared with wild-type (WT). By comparing the DNA sequences of four AtMOT1 homologs between mutant and WT lines, one point mutation was found in LjMOT1, which altered Trp292 to a stop codon; no mutation was found in the other homologous genes. The phenotype of Mo concentrations in F2 progeny from ljmot1 and WT crosses were associated with genotypes of LjMOT1. Introduction of endogenous LjMOT1 to ljmot1 restored Mo accumulation to approximately 60-70% of the WT. Yeast expressing LjMOT1 exhibited high Mo uptake activity, and the Km was 182 nm. LjMOT1 was expressed mainly in roots, and its expression was not affected by Mo supply or rhizobium inoculation. Although Mo accumulation in the nodules of ljmot1 was significantly lower than that of WT, it was still high enough for normal nodulation and nitrogenase activity, even for cotyledons-removed ljmot1 plants grown under low Mo conditions, in this case the plant growth was significantly inhibited by Mo deficiency. Our results suggest that LjMOT1 is an essential Mo transporter in L. japonicus for Mo uptake from the soil and growth, but is not for Mo delivery to the nodules.
Collapse
Affiliation(s)
- Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tsuneo Hakoyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroki Miwa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Fabien Lombardo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- National Agriculture and Food Research Organization (NARO) Institute of Crop Science, Ibaraki, 305-8518, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
| | - Zheng Chen
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
| | - Takuro Shinano
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- NARO Tohoku Agricultural Research Center, Arai, Fukushima, 960-2156, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
25
|
López MF, Cabrera JJ, Salas A, Delgado MJ, López-García SL. Dissecting the role of NtrC and RpoN in the expression of assimilatory nitrate and nitrite reductases in Bradyrhizobium diazoefficiens. Antonie Van Leeuwenhoek 2017; 110:531-542. [PMID: 28040856 DOI: 10.1007/s10482-016-0821-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ54, was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.
Collapse
Affiliation(s)
- María F López
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL, La Plata, Argentina
| | - Juan J Cabrera
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain
| | - Ana Salas
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain
| | - María J Delgado
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain.
| | - Silvina L López-García
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL, La Plata, Argentina.
| |
Collapse
|
26
|
Jones FP, Clark IM, King R, Shaw LJ, Woodward MJ, Hirsch PR. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes - a genome comparison. Sci Rep 2016; 6:25858. [PMID: 27162150 PMCID: PMC4861915 DOI: 10.1038/srep25858] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022] Open
Abstract
The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Frances Patricia Jones
- Department of AgroEcology, Rothamsted Research, Harpenden, AL5 2JQ, UK.,Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AH, UK
| | - Ian M Clark
- Department of AgroEcology, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Robert King
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Liz J Shaw
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AH, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, RG6 6AH, UK
| | - Penny R Hirsch
- Department of AgroEcology, Rothamsted Research, Harpenden, AL5 2JQ, UK
| |
Collapse
|
27
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
28
|
An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum. Biochem J 2015; 473:297-309. [PMID: 26564204 PMCID: PMC4724949 DOI: 10.1042/bj20150880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3 (-)) or nitrite (NO2 (-)) as sole nitrogen source. Unlike related bacteria that assimilate NO3 (-), genes encoding the assimilatory NO3 (-) reductase (nasC) and NO2 (-) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3 (-) transporter, a major facilitator family NO3 (-)/NO2 (-) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3 (-)/NO2 (-)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3 (-) assimilation and that growth with NO3 (-), but not NO2 (-) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3 (-) assimilation. Additional experiments reveal NasT is required for NO3 (-)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3 (-)/NO2 (-) reductase pathway.
