1
|
Diversity of σ 66-Specific Promoters Contributes to Regulation of Developmental Gene Expression in Chlamydia trachomatis. J Bacteriol 2023; 205:e0031022. [PMID: 36598485 PMCID: PMC9879106 DOI: 10.1128/jb.00310-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Promoter recognition by the RNA polymerase (RNAP) holoenzyme is a key step in gene regulation. In Chlamydia trachomatis, a medically important obligate intracellular bacterium, σ66 allows the RNAP to initiate promoter-specific transcription throughout the chlamydial developmental cycle. Here, we investigated the intrinsic properties of σ66-specific promoters with emphasis on their role in the developmental gene expression of C. trachomatis. First, we examined whether promoters that contain a 5'-T(-15)G(-14)-3' (TG) motif upstream from the -10 element appear more often than others in genes that are preferentially expressed during the early, middle, or late stages of the C. trachomatis developmental cycle. We then determined the critical genetic elements that are required for transcription initiation in vitro. We also assessed the activity of promoters in the presence of Scc4, which can directly interact with σ66RNAP. Finally, we evaluated the promoter-specific dynamics during C. trachomatis infection using a reporter assay. These results reveal that the TG motif is an important determinant in certain early or late promoters. The TG promoters that have the -35 element are recognized by σ66RNAP and Scc4 differently from those lacking the -35 element. Based on these properties, the σ66-specific promoters can fall into three classes. Architectural diversity, behavioral plasticity, and the specific interplays between promoters and the σ66RNAP likely contribute to developmental gene transcription in C. trachomatis. IMPORTANCE Meticulous promoter elucidation is required to understand the foundations of transcription initiation. However, knowledge of promoter-specific transcription remains limited in C. trachomatis. This work underscores the structural and functional plasticity of σ66-specific promoters that are regulated by σ66RNAP, as well as their importance in the developmental gene regulation of C. trachomatis.
Collapse
|
2
|
Liu H, Ganta RR. Sequence Determinants Spanning -10 Motif and Spacer Region Implicated in Unique Ehrlichia chaffeensis Sigma 32-Dependent Promoter Activity of dnaK Gene. Front Microbiol 2019; 10:1772. [PMID: 31428069 PMCID: PMC6687850 DOI: 10.3389/fmicb.2019.01772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium that causes human monocytic ehrlichiosis. Studying Ehrlichia gene regulation is challenge, as this and related rickettsiales lack natural plasmids and mutagenesis experiments are of a limited scope. E. chaffeensis contains only two sigma factors, σ32 and σ70. We previously developed Escherichia coli surrogate system to study transcriptional regulation from RNA polymerase (RNAP) containing Ehrlichia σ32 or σ70. We reported that RNAP binding motifs of E. chaffeensis genes recognized by σ32 or σ70 share extensive homology and that transcription may be initiated by either one of the sigma factors, although transcriptional efficiencies differ. In the current study, we investigated mapping the E. chaffeensis dnaK gene promoter using the pathogen σ32 expressed in E. coli lacking its native σ32. The E. coli surrogate system and our previously described in vitro transcription system aided in defining the unique −10 motif and spacer sequence of the dnaK promoter. We also mapped σ32 amino acids/domains engaged in its promoter regulation in E. chaffeensis. The data reported in this study demonstrate that the −10 and −35 motifs and spacer sequence located between the two motifs of dnaK promoter are critical for the RNAP function. Further, we mapped the importance of all six nucleotide positions of the −10 motif and identified critical determinants within it. In addition, we reported that the lack of C-rich sequence upstream to the −10 motif is unique in driving the pathogen-specific transcription by its σ32 from dnaK gene promoter. This is the first study in defining an E. chaffeensis σ32-dependent promoter and it offers insights about how this and other related rickettsial pathogens regulate stress response genes.
