1
|
Szatkowska R, Furmanek E, Kierzek AM, Ludwig C, Adamczyk M. Mitochondrial Metabolism in the Spotlight: Maintaining Balanced RNAP III Activity Ensures Cellular Homeostasis. Int J Mol Sci 2023; 24:14763. [PMID: 37834211 PMCID: PMC10572830 DOI: 10.3390/ijms241914763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased RNAP III activity in the S. cerevisiae maf1Δ strain is lethal when grown on a non-fermentable carbon source. This lethal phenotype is suppressed by reducing tRNA synthesis. Neither the cause of the lack of growth nor the underlying molecular mechanism have been deciphered, and this area has been awaiting scientific explanation for a decade. Our previous proteomics data suggested mitochondrial dysfunction in the strain. Using model mutant strains maf1Δ (with increased tRNA abundance) and rpc128-1007 (with reduced tRNA abundance), we collected data showing major changes in the TCA cycle metabolism of the mutants that explain the phenotypic observations. Based on 13C flux data and analysis of TCA enzyme activities, the present study identifies the flux constraints in the mitochondrial metabolic network. The lack of growth is associated with a decrease in TCA cycle activity and downregulation of the flux towards glutamate, aspartate and phosphoenolpyruvate (PEP), the metabolic intermediate feeding the gluconeogenic pathway. rpc128-1007, the strain that is unable to increase tRNA synthesis due to a mutation in the C128 subunit, has increased TCA cycle activity under non-fermentable conditions. To summarize, cells with non-optimal activity of RNAP III undergo substantial adaptation to a new metabolic state, which makes them vulnerable under specific growth conditions. Our results strongly suggest that balanced, non-coding RNA synthesis that is coupled to glucose signaling is a fundamental requirement to sustain a cell's intracellular homeostasis and flexibility under changing growth conditions. The presented results provide insight into the possible role of RNAP III in the mitochondrial metabolism of other cell types.
Collapse
Affiliation(s)
- Roza Szatkowska
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| | - Emil Furmanek
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| | - Andrzej M. Kierzek
- Certara UK Limited, Sheffield S1 2BJ, UK;
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| |
Collapse
|
2
|
Geffen O, Achaintre D, Treves H. 13CO 2-labelling and Sampling in Algae for Flux Analysis of Photosynthetic and Central Carbon Metabolism. Bio Protoc 2023; 13:e4808. [PMID: 37719071 PMCID: PMC10501915 DOI: 10.21769/bioprotoc.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
The flux in photosynthesis can be studied by performing 13CO2 pulse labelling and analysing the temporal labelling kinetics of metabolic intermediates using gas or liquid chromatography linked to mass spectrometry. Metabolic flux analysis (MFA) is the primary approach for analysing metabolic network function and quantifying intracellular metabolic fluxes. Different MFA approaches differ based on the metabolic state (steady vs. non-steady state) and the use of stable isotope tracers. The main methodology used to investigate metabolic systems is metabolite steady state associated with stable isotope labelling experiments. Specifically, in biological systems like photoautotrophic organisms, isotopic non-stationary 113C metabolic flux analysis at metabolic steady state with transient isotopic labelling (13C-INST-MFA) is required. The common requirement for metabolic steady state, alongside its very short half-timed reactions, complicates robust MFA of photosynthetic metabolism. While custom gas chambers design has addressed these challenges in various model plants, no similar tools were developed for liquid photosynthetic cultures (e.g., algae, cyanobacteria), where diffusion and equilibration of inorganic carbon species in the medium entails a new dimension of complexity. Recently, a novel tailor-made microfluidics labelling system has been introduced, supplying short 13CO2 pulses at steady state, and resolving fluxes across most photosynthetic metabolic pathways in algae. The system involves injecting algal cultures and medium containing pre-equilibrated inorganic 13C into a microfluidic mixer, followed by rapid metabolic quenching, enabling precise seconds-level label pulses. This was complemented by a 13CO2-bubbling-based open labelling system (photobioreactor), allowing long pulses (minutes-hours) required for investigating fluxes into central C metabolism and major products. This combined labelling procedure provides a comprehensive fluxome cover for most algal photosynthetic and central C metabolism pathways, thus allowing comparative flux analyses across algae and plants.
Collapse
Affiliation(s)
- Or Geffen
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - David Achaintre
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Haim Treves
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
- Plant Metabolism Group, Faculty of Biology, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
3
|
Smaluch K, Wollenhaupt B, Steinhoff H, Kohlheyer D, Grünberger A, Dusny C. Assessing the growth kinetics and stoichiometry of Escherichia coli at the single-cell level. Eng Life Sci 2023; 23:e2100157. [PMID: 36619887 PMCID: PMC9815083 DOI: 10.1002/elsc.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
Microfluidic cultivation and single-cell analysis are inherent parts of modern microbial biotechnology and microbiology. However, implementing biochemical engineering principles based on the kinetics and stoichiometry of growth in microscopic spaces remained unattained. We here present a novel integrated framework that utilizes distinct microfluidic cultivation technologies and single-cell analytics to make the fundamental math of process-oriented biochemical engineering applicable at the single-cell level. A combination of non-invasive optical cell mass determination with sub-pg sensitivity, microfluidic perfusion cultivations for establishing physiological steady-states, and picoliter batch reactors, enabled the quantification of all physiological parameters relevant to approximate a material balance in microfluidic reaction environments. We determined state variables (biomass concentration based on single-cell dry weight and mass density), biomass synthesis rates, and substrate affinities of cells grown in microfluidic environments. Based on this data, we mathematically derived the specific kinetics of substrate uptake and growth stoichiometry in glucose-grown Escherichia coli with single-cell resolution. This framework may initiate microscale material balancing beyond the averaged values obtained from populations as a basis for integrating heterogeneous kinetic and stoichiometric single-cell data into generalized bioprocess models and descriptions.