Collapse
|
29
|
Tortosa G, Hidalgo A, Salas A, Bedmar EJ, Mesa S, Delgado MJ. Nitrate and flooding induce N2O emissions from soybean nodules. Symbiosis 2015. [DOI: 10.1007/s13199-015-0341-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl Environ Microbiol 2015; 81:5003-14. [PMID: 25979892 DOI: 10.1128/aem.00848-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Hyphomicrobium spp. are commonly identified as major players in denitrification systems supplied with methanol as a carbon source. However, denitrifying Hyphomicrobium species are poorly characterized, and very few studies have provided information on the genetic and physiological aspects of denitrification in pure cultures of these bacteria. This is a comparative study of three denitrifying Hyphomicrobium species, H. denitrificans ATCC 51888, H. zavarzinii ZV622, and a newly described species, H. nitrativorans NL23, which was isolated from a denitrification system treating seawater. Whole-genome sequence analyses revealed that although they share numerous orthologous genes, these three species differ greatly in their nitrate reductases, with gene clusters encoding a periplasmic nitrate reductase (Nap) in H. nitrativorans, a membrane-bound nitrate reductase (Nar) in H. denitrificans, and one Nap and two Nar enzymes in H. zavarzinii. Concurrently with these differences observed at the genetic level, important differences in the denitrification capacities of these Hyphomicrobium species were determined. H. nitrativorans grew and denitrified at higher nitrate and NaCl concentrations than did the two other species, without significant nitrite accumulation. Significant increases in the relative gene expression levels of the nitrate (napA) and nitrite (nirK) reductase genes were also noted for H. nitrativorans at higher nitrate and NaCl concentrations. Oxygen was also found to be a strong regulator of denitrification gene expression in both H. nitrativorans and H. zavarzinii, although individual genes responded differently in these two species. Taken together, the results presented in this study highlight the potential of H. nitrativorans as an efficient and adaptable bacterium that is able to perform complete denitrification under various conditions.
Collapse
|
31
|
Sánchez C, Itakura M, Okubo T, Matsumoto T, Yoshikawa H, Gotoh A, Hidaka M, Uchida T, Minamisawa K. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum. Environ Microbiol 2014; 16:3263-74. [PMID: 24947409 DOI: 10.1111/1462-2920.12546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 11/30/2022]
Abstract
The soybean endosymbiont Bradyrhizobium japonicum is able to scavenge the greenhouse gas N2O through the N2O reductase (Nos). In previous research, N2O emission from soybean rhizosphere was mitigated by B. japonicum Nos(++) strains (mutants with increased Nos activity). Here, we report the mechanism underlying the Nos(++) phenotype. Comparative analysis of Nos(++) mutant genomes showed that mutation of bll4572 resulted in Nos(++) phenotype. bll4572 encodes NasS, the nitrate (NO3(-))-sensor of the two-component NasST regulatory system. Transcriptional analyses of nosZ (encoding Nos) and other genes from the denitrification process in nasS and nasST mutants showed that, in the absence of NO3(-) , nasS mutation induces nosZ and nap (periplasmic nitrate reductase) via nasT. NO3(-) addition dissociated the NasS-NasT complex in vitro, suggesting the release of the activator NasT. Disruption of nasT led to a marked decrease in nosZ and nap transcription in cells incubated in the presence of NO3(-). Thus, although NasST is known to regulate the NO3(-)-mediated response of NO3(-) assimilation genes in bacteria, our results show that NasST regulates the NO3(-) -mediated response of nosZ and napE genes, from the dissimilatory denitrification pathway, in B. japonicum.