Collapse
Affiliation(s)
- Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
3
|
Identification of new DNA-associated proteins from Waddlia chondrophila. Sci Rep 2019; 9:4885. [PMID: 30894592 PMCID: PMC6426960 DOI: 10.1038/s41598-019-40732-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional regulation in Chlamydiae is still poorly understood. The absence until recently of genetic tools is the main cause of this gap. We discovered three new potential DNA-associated proteins of Waddlia chondrophila, a Chlamydia-related bacterium, using heparin chromatography coupled to mass spectrometry (Wcw_0377, Wcw_1456, and Wcw_1460). By ChIP-seq analysis, we determined the regulatory landscape of these three proteins and we showed that Wcw_0377 binds all along the genome whereas Wcw_1456 and _1460 possess a wide regulon with a large number of co-regulated genes. Wcw_1456 and Wcw_1460 interact with RpoD (σ66), emerging as potential RpoD regulators. On the other hand, Wcw_0377 is able to reach the host nucleus, where it might interact with eukaryotic histones through its putative chromatin-remodelling SWIB/MDM2 domain.
Collapse
|
4
|
Liu H, Jakkula LUMR, Von Ohlen T, Ganta RR. Sequence determinants spanning -35 motif and AT-rich spacer region impacting Ehrlichia chaffeensis Sigma 70-dependent promoter activity of two differentially expressed p28 outer membrane protein genes. DNA Res 2016; 23:495-505. [PMID: 27402867 PMCID: PMC5066175 DOI: 10.1093/dnares/dsw034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/07/2016] [Indexed: 11/12/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium which causes the disease, human monocytic ehrlichiosis. Ehrlichia chaffeensis contains only two sigma factors, σ32 and σ70. It is difficult to study E. chaffeensis gene regulation due to lack of a transformation system. We developed an Escherichia coli-based transcription system to study E. chaffeensis transcriptional regulation. An E. coli strain with its σ70 repressed with trp promoter is used to express E. chaffeensis σ70. The E. coli system and our previously established in vitro transcription system were used to map transcriptional differences of two Ehrlichia genes encoding p28-outer membrane proteins 14 and 19. We mapped the -10 and -35 motifs and the AT rich spacers located between the two motifs by performing detailed mutational analysis. Mutations within the -35 motif of the genes impacted transcription differently, while -10 motif deletions had no impact. The AT-rich spacers also contributed to transcriptional differences. We further demonstrated that the domain 4.2 of E. chaffeensis σ70 is important for regulating promoter activity and the deletion of region 1.1 of E. chaffeensis σ70 causes enhancement of the promoter activity. This is the first study defining the promoters of two closely related E. chaffeensis genes.
Collapse
Affiliation(s)
- Huitao Liu
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Laxmi U M R Jakkula
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Tonia Von Ohlen
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
5
|
Cong Y, Gao L, Zhang Y, Xian Y, Hua Z, Elaasar H, Shen L. Quantifying promoter activity during the developmental cycle of Chlamydia trachomatis. Sci Rep 2016; 6:27244. [PMID: 27263495 PMCID: PMC4893696 DOI: 10.1038/srep27244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022] Open
Abstract
Chlamydia trachomatis is an important human pathogen that undergoes a characteristic development cycle correlating with stage-specific gene expression profiles. Taking advantage of recent developments in the genetic transformation in C. trachomatis, we constructed a versatile green fluorescent protein (GFP) reporter system to study the development-dependent function of C. trachomatis promoters in an attempt to elucidate the mechanism that controls C. trachomatis adaptability. We validated the use of the GFP reporter system by visualizing the activity of an early euo gene promoter. Additionally, we uncovered a new ompA promoter, which we named P3, utilizing the GFP reporter system combined with 5' rapid amplification of cDNA ends (RACE), in vitro transcription assays, real-time quantitative RT-PCR (RT-qPCR), and flow cytometry. Mutagenesis of the P3 region verifies that P3 is a new class of C. trachomatis σ(66)-dependent promoter, which requires an extended -10 TGn motif for transcription. These results corroborate complex developmentally controlled ompA expression in C. trachomatis. The exploitation of genetically labeled C. trachomatis organisms with P3-driven GFP allows for the observation of changes in ompA expression in response to developmental signals. The results of this study could be used to complement previous findings and to advance understanding of C. trachomatis genetic expression.