Collapse
Affiliation(s)
- Katharina Smaluch
- Department of Solar Materials – Microscale Analysis and EngineeringHelmholtz‐Centre for Environmental Research – UFZ LeipzigLeizpigGermany
| | - Bastian Wollenhaupt
- Microscale BioengineeringIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Heiko Steinhoff
- Multiscale BioengineeringFaculty of TechnologyBielefeld UniversityBielefeldGermany
| | - Dietrich Kohlheyer
- Microscale BioengineeringIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Alexander Grünberger
- Multiscale BioengineeringFaculty of TechnologyBielefeld UniversityBielefeldGermany
| | - Christian Dusny
- Department of Solar Materials – Microscale Analysis and EngineeringHelmholtz‐Centre for Environmental Research – UFZ LeipzigLeizpigGermany
| |
Collapse
|
4
|
Grigaitis P, Teusink B. An excess of glycolytic enzymes under glucose-limited conditions may enable Saccharomyces cerevisiae to adapt to nutrient availability. FEBS Lett 2022; 596:3203-3210. [PMID: 36008883 DOI: 10.1002/1873-3468.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Abstract
Microorganisms, including the budding yeast Saccharomyces cerevisiae, express glycolytic proteins to a maximal capacity that (largely) exceeds the actual flux through the enzymes, especially at low growth rates. An open question is if this apparent expression level is really an overcapacity, or maintains the (optimal) enzyme capacity needed to carry flux at (very) low substrate availability. Here, we use computational modelling to suggest that yeast maintains a genuine excess of glycolytic enzymes at low specific growth rates. During fast fermentative growth at high glucose levels, the observed expression of the glycolytic enzymes matched the predicted optimal levels. We suggest that the excess glycolytic capacity at low glucose levels is a preparatory strategy in the adaptation to sugar fluctuations in the environment.
Collapse
Affiliation(s)
- Pranas Grigaitis
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
5
|
Miao Z, Hao H, Yan R, Wang X, Wang B, Sun J, Li Z, Zhang Y, Sun B. Individualization of Chinese alcoholic beverages: Feasibility towards a regulation of organic acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Fonseca GG. Metabolic engineering of Kluyveromyces marxianus for biomass-based applications. 3 Biotech 2022; 12:259. [PMID: 36068842 PMCID: PMC9440961 DOI: 10.1007/s13205-022-03324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/22/2022] [Indexed: 11/01/2022] Open
Abstract
Kluyveromyces marxianus ATCC 26,548 was cultivated in aerobic chemostats with [1-13C] and [U-13C] glucose as carbon source under three different growth conditions (0.10, 0.25, and 0.5 h-1) to evaluate metabolic fluxes. Carbon balances closed always within 97-102%. Growth was carbon limited, and the cell yield on glucose was the same. The extracellular side-product formation was very low, totaling 0.0008 C-mol C-mol-1 substrate at 0.5 h-1. The intracellular flux ratios did not show significant variation for metabolic flux analysis from labelling and biomass composition and metabolic flux ratio analysis from labelling. The observed strictly oxidative metabolism and the stability of the metabolism in terms of fluxes even at high growth rates, without triggering out the synthesis of by-products, is an extremely desired condition that underlines the potential of K. marxianus for biotechnological biomass-related applications and the comprehension of the metabolic pools and pathways is an important step to engineering this organism. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03324-x.
Collapse
Affiliation(s)
- Gustavo Graciano Fonseca
- Faculty of Natural Resource Sciences, School of Business and Science, University of Akureyri, Borgir v. Nordurslod, 600 Akureyri, Iceland
| |
Collapse
|
7
|
Chen N, Du N, Wang W, Liu T, Yuan Q, Yang Y. Real-Time Monitoring of Dynamic Microbial Fe(III) Respiration Metabolism with a Living Cell-Compatible Electron-Sensing Probe. Angew Chem Int Ed Engl 2022; 61:e202115572. [PMID: 35212095 DOI: 10.1002/anie.202115572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 01/08/2023]
Abstract
Monitoring microbial metabolism is vital for biomanufacturing processes optimization. However, it remains a grand challenge to offer insight into microbial metabolism due to particularly complex and dynamic processes. Here, we report an electron-sensing probe Zn2 GeO4 :Mn@Fe3+ for real-time and dynamic monitoring of Fe(III) respiration metabolism. The quenched persistent luminescence of Zn2 GeO4:Mn@Fe3+ is recovered when Fe3+ accepted electrons from the dynamic Fe(III) respiration metabolism, enabling the real-time monitoring of microbial metabolism. The probe shows the capability to verify the role of related biomolecules in microbial Fe(III) respiration metabolism, to track the dynamic Fe(III) respiration metabolic response to environmental stress and microbial co-culture interactions. Furthermore, the Zn2 GeO4 :Mn@Fe3+ probe provides guidance for improving biosynthesis efficiency by monitoring Fe redox recycling in microbial co-culture.