Collapse
Affiliation(s)
- Cristina Sánchez
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Skennerton CT, Barr JJ, Slater FR, Bond PL, Tyson GW. Expanding our view of genomic diversity in Candidatus Accumulibacter clades. Environ Microbiol 2014; 17:1574-85. [PMID: 25088527 DOI: 10.1111/1462-2920.12582] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/20/2014] [Accepted: 07/27/2014] [Indexed: 12/01/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) is an important industrial wastewater treatment process mediated by polyphosphate-accumulating organisms (PAOs). Members of the genus Candidatus Accumulibacter are one of the most extensively studied PAO as they are commonly enriched in lab-scale EBPR reactors. Members of different Accumulibacter clades are often enriched through changes in reactor process conditions; however, the two currently sequenced Accumulibacter genomes show extensive metabolic similarity. Here, we expand our understanding of Accumulibacter genomic diversity through recovery of eight population genomes using deep metagenomics, including seven from phylogenetic clades with no previously sequenced representative. Comparative genomic analysis revealed a core of shared genes involved primarily in carbon and phosphorus metabolism; however, each Accumulibacter genome also encoded a substantial number of unique genes (> 700 genes). A major difference between the Accumulibacter clades was the type of nitrate reductase encoded and the capacity to perform subsequent steps in denitrification. The Accumulibacter clade IIF genomes also contained acetaldehyde dehydrogenase that may allow ethanol to be used as carbon source. These differences in metabolism between Accumulibacter genomes provide a molecular basis for niche differentiation observed in lab-scale reactors and may offer new opportunities for process optimization.
Collapse
Affiliation(s)
- Connor T Skennerton
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Bioscience, St Lucia, QLD, 4072, Australia; Advanced Water Management Centre, University of Queensland, St Lucia, QLD, 4072, Australia
| | | | | | | | | |
Collapse
|
33
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
34
|
Torres MJ, Argandoña M, Vargas C, Bedmar EJ, Fischer HM, Mesa S, Delgado MJ. The global response regulator RegR controls expression of denitrification genes in Bradyrhizobium japonicum. PLoS One 2014; 9:e99011. [PMID: 24949739 PMCID: PMC4064962 DOI: 10.1371/journal.pone.0099011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/24/2014] [Indexed: 12/03/2022] Open
Abstract
Bradyrhizobium japonicum RegSR regulatory proteins belong to the family of two-component regulatory systems, and orthologs are present in many Proteobacteria where they globally control gene expression mostly in a redox-responsive manner. In this work, we have performed a transcriptional profiling of wild-type and regR mutant cells grown under anoxic denitrifying conditions. The comparative analyses of wild-type and regR strains revealed that almost 620 genes induced in the wild type under denitrifying conditions were regulated (directly or indirectly) by RegR, pointing out the important role of this protein as a global regulator of denitrification. Genes controlled by RegR included nor and nos structural genes encoding nitric oxide and nitrous oxide reductase, respectively, genes encoding electron transport proteins such as cycA (blr7544) or cy2 (bll2388), and genes involved in nitric oxide detoxification (blr2806-09) and copper homeostasis (copCAB), as well as two regulatory genes (bll3466, bll4130). Purified RegR interacted with the promoters of norC (blr3214), nosR (blr0314), a fixK-like gene (bll3466), and bll4130, which encodes a LysR-type regulator. By using fluorescently labeled oligonucleotide extension (FLOE), we were able to identify two transcriptional start sites located at about 35 (P1) and 22 (P2) bp upstream of the putative translational start codon of norC. P1 matched with the previously mapped 5′end of norC mRNA which we demonstrate in this work to be under FixK2 control. P2 is a start site modulated by RegR and specific for anoxic conditions. Moreover, qRT-PCR experiments, expression studies with a norC-lacZ fusion, and heme c-staining analyses revealed that anoxia and nitrate are required for RegR-dependent induction of nor genes, and that this control is independent of the sensor protein RegS.