Collapse
Affiliation(s)
- Yanguang Cong
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Department of Microbiology, Third Military Medical University, Chongqing, China, 400038
| | - Leiqiong Gao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | - Yan Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | - Yuqi Xian
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | - Hiba Elaasar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Thompson CC, Griffiths C, Nicod SS, Lowden NM, Wigneshweraraj S, Fisher DJ, McClure MO. The Rsb Phosphoregulatory Network Controls Availability of the Primary Sigma Factor in Chlamydia trachomatis and Influences the Kinetics of Growth and Development. PLoS Pathog 2015; 11:e1005125. [PMID: 26313645 PMCID: PMC4552016 DOI: 10.1371/journal.ppat.1005125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 12/03/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen that exhibits stage-specific gene transcription throughout a biphasic developmental cycle. The mechanisms that control modulation in transcription and associated phenotypic changes are poorly understood. This study provides evidence that a switch-protein kinase regulatory network controls availability of σ66, the main sigma subunit for transcription in Chlamydia. In vitro analysis revealed that a putative switch-protein kinase regulator, RsbW, is capable of interacting directly with σ66, as well as phosphorylating its own antagonist, RsbV1, rendering it inactive. Conversely, the putative PP2C-like phosphatase domain of chlamydial RsbU was capable of reverting RsbV1 into its active state. Recent advances in genetic manipulation of Chlamydia were employed to inactivate rsbV1, as well as to increase the expression levels of rsbW or rsbV1, in vivo. Representative σ66-dependent gene transcription was repressed in the absence of rsbV1 or upon increased expression of RsbW, and increased upon elevated expression of RsbV1. These effects on housekeeping transcription were also correlated to several measures of growth and development. A model is proposed where the relative levels of active antagonist (RsbV1) and switch-protein anti-sigma factor (RsbW) control the availability of σ66 and subsequently act as a molecular 'throttle' for Chlamydia growth and development. Chlamydia trachomatis is the leading cause of both bacterial sexually transmitted infection and infection-derived blindness world-wide. No vaccine has proven protective to date in humans. C. trachomatis only replicates from inside a host cell, and has evolved to acquire a variety of nutrients directly from its host. However, a typical human immune response will normally limit the availability of a variety of essential nutrients. Thus, it is thought that the success of C. trachomatis as a human pathogen may lie in its ability to survive these immunological stress situations by slowing growth and development until conditions in the cell have improved. This mode of growth is known as persistence and how C. trachomatis senses stress and responds in this manner is an important area of research. Our report characterizes a complete signaling module, the Rsb network, that is capable of controlling the growth rate or infectivity of Chlamydia. By manipulating the levels of different pathway components, we were able to accelerate and restrict the growth and development of this pathogen. Our results suggest a mechanism by which Chlamydia can tailor its growth rate to the conditions within the host cell. The disruption of this pathway could generate a strain incapable of surviving a typical human immune response and would represent an attractive candidate as an attenuated growth vaccine.
Collapse
Affiliation(s)
- Christopher C. Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary’s Hospital Campus, London, United Kingdom
| | - Cherry Griffiths
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary’s Hospital Campus, London, United Kingdom
| | - Sophie S. Nicod
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Nicole M. Lowden
- Department of Microbiology, Southern Illinois University, Carbondale, Carbondale, Illinois, United States of America
| | - Sivaramesh Wigneshweraraj
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Derek J. Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, Carbondale, Illinois, United States of America
| | - Myra O. McClure
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary’s Hospital Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Mutational Analysis of the Chlamydia muridarum Plasticity Zone. Infect Immun 2015; 83:2870-81. [PMID: 25939505 DOI: 10.1128/iai.00106-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed--and some may produce functional proteins--but are dispensable for infection of the murine genital tract.
Collapse
|
8
|
Rosario CJ, Hanson BR, Tan M. The transcriptional repressor EUO regulates both subsets of Chlamydia late genes. Mol Microbiol 2014; 94:888-97. [PMID: 25250726 DOI: 10.1111/mmi.12804] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 01/07/2023]
Abstract
The pathogenic bacterium Chlamydia replicates in a eukaryotic host cell via a developmental cycle marked by temporal waves of gene expression. We have previously shown that late genes transcribed by the major chlamydial RNA polymerase, σ(66) RNA polymerase, are regulated by a transcriptional repressor EUO. We now report that EUO also represses promoters for a second subset of late genes that are transcribed by an alternative polymerase called σ(28) RNA polymerase. EUO bound in the vicinity of six σ(28) -dependent promoters and inhibited transcription of each promoter. We used a mutational analysis to demonstrate that the EUO binding site functions as an operator that is necessary and sufficient for EUO-mediated repression of σ(28) -dependent transcription. We also verified specific binding of EUO to σ(66) -dependent and σ(28) -dependent promoters with a DNA immunoprecipitation assay. These findings support a model in which EUO represses expression of both σ(66) -dependent and σ(28) -dependent late genes. We thus propose that EUO is the master regulator of late gene expression in the chlamydial developmental cycle.