Collapse
Affiliation(s)
- Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Du
- College of Chemistry and Molecular Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wenjie Wang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan University, Changsha, 410082, P. R. China
| | - Tiangang Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan University, Changsha, 410082, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
8
|
Li X, Teng Z, Luo Z, Yuan Y, Zeng Y, Hu J, Sun J, Bai W. Pyruvic acid stress caused color attenuation by interfering with anthocyanins metabolism during alcoholic fermentation. Food Chem 2022; 372:131251. [PMID: 34624786 DOI: 10.1016/j.foodchem.2021.131251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/04/2022]
Abstract
Anthocyanin accounts for wine color performance, while it is susceptive to saccharomyces cerevisiae, causing threatened stability. Considering pyranoanthocyanin performed better color and stability, converting anthocyanins to pyranoanthocyanins in advance during fermentation was an ideal way for color improvement. Thus, pyruvic acid (PA) as the precursor of vitisin A was applied to fermentation with cyanidin-3-O-glucoside (C3G). Results showed that PA-stress leads to a color loss associated with a decrease in C3G and cyanidin. However, the content of pyranoanthocyanins under PA stress is unvaried. LC-MS-based non-target metabolomics revealed that superfluous PA can disturb the process of glycolysis and tricarboxylic acid cycle. Importantly, 1291 molecular features were increased and 1122 were decreased under PA-stress, in which several anthocyanins derivatization and isomerization were changed, contributing to color performance. This study indicated that extra PA is unfriendly to anthocyanins during fermentation, playing an adverse effect on color, which should be avoided in wine production.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Zhaojun Teng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Ziying Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yangbing Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jun Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
9
|
Real‐Time Monitoring of Dynamic Microbial Fe(III) Respiration Metabolism with a Living Cell‐Compatible Electron‐Sensing Probe. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Kastberg LLB, Ard R, Jensen MK, Workman CT. Burden Imposed by Heterologous Protein Production in Two Major Industrial Yeast Cell Factories: Identifying Sources and Mitigation Strategies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:827704. [PMID: 37746199 PMCID: PMC10512257 DOI: 10.3389/ffunb.2022.827704] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 09/26/2023]
Abstract
Production of heterologous proteins, especially biopharmaceuticals and industrial enzymes, in living cell factories consumes cellular resources. Such resources are reallocated from normal cellular processes toward production of the heterologous protein that is often of no benefit to the host cell. This competition for resources is a burden to host cells, has a negative impact on cell fitness, and may consequently trigger stress responses. Importantly, this often causes a reduction in final protein titers. Engineering strategies to generate more burden resilient production strains offer sustainable opportunities to increase production and profitability for this growing billion-dollar global industry. We review recently reported impacts of burden derived from resource competition in two commonly used protein-producing yeast cell factories: Saccharomyces cerevisiae and Komagataella phaffii (syn. Pichia pastoris). We dissect possible sources of burden in these organisms, from aspects related to genetic engineering to protein translation and export of soluble protein. We also summarize advances as well as challenges for cell factory design to mitigate burden and increase overall heterologous protein production from metabolic engineering, systems biology, and synthetic biology perspectives. Lastly, future profiling and engineering strategies are highlighted that may lead to constructing robust burden-resistant cell factories. This includes incorporation of systems-level data into mathematical models for rational design and engineering dynamical regulation circuits in production strains.
Collapse
Affiliation(s)
| | - Ryan Ard
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Treves H, Küken A, Arrivault S, Ishihara H, Hoppe I, Erban A, Höhne M, Moraes TA, Kopka J, Szymanski J, Nikoloski Z, Stitt M. Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C 3 and C 4 plants. NATURE PLANTS 2022; 8:78-91. [PMID: 34949804 PMCID: PMC8786664 DOI: 10.1038/s41477-021-01042-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/09/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis-related pathways are regarded as a promising avenue for crop improvement. Whilst empirical studies have shown that photosynthetic efficiency is higher in microalgae than in C3 or C4 crops, the underlying reasons remain unclear. Using a tailor-made microfluidics labelling system to supply 13CO2 at steady state, we investigated in vivo labelling kinetics in intermediates of the Calvin Benson cycle and sugar, starch, organic acid and amino acid synthesis pathways, and in protein and lipids, in Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii, which is the fastest growing green alga on record. We estimated flux patterns in these algae and compared them with published and new data from C3 and C4 plants. Our analyses identify distinct flux patterns supporting faster growth in photosynthetic cells, with some of the algae exhibiting faster ribulose 1,5-bisphosphate regeneration and increased fluxes through the lower glycolysis and anaplerotic pathways towards the tricarboxylic acid cycle, amino acid synthesis and lipid synthesis than in higher plants.