Collapse
Affiliation(s)
- Maria J. Torres
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Montserrat Argandoña
- Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Vargas
- Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| | - Eulogio J. Bedmar
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | - Socorro Mesa
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María J. Delgado
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| |
Collapse
|
35
|
Torres MJ, Rubia MI, de la Peña TC, Pueyo JJ, Bedmar EJ, Delgado MJ. Genetic basis for denitrification in Ensifer meliloti. BMC Microbiol 2014; 14:142. [PMID: 24888981 PMCID: PMC4064527 DOI: 10.1186/1471-2180-14-142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/28/2014] [Indexed: 11/20/2022] Open
Abstract
Background Denitrification is defined as the dissimilatory reduction of nitrate or nitrite to nitric oxide (NO), nitrous oxide (N2O), or dinitrogen gas (N2). N2O is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Legume crops might contribute to N2O production by providing nitrogen-rich residues for decomposition or by associating with rhizobia that are able to denitrify under free-living and symbiotic conditions. However, there are limited direct empirical data concerning N2O production by endosymbiotic bacteria associated with legume crops. Analysis of the Ensifer meliloti 1021 genome sequence revealed the presence of the napEFDABC, nirK, norECBQD and nosRZDFYLX denitrification genes. It was recently reported that this bacterium is able to grow using nitrate respiration when cells are incubated with an initial O2 concentration of 2%; however, these cells were unable to use nitrate respiration when initially incubated anoxically. The involvement of the nap, nirK, nor and nos genes in E. meliloti denitrification has not been reported. Results E. meliloti nap, nirK and norC mutant strains exhibited defects in their ability to grow using nitrate as a respiratory substrate. However, E meliloti nosZ was not essential for growth under these conditions. The E. meliloti napA, nirK, norC and nosZ genes encode corresponding nitrate, nitrite, nitric oxide and nitrous oxide reductases, respectively. The NorC component of the E. meliloti nitric oxide reductase has been identified as a c-type cytochrome that is 16 kDa in size. Herein, we also show that maximal expression of the E. meliloti napA, nirK, norC and nosZ genes occurred when cells were initially incubated anoxically with nitrate. Conclusion The E. meliloti napA, nirK, norC and nosZ genes are involved in nitrate respiration and in the expression of denitrification enzymes in this bacterium. Our findings expand the short list of rhizobia for which denitrification gene function has been demonstrated. The inability of E. meliloti to grow when cells are initially subjected to anoxic conditions is not attributable to defects in the expression of the napA, nirK, norC and nosZ denitrification genes.
Collapse
Affiliation(s)
| | | | | | | | | | - María J Delgado
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), P,O, Box 419, 18080 Granada, Spain.
| |
Collapse
|
36
|
Antioxidant defense system responses and role of nitrate reductase in the redox balance maintenance in Bradyrhizobium japonicum strains exposed to cadmium. Enzyme Microb Technol 2013; 53:345-50. [DOI: 10.1016/j.enzmictec.2013.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022]
|
37
|
|
38
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
39
|
Hirayama J, Eda S, Mitsui H, Minamisawa K. Nitrate-dependent N₂O emission from intact soybean nodules via denitrification by Bradyrhizobium japonicum bacteroids. Appl Environ Microbiol 2011; 77:8787-90. [PMID: 22003029 PMCID: PMC3233077 DOI: 10.1128/aem.06262-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/10/2011] [Indexed: 11/20/2022] Open
Abstract
In the presence of nitrate, N₂O emission increased markedly from soybean roots inoculated with nosZ mutant of Bradyrhizobium japonicum, but not from soybean roots inoculated with a napA nosZ double mutant, indicating that B. japonicum bacteroids in soybean nodules are able to convert the exogenously supplied nitrate into N₂O via a denitrification pathway.