Collapse
Affiliation(s)
- Christopher J Rosario
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
9
|
Ishii Y, Kakizawa S, Oshima K. New ex vivo reporter assay system reveals that σ factors of an unculturable pathogen control gene regulation involved in the host switching between insects and plants. Microbiologyopen 2013; 2:553-65. [PMID: 23723081 PMCID: PMC3831623 DOI: 10.1002/mbo3.93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 11/07/2022] Open
Abstract
Analysis of the environmental regulation of bacterial gene expression is important for understanding the nature, pathogenicity, and infection route of many pathogens. "Candidatus Phytoplasma asteris", onion yellows strain M (OY-M), is a phytopathogenic bacterium that is able to adapt to quite different host environments, including plants and insects, with a relatively small ~850 kb genome. The OY-M genome encodes two sigma (σ) factors, RpoD and FliA, that are homologous to Escherichia coli σ(70) and σ(28) , respectively. Previous studies show that gene expression of OY-M dramatically changes upon the response to insect and plant hosts. However, very little is known about the relationship between the two σ factors and gene regulatory systems in OY-M, because phytoplasma cannot currently be cultured in vitro. Here, we developed an Escherichia coli-based ex vivo reporter assay (EcERA) system to evaluate the transcriptional induction of phytoplasmal genes by the OY-M-derived σ factors. EcERA revealed that highly expressed genes in insect and plant hosts were regulated by RpoD and FliA, respectively. We also demonstrated that rpoD expression was significantly higher in insect than in plant hosts and fliA expression was similar between the hosts. These data indicate that phytoplasma-derived RpoD and FliA play key roles in the transcriptional switching mechanism during host switching between insects and plants. Our study will be invaluable to understand phytoplasmal transmission, virulence expression in plants, and the effect of infection on insect fitness. In addition, the novel EcERA system could be broadly applied to reveal transcriptional regulation mechanisms in other unculturable bacteria.
Collapse
Affiliation(s)
- Yoshiko Ishii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
10
|
Wang J, Frohlich KM, Buckner L, Quayle AJ, Luo M, Feng X, Beatty W, Hua Z, Rao X, Lewis ME, Sorrells K, Santiago K, Zhong G, Shen L. Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells. MICROBIOLOGY (READING, ENGLAND) 2011; 157:2759-2771. [PMID: 21737500 PMCID: PMC3353392 DOI: 10.1099/mic.0.044917-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 06/14/2011] [Accepted: 07/03/2011] [Indexed: 02/07/2023]
Abstract
Chlamydia trachomatis is the most common bacterial infection of the human reproductive tract globally; however, the mechanisms underlying the adaptation of the organism to its natural target cells, human endocervical epithelial cells, are not clearly understood. To secure its intracellular niche, C. trachomatis must modulate the host cellular machinery by secreting virulence factors into the host cytosol to facilitate bacterial growth and survival. Here we used primary human endocervical epithelial cells and HeLa cells infected with C. trachomatis to examine the secretion of bacterial proteins during productive growth and persistent growth induced by ampicillin. Specifically, we observed a decrease in secretable chlamydial protease-like activity factor (CPAF) in the cytosol of host epithelial cells exposed to ampicillin with no evident reduction of CPAF product by C. trachomatis. In contrast, the expression of CopN and Tarp was downregulated, suggesting that C. trachomatis responds to ampicillin exposure by selectively altering the expression of secretable proteins. In addition, we observed a greater accumulation of outer-membrane vesicles from C. trachomatis in persistently infected cells. Taken together, these results suggest that the regulation of both gene expression and the secretion of chlamydial virulence proteins is involved in the adaptation of the bacteria to a persistent infection state in human genital epithelial cells.