Collapse
Affiliation(s)
- Haim Treves
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| | - Anika Küken
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics group, University of Potsdam, Potsdam, Germany
| | | | - Hirofumi Ishihara
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Ines Hoppe
- Bioinformatics group, University of Potsdam, Potsdam, Germany
| | - Alexander Erban
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Melanie Höhne
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Thiago Alexandre Moraes
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
- Crop Science Centre, University of Cambridge, Cambridge, UK
| | - Joachim Kopka
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Jedrzej Szymanski
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Zoran Nikoloski
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics group, University of Potsdam, Potsdam, Germany
| | - Mark Stitt
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
12
|
Kart D, Yabanoğlu Çiftçi S, Nemutlu E. Metabolomics-driven Approaches on Interactions Between Enterococcus faecalis and Candida albicans Biofilms. Turk J Pharm Sci 2021; 18:557-564. [PMID: 34719153 DOI: 10.4274/tjps.galenos.2021.71235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives This study aimed to determine the effect of Enterococcus faecalis on the cell growth and hyphal formation of Candida albicans and to understand the exact mechanism of candidal inhibition by the existence of E. faecalis by metabolomic analysis. Materials and Methods Single- and dual-species biofilms of E. faecalis and C. albicans were formed in a microtiter plate, and the metabolomic profiles of both biofilms was determined by gas chromatography-mass spectrometry. The hyphal cell growth of C. albicans after treatment with both the supernatant and biofilm cells of E. faecalis was examined microscopically. The expression levels of Efg1 and the images of C. albicans cell wall in single- and dual-species biofilms were determined by real-time quantitative polymerase chain reaction and transmission electron microscopy, respectively. The violacein levels produced by Chromobacterium violaceum were measured to determine the quorum sensing (QS) inhibitory activity of single- and dual-species biofilms. Results The biofilm cell growth, Efg1 expression, and hyphal development of C. albicans were inhibited by E. faecalis. Compared to single-species biofilms, alterations in carbohydrate, amino acid, and polyamine metabolites were observed in the dual-species biofilm for both microorganisms. Putrescine and pipecolic acid were detected at high levels in dual-species biofilm. A thicker β-glucan chitin and a denser and narrower fibrillar mannan layer of C. albicans cell wall were observed in dual-species biofilm. QS inhibitory activity was higher in dual-species biofilm suspensions of E. faecalis and C. albicans than in their single-species biofilms. Conclusion E. faecalis inhibited the hyphal development and biofilm formation of C. albicans. Biofilm suspensions of C. albicans and E. faecalis showed an anti-QS activity, which increased even further in the environment where the two species coexisted. Investigation of putrescine and pipecolic acid can be an important step to understand the inhibition of C. albicans by bacteria.
Collapse
Affiliation(s)
- Didem Kart
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Ankara, Turkey
| | | | - Emirhan Nemutlu
- 3Hacettepe University Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| |
Collapse
|
13
|
Ghaffarinasab S, Motamedian E. Improving ethanol production by studying the effect of pH using a modified metabolic model and a systemic approach. Biotechnol Bioeng 2021; 118:2934-2946. [PMID: 33913513 DOI: 10.1002/bit.27800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 11/06/2022]
Abstract
pH is an important factor affecting the growth and production of microorganisms; especially, its effect on ethanologenic microorganisms. It can change the ionization state of metabolites via the change in the charge of their functional groups that may lead to metabolic alteration. Here, we estimated the ionization state of metabolites and balanced the charge of reactions in genome-scale metabolic models of Saccharomyces cerevisiae, Escherichia coli, and Zymomonas mobilis at pH levels 5, 6, and 7. The robustness analysis was first implemented to anticipate the effect of proton exchange flux on growth rates for the constructed metabolic models at various pH. In accordance with previous experimental reports, the models predict that Z. mobilis is more sensitive to pH rather than S. cerevisiae and the yeast is more regulated by pH rather than E. coli. Then, a systemic approach was proposed to predict the pH effect on metabolic change and to find effective reactions on ethanol production in S. cerevisiae. The correlated reactions with ethanol production at predicted optimal pH in a range of proton exchange rates determined by robustness analysis were identified using the Pearson correlation coefficient. Then, fluxes of these reactions were applied to cluster the various pHs by principal component analysis and to identify the role of these reactions on metabolic differentiation because of pH change. Finally, 12 reactions were selected for up and downregulation to improve ethanol production. Enzyme regulators of the selected reactions were identified using the BRENDA database and 11 selected regulators were screened and optimized via Plackett-Burman and two-level full factorial designs, respectively. The proposed approach has enhanced yields of ethanol from 0.18 to 0.36 mol/mol carbon. Hence, not only a comprehensive approach for understanding the effect of pH on metabolism was proposed in this study, but also it successfully introduced key manipulations for ethanol overproduction.
Collapse
Affiliation(s)
- Sajjad Ghaffarinasab
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Stress-induced growth rate reduction restricts metabolic resource utilization to modulate osmo-adaptation time. Cell Rep 2021; 34:108854. [PMID: 33730573 DOI: 10.1016/j.celrep.2021.108854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 01/15/2023] Open
Abstract
A near-constant feature of stress responses is a downregulation or arrest of the cell cycle, resulting in transient growth slowdown. To investigate the role of growth slowdown in the hyperosmotic shock response of S. cerevisiae, we perturbed the G1/S checkpoint protein Sic1 to enable osmo-stress response activation with diminished growth slowdown. We document that in this mutant, adaptation to stress is accelerated rather than delayed. This accelerated recovery of the mutant proceeds by liquidation of internal glycogen stores, which are then shunted into the osmo-shock response. Therefore, osmo-adaptation in wild-type cells is delayed because growth slowdown prevents full accessibility to cellular glycogen stores. However, faster adaptation comes at the cost of acute sensitivity to subsequent osmo-stresses. We suggest that stress-induced growth slowdown acts as an arbiter to regulate the resources devoted to osmo-shock, balancing short-term adaptation with long-term robustness.