Collapse
Affiliation(s)
- Junta Hirayama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shima Eda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
40
|
Gómez-Hernández N, Reyes-González A, Sánchez C, Mora Y, Delgado MJ, Girard L. Regulation and symbiotic role of nirK and norC expression in Rhizobium etli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:233-45. [PMID: 21043576 DOI: 10.1094/mpmi-07-10-0173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rhizobium etli CFN42 is unable to use nitrate for respiration and lacks nitrate reductase activity as well as the nap or nar genes encoding respiratory nitrate reductase. However, genes encoding proteins closely related to denitrification enzymes, the norCBQD gene cluster and a novel nirKnirVnnrRnnrU operon are located on pCFN42f. In this study, we carried out a genetic and functional characterization of the reductases encoded by the R. etli nirK and norCB genes. By gene fusion expression analysis in free-living conditions, we determined that R. etli regulates its response to nitric oxide through NnrR via the microaerobic expression mediated by FixKf. Interestingly, expression of the norC and nirK genes displays a different level of dependence for NnrR. A null mutation in nnrR causes a drastic drop in the expression of norC, while nirK still exhibits significant expression. A thorough analysis of the nirK regulatory region revealed that this gene is under both positive and negative regulation. Functional analysis carried out in this work demonstrated that reduction of nitrite and nitric oxide in R. etli requires the reductase activities encoded by the norCBQD and nirK genes. Levels of nitrosylleghemoglobin complexes in bean plants exposed to nitrate are increased in a norC mutant but decreased in a nirK mutant. The nitrate-induced decline in nitrogenase-specific activity observed in both the wild type and the norC mutant was not detected in the nirK mutant. This data indicate that bacterial nitrite reductase is an important contributor to the formation of NO in bean nodules in response to nitrate.
Collapse
Affiliation(s)
- Nicolás Gómez-Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, 62271, México
| | | | | | | | | | | |
Collapse
|
41
|
Four PCR primers necessary for the detection of periplasmic nitrate reductase genes in all groups of Proteobacteria and in environmental DNA. Biochem Soc Trans 2011; 39:321-6. [PMID: 21265796 PMCID: PMC3064403 DOI: 10.1042/bst0390321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Generic primers are available for detecting bacterial genes required for almost every reaction of the biological nitrogen cycle, the one notable exception being napA (gene for the molybdoprotein of the periplasmic nitrate reductase) encoding periplasmic nitrate reductases. Using an iterative approach, we report the first successful design of three forward oligonucleotide primers and one reverse primer that, in three separate PCRs, can amplify napA DNA from all five groups of Proteobacteria. All 140 napA sequences currently listed in the NCBI (National Center for Biotechnology Information) database are predicted to be amplified by one or more of these primer pairs. We demonstrate that two pairs of these primers also amplify PCR products of the predicted sizes from DNA isolated from human faeces, confirming their ability to direct the amplification of napA fragments from mixed populations. Analysis of the resulting amplicons by high-throughput sequencing will enable a good estimate to be made of both the range and relative abundance of nitrate-reducing bacteria in any community, subject only to any unavoidable bias inherent in a PCR approach to molecular characterization of a highly diverse target.
Collapse
|
42
|
Sánchez C, Gates AJ, Meakin GE, Uchiumi T, Girard L, Richardson DJ, Bedmar EJ, Delgado MJ. Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:702-11. [PMID: 20367476 DOI: 10.1094/mpmi-23-5-0702] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) has gained interest as a major signaling molecule during plant development and in response to environmental cues. Formation of NO during symbiotic interactions has been reported, but the role and sources of NO in nodules remain unclear. In this work, the involvement of denitrification, performed by the symbiont Bradyrhizobium japonicum, in NO formation in soybean nodules in response to flooding conditions has been investigated by inoculating plants with napA-, nirK-, or norC-deficient mutants. Levels of nitrosylleghemoglobin (LbNO) in flooded nirK and norC nodules were significantly higher than those observed in wild-type nodules. In addition, nirK and norC nodules accumulated more nitrite and NO, respectively, than wild-type nodules. By contrast, levels of LbNO, nitrite, and NO in flooded napA nodules were lower than in wild-type nodules. These results suggest that LbNO formation in soybean nodules in response to flooding conditions is caused by nitrite and NO generated from periplasmic nitrate reductase (Nap) and also containing nitrite reductase (NirK) denitrification enzymes. Flooding caused a decrease of nifH expression and nitrogenase activity in wild-type and norC nodules but not in napA or nirK nodules. Incubation of wild-type and norC nodules with a NO scavenger counteracted the effect of flooding. Under free-living conditions, beta-galactosidase activity from a nifD'-'lacZ fusion decreased in a norC mutant, which also accumulated NO in the medium. These results suggest that NO formed by Cu-containing nitrite reductase in soybean nodules in response to flooding has a negative effect on expression of nitrogenase. We propose that Lb has a major role in detoxifying NO and nitrite produced by bacteroidal denitrification in response to flooding conditions.