Collapse
Affiliation(s)
- Jin Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kyla M. Frohlich
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Lyndsey Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Miao Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiaogeng Feng
- Department of Molecular Biology and Biochemistry, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ziyu Hua
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiancai Rao
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Maria E. Lewis
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kelly Sorrells
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kerri Santiago
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Rao X, Deighan P, Hua Z, Hu X, Wang J, Luo M, Wang J, Liang Y, Zhong G, Hochschild A, Shen L. A regulator from Chlamydia trachomatis modulates the activity of RNA polymerase through direct interaction with the beta subunit and the primary sigma subunit. Genes Dev 2009; 23:1818-29. [PMID: 19651989 DOI: 10.1101/gad.1784009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The obligate intracellular human pathogen Chlamydia trachomatis undergoes a complex developmental program involving transition between two forms: the infectious elementary body (EB), and the rapidly dividing reticulate body (RB). However, the regulators controlling this development have not been identified. To uncover potential regulators of transcription in C. trachomatis, we screened a C. trachomatis genomic library for sequences encoding proteins that interact with RNA polymerase (RNAP). We report the identification of one such protein, CT663, which interacts with the beta and sigma subunits of RNAP. Specifically, we show that CT663 interacts with the flap domain of the beta subunit (beta-flap) and conserved region 4 of the primary sigma subunit (sigma(66) in C. trachomatis). We find that CT663 inhibits sigma(66)-dependent (but not sigma(28)-dependent) transcription in vitro, and we present evidence that CT663 exerts this effect as a component of the RNAP holoenzyme. The analysis of C. trachomatis-infected cells reveals that CT663 begins to accumulate at the commencement of the RB-to-EB transition. Our findings suggest that CT663 functions as a negative regulator of sigma(66)-dependent transcription, facilitating a global change in gene expression. The strategy used here is generally applicable in cases where genetic tools are unavailable.
Collapse
Affiliation(s)
- Xiancai Rao
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mutagenesis of region 4 of sigma 28 from Chlamydia trachomatis defines determinants for protein-protein and protein-DNA interactions. J Bacteriol 2008; 191:651-60. [PMID: 18978051 DOI: 10.1128/jb.01083-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor sigma(28) in Chlamydia trachomatis (sigma(28)(Ct)) plays a role in the regulation of genes that are important for late-stage morphological differentiation. In vitro mutational and genetic screening in Salmonella enterica serovar Typhimurium was performed in order to identify mutants with mutations in region 4 of sigma(28)(Ct) that were defective in sigma(28)-specific transcription. Specially, the previously undefined but important interactions between sigma(28)(Ct) region 4 and the flap domain of the RNA polymerase beta subunit (beta-flap) or the -35 element of the chlamydial hctB promoter were examined. Our results indicate that amino acid residues E206, Y214, and E222 of sigma(28)(Ct) contribute to an interaction with the beta-flap when sigma(28)(Ct) associates with the core RNA polymerase. These residues function in contacts with the beta-flap similarly to their counterpart residues in Escherichia coli sigma(70). Conversely, residue Q236 of sigma(28)(Ct) directly binds the chlamydial hctB -35 element. The conserved counterpart residue in E. coli sigma(70) has not been reported to interact with the -35 element of the sigma(70) promoter. Observed functional disparity between sigma(28)(Ct) and sigma(70) region 4 is consistent with their divergent properties in promoter recognition. This work provides new insight into understanding the molecular basis of gene regulation controlled by sigma(28)(Ct) in C. trachomatis.
Collapse
|
13
|
Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect Immun 2008; 76:2746-57. [PMID: 18391011 DOI: 10.1128/iai.00010-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the Chlamydia trachomatis genome is predicted to encode 50 inclusion membrane proteins, only 18 have been experimentally localized in the inclusion membrane of C. trachomatis-infected cells. Using fusion proteins and anti-fusion protein antibodies, we have systematically evaluated all 50 putative inclusion membrane proteins for their localization in the infected cells, distribution patterns, and effects on subsequent chlamydial infection when expressed ectopically, as well as their immunogenicity during chlamydial infection in humans. Twenty-two of the 50 proteins were localized in the inclusion membrane, and 7 were detected inside the inclusions, while the location of the remaining 21 was not defined. Four (CT225, CT228, CT358, and CT440) of the 22 inclusion membrane-localized proteins were visualized in the inclusion membrane of Chlamydia-infected cells for the first time in the current study. The seven intra-inclusion-localized proteins were confirmed to be chlamydial organism proteins in a Western blot assay. Further characterization of the 50 proteins revealed that neither colocalization with host cell endoplasmic reticulum nor inhibition of subsequent chlamydial infection by ectopically expressed proteins correlated with the inclusion membrane localization. Interestingly, antibodies from women with C. trachomatis urogenital infection preferentially recognized proteins localized in the inclusion membrane, and the immunodominant regions were further mapped to the region predicted to be on the cytoplasmic side of the inclusion membrane. These observations suggest that most of the inclusion membrane-localized proteins are both expressed and immunogenic during C. trachomatis infection in humans and that the cytoplasmic exposure may enhance the immunogenicity.