Collapse
|
15
|
Li X, Lee P, Taniasuri F, Liu S. Effects of yeast fermentation on transforming the volatile compounds of unsalted pork hydrolysate. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xinzhi Li
- Department of Food Science and Technology National University of Singapore Science Drive 3 Singapore117543Singapore
| | - Pin‐Rou Lee
- Kay Lee Pte Ltd 31 Ubi Road, #01‐05, Foodaxis Singapore408694Singapore
- Occasions Catering Pte Ltd 1 Senoko Ave, #04‐05, Foodaxis758297Singapore
| | - Fransisca Taniasuri
- Kay Lee Pte Ltd 31 Ubi Road, #01‐05, Foodaxis Singapore408694Singapore
- Performance Labs Pte Ltd 12 Marina View, #21‐03/04, Asia Square Tower 2 Singapore018961Singapore
| | - Shao‐Quan Liu
- Department of Food Science and Technology National University of Singapore Science Drive 3 Singapore117543Singapore
- National University of Singapore (Suzhou) Research Institute No. 377 Linquan Street, Suzhou Industrial Park Suzhou, Jiangsu215123China
| |
Collapse
|
16
|
Huttanus HM, Senger RS. A synthetic biosensor to detect peroxisomal acetyl-CoA concentration for compartmentalized metabolic engineering. PeerJ 2020; 8:e9805. [PMID: 33194349 PMCID: PMC7485502 DOI: 10.7717/peerj.9805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Background Sub-cellular compartmentalization is used by cells to create favorable microenvironments for various metabolic reactions. These compartments concentrate enzymes, separate competing metabolic reactions, and isolate toxic intermediates. Such advantages have been recently harnessed by metabolic engineers to improve the production of various high-value chemicals via compartmentalized metabolic engineering. However, measuring sub-cellular concentrations of key metabolites represents a grand challenge for compartmentalized metabolic engineering. Methods To this end, we developed a synthetic biosensor to measure a key metabolite, acetyl-CoA, in a representative compartment of yeast, the peroxisome. This synthetic biosensor uses enzyme re-localization via PTS1 signal peptides to construct a metabolic pathway in the peroxisome which converts acetyl-CoA to polyhydroxybutyrate (PHB) via three enzymes. The PHB is then quantified by HPLC. Results The biosensor demonstrated the difference in relative peroxisomal acetyl-CoA availability under various culture conditions and was also applied to screening a library of single knockout yeast mutants. The screening identified several mutants with drastically reduced peroxisomal acetyl-CoA and one with potentially increased levels. We expect our synthetic biosensors can be widely used to investigate sub-cellular metabolism and facilitate the “design-build-test” cycle of compartmentalized metabolic engineering.
Collapse
Affiliation(s)
- Herbert M Huttanus
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Ryan S Senger
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
17
|
Zhang H, Li S, Ma B, Huang T, Qiu H, Zhao Z, Huang X, Liu K. Nitrate removal characteristics and 13C metabolic pathways of aerobic denitrifying bacterium Paracoccus denitrificans Z195. BIORESOURCE TECHNOLOGY 2020; 307:123230. [PMID: 32222687 DOI: 10.1016/j.biortech.2020.123230] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Strain Z195 was isolated and identified as Paracoccus denitrificans. Z195 exhibited efficient aerobic denitrification and carbon removal abilities, and removed 93.74% of total nitrogen (TN) and 97.81% of total organic carbon.71.88% of nitrogen was lost as gaseous products.13C-metabolic flux analysis revealed that 95% and 132% of the carbon fluxes entered the Entner-Doudoroff (ED) pathway and tricarboxylic acid (TCA) cycle, respectively. Electrons produced by carbon metabolism markedly promoted the processes of nitrogen metabolism process and aerobic respiration. A response surface methodology model demonstrated that the optimal conditions for the maximum TN removal were a C/N ratio of 7.47, shaking speed of 108 rpm, temperature of 31 °C and initial pH of 8.02. Additionally, the average TN and chemical oxygen demand removal efficiencies of raw wastewater were 89% and 91%, respectively. The results give new insight for understanding metabolic flux analysis of aerobic denitrifying bacteria.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Sulin Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Qiu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhenfang Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Using high-throughput data and dynamic flux balance modeling techniques to identify points of constraint in xylose utilization in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43393-020-00003-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Ravikrishnan A, Blank LM, Srivastava S, Raman K. Investigating metabolic interactions in a microbial co-culture through integrated modelling and experiments. Comput Struct Biotechnol J 2020; 18:1249-1258. [PMID: 32551031 PMCID: PMC7286961 DOI: 10.1016/j.csbj.2020.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2020] [Accepted: 03/20/2020] [Indexed: 01/13/2023] Open
Abstract
Microbial co-cultures have been used in several biotechnological applications. Within these co-cultures, the microorganisms tend to interact with each other and perform complex actions. Investigating metabolic interactions in microbial co-cultures is crucial in designing microbial consortia. Here, we present a pipeline integrating modelling and experimental approaches to understand metabolic interactions between organisms in a community. We define a new index named "Metabolic Support Index (MSI)", which quantifies the benefits derived by each organism in the presence of the other when grown as a co-culture. We computed MSI for several experimentally demonstrated co-cultures and showed that MSI, as a metric, accurately identifies the organism that derives the maximum benefit. We also computed MSI for a commonly used yeast co-culture consisting of Saccharomyces cerevisiae and Pichia stipitis and observed that the latter derives higher benefit from the interaction. Further, we designed two-stage experiments to study mutual interactions and showed that P. stipitis indeed derives the maximum benefit from the interaction, as shown from our computational predictions. Also, using our previously developed computational tool MetQuest, we identified all the metabolic exchanges happening between these organisms by analysing the pathways spanning the two organisms. By analysing the HPLC profiles and studying the isotope labelling, we show that P. stipitis consumes the ethanol produced by S. cerevisiae when grown on glucose-rich medium under aerobic conditions, as also indicated by our in silico pathway analyses. Our approach represents an important step in understanding metabolic interactions in microbial communities through an integrated computational and experimental workflow.