Collapse
|
43
|
Bueno E, Mesa S, Sanchez C, Bedmar EJ, Delgado MJ. NifA is required for maximal expression of denitrification genes inBradyrhizobium japonicum. Environ Microbiol 2010; 12:393-400. [DOI: 10.1111/j.1462-2920.2009.02076.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Simpson PJL, Richardson DJ, Codd R. The periplasmic nitrate reductase in Shewanella: the resolution, distribution and functional implications of two NAP isoforms, NapEDABC and NapDAGHB. MICROBIOLOGY-SGM 2009; 156:302-312. [PMID: 19959582 DOI: 10.1099/mic.0.034421-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the bacterial periplasm, the reduction of nitrate to nitrite is catalysed by a periplasmic nitrate reductase (NAP) system, which is a species-dependent assembly of protein subunits encoded by the nap operon. The reduction of nitrate catalysed by NAP takes place in the 90 kDa NapA subunit, which contains a Mo-bis-molybdopterin guanine dinucleotide cofactor and one [4Fe-4S] iron-sulfur cluster. A review of the nap operons in the genomes of 19 strains of Shewanella shows that most genomes contain two nap operons. This is an unusual feature of this genus. The two NAP isoforms each comprise three isoform-specific subunits - NapA, a di-haem cytochrome NapB, and a maturation chaperone NapD - but have different membrane-intrinsic subunits, and have been named NAP-alpha (NapEDABC) and NAP-beta (NapDAGHB). Sixteen Shewanella genomes encode both NAP-alpha and NAP-beta. The genome of the vigorous denitrifier Shewanella denitrificans OS217 encodes only NAP-alpha and the genome of the respiratory nitrate ammonifier Shewanella oneidensis MR-1 encodes only NAP-beta. This raises the possibility that NAP-alpha and NAP-beta are associated with physiologically distinct processes in the environmentally adaptable genus Shewanella.
Collapse
Affiliation(s)
- Philippa J L Simpson
- Centre for Heavy Metals Research, School of Chemistry, University of Sydney, New South Wales 2006, Australia
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich NR4 TJ7, UK
| | - Rachel Codd
- School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, New South Wales 2006, Australia.,Centre for Heavy Metals Research, School of Chemistry, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
45
|
Bueno E, Richardson DJ, Bedmar EJ, Delgado MJ. Expression of Bradyrhizobium japonicum cbb(3) terminal oxidase under denitrifying conditions is subjected to redox control. FEMS Microbiol Lett 2009; 298:20-8. [PMID: 19659724 DOI: 10.1111/j.1574-6968.2009.01711.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bradyrhizobium japonicum utilizes cytochrome cbb(3) oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c(550), the electron donor to the Cu-containing nitrite reductase, reduces cbb(3) expression. In order to establish the role of c(550) in electron transport to the cbb(3) oxidase, in this work, we have analyzed cbb(3) expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions. Under denitrifying conditions, mutation of cycA had a negative effect on cytochrome c oxidase activity, heme c (FixP and FixO) and heme b cytochromes as well as expression of a fixP'-'lacZ fusion. Similarly, cbb(3) oxidase was expressed very weakly in a napC mutant lacking the c-type cytochrome, which transfers electrons to the NapAB structural subunit of the periplasmic nitrate reductase. These results suggest that a change in the electron flow through the denitrification pathway may affect the cellular redox state, leading to alterations in cbb(3) expression. In fact, levels of fixP'-'lacZ expression were largely dependent on the oxidized or reduced nature of the carbon source in the medium. Maximal expression observed in cells grown under denitrifying conditions with an oxidized carbon source required the regulatory protein RegR.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | |
Collapse
|
46
|
Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 2009; 75:4835-52. [PMID: 19465526 DOI: 10.1128/aem.02874-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium strain MC-1 is a member of the alpha subgroup of the proteobacteria that contains the magnetotactic cocci and was the first member of this group to be cultured axenically. The magnetotactic cocci are not closely related to any other known alphaproteobacteria and are only distantly related to other magnetotactic bacteria. The genome of MC-1 contains an extensive (102 kb) magnetosome island that includes numerous genes that are conserved among all known magnetotactic bacteria, as well as some genes that are unique. Interestingly, certain genes that encode proteins considered to be important in magnetosome assembly (mamJ and mamW) are absent from the genome of MC-1. Magnetotactic cocci exhibit polar magneto-aerotaxis, and the MC-1 genome contains a relatively large number of identified chemotaxis genes. Although MC-1 is capable of both autotrophic and heterotrophic growth, it does not appear to be metabolically versatile, with heterotrophic growth confined to the utilization of acetate. Central carbon metabolism is encoded by genes for the citric acid cycle (oxidative and reductive), glycolysis, and gluconeogenesis. The genome also reveals the presence or absence of specific genes involved in the nitrogen, sulfur, iron, and phosphate metabolism of MC-1, allowing us to infer the presence or absence of specific biochemical pathways in strain MC-1. The pathways inferred from the MC-1 genome provide important information regarding central metabolism in this strain that could provide insights useful for the isolation and cultivation of new magnetotactic bacterial strains, in particular strains of other magnetotactic cocci.
Collapse
|
47
|
Polcyn W, Luciński R. Effect of N oxyanions on anaerobic induction of nitrate reductase in subcellular fractions of Bradyrhizobium sp. (Lupinus). Antonie van Leeuwenhoek 2009; 95:159-64. [PMID: 19116769 DOI: 10.1007/s10482-008-9299-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
Anaerobic induction of nitrate reductase in subcellular fractions of Bradyrhizobium sp. strain USDA 3045 showed fivefold increase of the enzyme activity in spheroplasts, considered as the source of intact-membrane-bound nitrate reductase, within a 3 h time frame after nitrate addition. Such a dynamics was confirmed at the protein level, with antibodies specific to membrane-bound nitrate reductase. Nitrate reductase activity in the periplasm was one order of magnitude lower and significant only at initial 3 h of induction, within a narrow range of nitrate added. Nitrite induced the membrane-bound nitrate reductase at least 70% as effectively as nitrate, as judged from its activity pattern and Western blot analysis. The limited ability of Bradyrhizobium sp. to dissimilate > or =5 mM nitrate is not due to direct inhibition of respiratory nitrate reductase by accumulated nitrite. Moreover, a synergistic induction of membrane-bound nitrate reductase by nitrate and nitrite was indicated due to a twofold higher protein synthesis after simultaneous addition of these N oxyanions than when they were given separately.