Collapse
|
14
|
Yu HHY, Kibler D, Tan M. In silico prediction and functional validation of sigma28-regulated genes in Chlamydia and Escherichia coli. J Bacteriol 2006; 188:8206-12. [PMID: 16997971 PMCID: PMC1698183 DOI: 10.1128/jb.01082-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
sigma(28) RNA polymerase is an alternative RNA polymerase that has been proposed to have a role in late developmental gene regulation in Chlamydia, but only a single target gene has been identified. To discover additional sigma(28)-dependent genes in the Chlamydia trachomatis genome, we applied bioinformatic methods using a probability weight matrix based on known sigma(28) promoters in other bacteria and a second matrix based on a functional analysis of the sigma(28) promoter. We tested 16 candidate sigma(28) promoters predicted with these algorithms and found that 5 were active in a chlamydial sigma(28) in vitro transcription assay. hctB, the known sigma(28)-regulated gene, is only expressed late in the chlamydial developmental cycle only, and two of the newly identified sigma(28) target genes (tsp and tlyC_1) also have late expression profiles, providing support for sigma(28) as a regulator of late gene expression. One of the other novel sigma(28)-regulated genes is dnaK, a known heat shock-responsive gene, suggesting that sigma(28) RNA polymerase may be involved in the response to cellular stress. Our sigma(28) prediction algorithm can be applied to other bacteria, and by performing a similar analysis on the Escherichia coli genome, we have predicted and functionally identified five previously unknown sigma(28)-regulated genes in E. coli.
Collapse
Affiliation(s)
- Hilda Hiu Yin Yu
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697-4025, USA
| | | | | |
Collapse
|
15
|
Shen L, Feng X, Yuan Y, Luo X, Hatch TP, Hughes KT, Liu JS, Zhang YX. Selective promoter recognition by chlamydial sigma28 holoenzyme. J Bacteriol 2006; 188:7364-77. [PMID: 16936033 PMCID: PMC1636291 DOI: 10.1128/jb.01014-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma transcription factor confers the promoter recognition specificity of RNA polymerase (RNAP) in eubacteria. Chlamydia trachomatis has three known sigma factors, sigma(66), sigma(54), and sigma(28). We developed two methods to facilitate the characterization of promoter sequences recognized by C. trachomatis sigma(28) (sigma(28)(Ct)). One involved the arabinose-induced expression of plasmid-encoded sigma(28)(Ct) in a strain of Escherichia coli defective in the sigma(28) structural gene, fliA. The second was an analysis of transcription in vitro with a hybrid holoenzyme reconstituted with E. coli RNAP core and recombinant sigma(28)(Ct). These approaches were used to investigate the interactions of sigma(28)(Ct) with the sigma(28)(Ct)-dependent hctB promoter and selected E. coli sigma(28) (sigma(28)(Ec))-dependent promoters, in parallel, compared with the promoter recognition properties of sigma(28)(EC). Our results indicate that RNAP containing sigma(28)(Ct) has at least three characteristics: (i) it is capable of recognizing some but not all sigma(28)(EC)-dependent promoters; (ii) it can distinguish different promoter structures, preferentially activating promoters with upstream AT-rich sequences; and (iii) it possesses a greater flexibility than sigma(28)(EC) in recognizing variants with different spacing lengths separating the -35 and -10 elements of the core promoter.