Collapse
Affiliation(s)
- Aarthi Ravikrishnan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Initiative for Biological Systems Engineering, IIT Madras, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras, India
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology – ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology – ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| | - Smita Srivastava
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Initiative for Biological Systems Engineering, IIT Madras, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras, India
- Corresponding author.
| |
Collapse
|
20
|
Allen DK, Young JD. Tracing metabolic flux through time and space with isotope labeling experiments. Curr Opin Biotechnol 2019; 64:92-100. [PMID: 31864070 PMCID: PMC7302994 DOI: 10.1016/j.copbio.2019.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Metabolism is dynamic and must function in context-specific ways to adjust to changes in the surrounding cellular and ecological environment. When isotopic tracers are used, metabolite flow (i.e. metabolic flux) can be quantified through biochemical networks to assess metabolic pathway operation. The cellular activities considered across multiple tissues and organs result in the observed phenotype and can be analyzed to discover emergent, whole-system properties of biology and elucidate misconceptions about network operation. However, temporal and spatial challenges remain significant hurdles and require novel approaches and creative solutions. We survey current investigations in higher plant and animal systems focused on dynamic isotope labeling experiments, spatially resolved measurement strategies, and observations from re-analysis of our own studies that suggest prospects for future work. Related discoveries will be necessary to push the frontier of our understanding of metabolism to suggest novel solutions to cure disease and feed a growing future world population.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Jamey D Young
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235, United States.
| |
Collapse
|
21
|
Xu X, Pu R, Li Y, Wu Z, Li C, Miao X, Yang W. Chemical Compositions of Propolis from China and the United States and their Antimicrobial Activities Against Penicillium notatum. Molecules 2019; 24:E3576. [PMID: 31590214 PMCID: PMC6803850 DOI: 10.3390/molecules24193576] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
The chemical compositions of ethanol extracts of propolis from China (EEP-C) and the United States (EEP-A) and their antifungal activity against Penicillium notatum were determined. The result showed that a total of 49 compounds were detected by UPLC-Q-TOF-MS, 30 of which were present in samples from two regions. The major compounds of EEP-C and EEP-A were similar, including pinocembrin, pinobanksin-3-O-acetate, galanin, chrysin, pinobanksin, and pinobanksin-methyl ether, and both of them showed antifungal activity against P. notatum with same minimum inhibitory concentration (MIC) value of 0.8 mg·mL-1. In the presence of propolis, the mycelial growth was inhibited, the hyphae became shriveled and wrinkled, the extracellular conductivities were increased, and the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) were decreased. In addition, iTRAQ-based quantitative proteomic analysis of P. notatum in response to propolis revealed that a total of 341 proteins were differentially expressed, of which 88 (25.8%) were upregulated and 253 (74.2%) were downregulated. Meanwhile, the differentially expressed proteins (DEPs) involved in energy production and conversion, carbohydrate transport and metabolism, and the sterol biosynthetic pathway were identified. This study revealed that propolis could affect respiration, interfere with energy metabolism, and influence steroid biosynthesis to inhibit the growth of P. notatum.
Collapse
Affiliation(s)
- Xiaolan Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruixue Pu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Yujie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Zhenghong Wu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Chunxia Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqing Miao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Wenchao Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
22
|
Lehnen M, Ebert BE, Blank LM. Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC Microbiol 2019; 19:100. [PMID: 31101012 PMCID: PMC6525440 DOI: 10.1186/s12866-019-1453-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Thermotolerance is a highly desirable trait of microbial cell factories and has been the focus of extensive research. Yeast usually tolerate only a narrow temperature range and just two species, Kluyveromyces marxianus and Ogataea polymorpha have been described to grow at reasonable rates above 40 °C. However, the complex mechanisms of thermotolerance in yeast impede its full comprehension and the rare physiological data at elevated temperatures has so far not been matched with corresponding metabolic analyses. RESULTS To elaborate on the metabolic network response to increased fermentation temperatures of up to 49 °C, comprehensive physiological datasets of several Kluyveromyces and Ogataea strains were generated and used for 13C-metabolic flux analyses. While the maximum growth temperature was very similar in all investigated strains, the metabolic network response to elevated temperatures was not conserved among the different species. In fact, metabolic flux distributions were remarkably irresponsive to increasing temperatures in O. polymorpha, while the K. marxianus strains exhibited extensive flux rerouting at elevated temperatures. CONCLUSIONS While a clear mechanism of thermotolerance is not deducible from the fluxome level alone, the generated data can be valued as a knowledge repository for using temperature to modulate the metabolic activity towards engineering goals.