Collapse
Affiliation(s)
- Władysław Polcyn
- Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | | |
Collapse
|
48
|
Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum. J Bacteriol 2008; 190:6568-79. [PMID: 18689489 DOI: 10.1128/jb.00748-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiotic N(2) fixation in Bradyrhizobium japonicum is controlled by a complex transcription factor network. Part of it is a hierarchically arranged cascade in which the two-component regulatory system FixLJ, in response to a moderate decrease in oxygen concentration, activates the fixK(2) gene. The FixK(2) protein then activates not only a number of genes essential for microoxic respiration in symbiosis (fixNOQP and fixGHIS) but also further regulatory genes (rpoN(1), nnrR, and fixK(1)). The results of transcriptome analyses described here have led to a comprehensive and expanded definition of the FixJ, FixK(2), and FixK(1) regulons, which, respectively, consist of 26, 204, and 29 genes specifically regulated in microoxically grown cells. Most of these genes are subject to positive control. Particular attention was addressed to the FixK(2)-dependent genes, which included a bioinformatics search for putative FixK(2) binding sites on DNA (FixK(2) boxes). Using an in vitro transcription assay with RNA polymerase holoenzyme and purified FixK(2) as the activator, we validated as direct targets eight new genes. Interestingly, the adjacent but divergently oriented fixK(1) and cycS genes shared the same FixK(2) box for the activation of transcription in both directions. This recognition site may also be a direct target for the FixK(1) protein, because activation of the cycS promoter required an intact fixK(1) gene and either microoxic or anoxic, denitrifying conditions. We present evidence that cycS codes for a c-type cytochrome which is important, but not essential, for nitrate respiration. Two other, unexpected results emerged from this study: (i) specifically FixK(1) seemed to exert a negative control on genes that are normally activated by the N(2) fixation-specific transcription factor NifA, and (ii) a larger number of genes are expressed in a FixK(2)-dependent manner in endosymbiotic bacteroids than in culture-grown cells, pointing to a possible symbiosis-specific control.
Collapse
|
49
|
Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. J Bacteriol 2008; 190:6697-705. [PMID: 18689488 DOI: 10.1128/jb.00543-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum is a facultative chemoautotroph capable of utilizing hydrogen gas as an electron donor in a respiratory chain terminated by oxygen to provide energy for cellular processes and carbon dioxide assimilation via a reductive pentose phosphate pathway. A transcriptomic analysis of B. japonicum cultured chemoautotrophically identified 1,485 transcripts, representing 17.5% of the genome, as differentially expressed when compared to heterotrophic cultures. Genetic determinants required for hydrogen utilization and carbon fixation, including the uptake hydrogenase system and components of the Calvin-Benson-Bassham cycle, were strongly induced in chemoautotrophically cultured cells. A putative isocitrate lyase (aceA; blr2455) was among the most strongly upregulated genes, suggesting a role for the glyoxylate cycle during chemoautotrophic growth. Addition of arabinose to chemoautotrophic cultures of B. japonicum did not significantly alter transcript profiles. Furthermore, a subset of nitrogen fixation genes was moderately induced during chemoautotrophic growth. In order to specifically address the role of isocitrate lyase and nitrogenase in chemoautotrophic growth, we cultured aceA, nifD, and nifH mutants under chemoautotrophic conditions. Growth of each mutant was similar to that of the wild type, indicating that the glyoxylate bypass and nitrogenase activity are not essential components of chemoautotrophy in B. japonicum.
Collapse
|
50
|
Bru D, Sarr A, Philippot L. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl Environ Microbiol 2007; 73:5971-4. [PMID: 17630306 PMCID: PMC2074903 DOI: 10.1128/aem.00643-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dissimilatory nitrate reduction is catalyzed by a membrane-bound and a periplasmic nitrate reductase. We set up a real-time PCR assay to quantify these two enzymes, using the narG and napA genes, encoding the catalytic subunits of the two types of nitrate reductases, as molecular markers. The narG and napA gene copy numbers in DNA extracted from 18 different environments showed high variations, with most numbers ranging from 2 x 10(2) to 6.8 x 10(4) copies per ng of DNA. This study provides evidence that, in soil samples, the number of proteobacteria carrying the napA gene is often as high as that of proteobacteria carrying the narG gene. The high correlation observed between narG and napA gene copy numbers in soils suggests that the ecological roles of the corresponding enzymes might be linked.
Collapse
Affiliation(s)
- D Bru
- INRA, University of Burgundy, Soil and Environmental Microbiology, CMSE, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | |
Collapse
|