Collapse
Affiliation(s)
- Li Shen
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Papa R, Glagla S, Danchin A, Schweder T, Marino G, Duilio A. Proteomic identification of a two-component regulatory system in Pseudoalteromonas haloplanktis TAC125. Extremophiles 2006; 10:483-91. [PMID: 16791470 DOI: 10.1007/s00792-006-0525-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
The capability of microorganisms to utilize different carbohydrates as energy source reflects the availability of these substrates in their habitat. Investigation of the proteins involved in carbohydrate usage, in parallel with analysis of their expression, is then likely to provide information on the interaction between microorganisms and their ecosystem. We analysed the growth behaviour of the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in the presence and in the absence of different carbon source. A marked increase in the optical density was detected when L: -malate was added to the growth medium. Bacterial proteins differently expressed in the presence of L: -malate were identified by proteomic profiling experiments. On the basis of their relative increase, six proteins were selected for further analyses. Among these, the expression of a putative outer membrane porin was demonstrated to be heavily induced by L: -malate. The presence of a functionally active two-component regulatory system very likely controlled by L: -malate was found in the upstream region of the porin gene. A non functional genomic porin mutant was then constructed showing a direct involvement of the protein in the uptake of L: -malate. To the best of our knowledge, the occurrence of such a regulatory system has never been reported in Pseudoalteromonads so far and might constitute a key step in the development of an effective inducible cold expression system.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Organic Chemistry and Biochemistry, Federico II University of Naples, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Hua L, Hefty PS, Lee YJ, Lee YM, Stephens RS, Price CW. Core of the partner switching signalling mechanism is conserved in the obligate intracellular pathogen Chlamydia trachomatis. Mol Microbiol 2006; 59:623-36. [PMID: 16390455 DOI: 10.1111/j.1365-2958.2005.04962.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that can cause sexually transmitted and ocular diseases in humans. Its biphasic developmental cycle and ability to evade host-cell defences suggest that the organism responds to external signals, but its genome encodes few recognized signalling pathways. One such pathway is predicted to function by a partner switching mechanism, in which key protein interactions are controlled by serine phosphorylation. From genome analysis this mechanism is both ancient and widespread among eubacteria, but it has been experimentally characterized in only a few. C. trachomatis has no system of genetic exchange, so here an in vitro approach was used to establish the activities and interactions of the inferred partner switching components: the RsbW switch protein/kinase and its RsbV antagonists. The C. trachomatis genome encodes two RsbV paralogs, RsbV(1) and RsbV(2). We found that each RsbV protein was specifically phosphorylated by RsbW, and tandem mass spectrometry located the phosphoryl group on a conserved serine residue. Mutant RsbV(1) and RsbV(2) proteins in which this conserved serine was changed to alanine could activate the yeast two-hybrid system when paired with RsbW, whereas mutant proteins bearing a charged aspartate failed to activate. From this we infer that the phosphorylation state of RsbV(1) and RsbV(2) controls their interaction with RsbW in vivo. This experimental demonstration that the core of the partner switching mechanism is conserved in C. trachomatis indicates that its basic features are maintained over a large evolutionary span. Although the molecular target of the C. trachomatis switch remains to be identified, based on the predicted properties of its input phosphatases we propose that the pathway controls an important aspect of the developmental cycle within the host, in response to signals external to the C. trachomatis cytoplasmic membrane.
Collapse
Affiliation(s)
- Lei Hua
- Department of Food Science and Technology, University of California, Davis, 95616, USA
| | | | | | | | | | | |
Collapse
|
18
|
Karlinsey JE, Hughes KT. Genetic transplantation: Salmonella enterica serovar Typhimurium as a host to study sigma factor and anti-sigma factor interactions in genetically intractable systems. J Bacteriol 2006; 188:103-14. [PMID: 16352826 PMCID: PMC1317582 DOI: 10.1128/jb.188.1.103-114.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, sigma(28) and anti-sigma factor FlgM are regulatory proteins crucial for flagellar biogenesis and motility. In this study, we used S. enterica serovar Typhimurium as an in vivo heterologous system to study sigma(28) and anti-sigma(28) interactions in organisms where genetic manipulation poses a significant challenge due to special growth requirements. The chromosomal copy of the S. enterica serovar Typhimurium sigma(28) structural gene fliA was exchanged with homologs of Aquifex aeolicus (an extreme thermophile) and Chlamydia trachomatis (an obligate intracellular pathogen) by targeted replacement of a tetRA element in the fliA gene location using lambda-Red-mediated recombination. The S. enterica serovar Typhimurium hybrid strains showed sigma(28)-dependent gene expression, suggesting that sigma(28) activities from diverse species are preserved in the heterologous host system. A. aeolicus mutants defective for sigma(28)/FlgM interactions were also isolated in S. enterica serovar Typhimurium. These studies highlight a general strategy for analysis of protein function in species that are otherwise genetically intractable and a straightforward method of chromosome restructuring using lambda-Red-mediated recombination.
Collapse
Affiliation(s)
- Joyce E Karlinsey
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|