Collapse
Affiliation(s)
- Mathias Lehnen
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Birgitta E. Ebert
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| |
Collapse
|
23
|
Nehela Y, Killiny N. 'Candidatus Liberibacter asiaticus' and Its Vector, Diaphorina citri, Augment the Tricarboxylic Acid Cycle of Their Host via the γ-Aminobutyric Acid Shunt and Polyamines Pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:413-427. [PMID: 30284953 DOI: 10.1094/mpmi-09-18-0238-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Huanglongbing (HLB), a destructive citrus disease, is associated with 'Candidatus Liberibacter asiaticus', which is transmitted by the Asian citrus psyllid Diaphorina citri. Both 'Ca. L. asiaticus' and its vector manipulate the host metabolism for their benefit, to meet their nutritional needs and neutralize the host defense responses. We used a targeted gas chromatography-mass spectrometry-based method to explore the connection between the tricarboxylic acid (TCA) cycle, γ-aminobutyric acid (GABA) shunt, and polyamines (PAs) pathways in citrus. 'Ca. L. asiaticus' and D. citri accelerated the conversion of α-ketoglutarate to glutamate, then to GABA, causing an accumulation of GABA in the cytosol. In silico analysis showed that the citrus genome possesses a putative GABA permease that connects the GABA shunt with the TCA cycle and supports the accumulation of succinate, fumarate, and citrate. Additionally, the PAs biosynthetic pathway might be connected directly to the TCA cycle, through the production of fumarate, or indirectly, via enhancement of GABA shunt. Taken together, we suggest that GABA shunt and PAs pathways are alternative pathways that contribute to the flux toward succinate rather than an intact TCA cycle in citrus. Both 'Ca. L. asiaticus' and its vector enhance these pathways. This study provides more insights into citrus responses to the HLB pathosystem and could be a further step toward clues for understanding the nutritional needs of 'Ca. L. asiaticus', which could help in culturing 'Ca. L. asiaticus'.
Collapse
Affiliation(s)
- Yasser Nehela
- 1 Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, U.S.A.; and
- 2 Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Nabil Killiny
- 1 Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, U.S.A.; and
| |
Collapse
|
24
|
Tripodi F, Castoldi A, Nicastro R, Reghellin V, Lombardi L, Airoldi C, Falletta E, Maffioli E, Scarcia P, Palmieri L, Alberghina L, Agrimi G, Tedeschi G, Coccetti P. Methionine supplementation stimulates mitochondrial respiration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1901-1913. [PMID: 30290237 DOI: 10.1016/j.bbamcr.2018.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Andrea Castoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Veronica Reghellin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Linda Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | | | - Elisa Maffioli
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy.
| | - Gabriella Tedeschi
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy.
| |
Collapse
|
25
|
Masumoto H, Matsuyama S. The combination of NAD+-dependent deacetylase gene deletion and the interruption of gluconeogenesis causes increased glucose metabolism in budding yeast. PLoS One 2018; 13:e0194942. [PMID: 29579121 PMCID: PMC5868833 DOI: 10.1371/journal.pone.0194942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/13/2018] [Indexed: 01/16/2023] Open
Abstract
Metabolic engineering focuses on rewriting the metabolism of cells to enhance native products or endow cells with the ability to produce new products. This engineering has the potential for wide-range application, including the production of fuels, chemicals, foods and pharmaceuticals. Glycolysis manages the levels of various secondary metabolites by controlling the supply of glycolytic metabolites. Metabolic reprogramming of glycolysis is expected to cause an increase in the secondary metabolites of interest. In this study, we constructed a budding yeast strain harboring the combination of triple sirtuin gene deletion (hst3∆ hst4∆ sir2∆) and interruption of gluconeogenesis by the deletion of the FBP1 gene encoding fructose-1,6-bisphosphatase (fbp1∆). hst3∆ hst4∆ sir2∆ fbp1∆ cells harbored active glycolysis with high glucose consumption and active ethanol productivity. Using capillary electrophoresis–time-of-flight mass spectrometry (CE–TOF/MS) analysis, hst3∆ hst4∆ sir2∆ fbp1∆ cells accumulated not only glycolytic metabolites but also secondary metabolites, including nucleotides that were synthesized throughout the pentose phosphate (PP) pathway, although various amino acids remained at low levels. Using the stable isotope labeling assay for metabolites, we confirmed that hst3∆ hst4∆ sir2∆ fbp1∆ cells directed the metabolic fluxes of glycolytic metabolites into the PP pathway. Thus, the deletion of three sirtuin genes (HST3, HST4 and SIR2) and the FBP1 gene can allow metabolic reprogramming to increase glycolytic metabolites and several secondary metabolites except for several amino acids.
Collapse
Affiliation(s)
- Hiroshi Masumoto
- Transdisciplinary Research Integration Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
- * E-mail:
| | - Shigeru Matsuyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Dai Z, Gu H, Zhang S, Xin F, Zhang W, Dong W, Ma J, Jia H, Jiang M. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2017; 245:1407-1412. [PMID: 28554521 DOI: 10.1016/j.biortech.2017.05.100] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to metabolically construct Saccharomyces cerevisiae for achievement of direct methanol utilization and value added product (mainly pyruvate) production. After successful integration of methanol oxidation pathway originated from Pichia pastoris into the chromosome of S. cerevisiae, the recombinant showed 1.04g/L consumption of methanol and 3.13% increase of cell growth (OD600) when using methanol as the sole carbon source. Moreover, 0.26g/L of pyruvate was detected in the fermentation broth. The supplementation of 1g/L yeast extract could further improve cell growth with increase of 11.70% and methanol consumption to 2.35g/L. This represents the first genetically modified non-methylotrophic eukaryotic microbe for direct methanol utilization and would be of great value concerning the development of biotechnological processes.
Collapse
Affiliation(s)
- Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Honglian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Honghua Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
27
|
Abstract
While yeast is one of the most studied organisms, its intricate biology remains to be fully mapped and understood. This is especially the case when it comes to capture rapid, in vivo fluctuations of metabolite levels. Secondary electrospray ionization-high resolution mass spectrometry SESI-HRMS is introduced here as a sensitive and noninvasive analytical technique for online monitoring of microbial metabolic activity. The power of this technique is exemplarily shown for baker’s yeast fermentation, for which the time-resolved abundance of about 300 metabolites is demonstrated. The results suggest that a large number of metabolites produced by yeast from glucose neither are reported in the literature nor are their biochemical origins deciphered. With the technique demonstrated here, researchers interested in distant disciplines such as yeast physiology and food quality will gain new insights into the biochemical capability of this simple eukaryote.
Collapse
|
28
|
Tao L, Zhang Y, Fan S, Nobile CJ, Guan G, Huang G. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans. PLoS Genet 2017; 13:e1006949. [PMID: 28787458 PMCID: PMC5567665 DOI: 10.1371/journal.pgen.1006949] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/22/2017] [Accepted: 07/28/2017] [Indexed: 11/23/2022] Open
Abstract
Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways. Energy metabolism through the TCA cycle and mitochondrial electron transport are critical for the human fungal pathogen Candida albicans to survive and propagate in the host. This is, in part, due to the fact that C. albicans is a Crabtree-negative species, and thus exclusively uses respiration when oxygen is available. Here, we investigate the roles of the TCA cycle in hyphal development and CO2 sensing in C. albicans. Through the use of ATP and the cellular signaling molecule CO2, the TCA cycle integrates with the Ras1-cAMP signaling pathway, which is a central regulator of hyphal growth, to govern basic cellular biological processes. Together with Efg1, a downstream transcription factor of the cAMP signaling pathway, the heat shock factor-type transcription regulator Sfl2 controls CO2-induced hyphal growth in C. albicans. Deletion of SFL2 results in the loss of global transcriptional responses under elevated CO2 levels. Our study indicates that the TCA cycle not only occupies the central position of cellular metabolism but also regulates other biological processes such as CO2 sensing and hyphal development through integration with the Ras1-cAMP signaling pathway in C. albicans.
Collapse
Affiliation(s)
- Li Tao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yulong Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuru Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Shymansky CM, Wang G, Baidoo EEK, Gin J, Apel AR, Mukhopadhyay A, García Martín H, Keasling JD. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism. Front Bioeng Biotechnol 2017; 5:31. [PMID: 28596955 PMCID: PMC5443151 DOI: 10.3389/fbioe.2017.00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/25/2017] [Indexed: 11/13/2022] Open
Abstract
13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium.
Collapse
Affiliation(s)
- Christopher M Shymansky
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA.,Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - George Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jennifer Gin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Amanda Reider Apel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Héctor García Martín
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA.,DOE Agile Biofoundry, Emeryville, CA, USA.,BCAM, Basque Center for Applied Mathematics, Mazarredo, Bilbao, Basque Country, Spain
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, USA.,Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
30
|
Schmacht M, Lorenz E, Stahl U, Senz M. Medium optimization based on yeast's elemental composition for glutathione production in Saccharomyces cerevisiae. J Biosci Bioeng 2017; 123:555-561. [DOI: 10.1016/j.jbiosc.2016.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/27/2023]
|
31
|
Erbilgin O, Bowen BP, Kosina SM, Jenkins S, Lau RK, Northen TR. Dynamic substrate preferences predict metabolic properties of a simple microbial consortium. BMC Bioinformatics 2017; 18:57. [PMID: 28114881 PMCID: PMC5259839 DOI: 10.1186/s12859-017-1478-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022] Open
Abstract
Background Mixed cultures of different microbial species are increasingly being used to carry out a specific biochemical function in lieu of engineering a single microbe to do the same task. However, knowing how different species’ metabolisms will integrate to reach a desired outcome is a difficult problem that has been studied in great detail using steady-state models. However, many biotechnological processes, as well as natural habitats, represent a more dynamic system. Examining how individual species use resources in their growth medium or environment (exometabolomics) over time in batch culture conditions can provide rich phenotypic data that encompasses regulation and transporters, creating an opportunity to integrate the data into a predictive model of resource use by a mixed community. Results Here we use exometabolomic profiling to examine the time-varying substrate depletion from a mixture of 19 amino acids and glucose by two Pseudomonas and one Bacillus species isolated from ground water. Contrary to studies in model organisms, we found surprisingly few correlations between resource preferences and maximal growth rate or biomass composition. We then modeled patterns of substrate depletion, and used these models to examine if substrate usage preferences and substrate depletion kinetics of individual isolates can be used to predict the metabolism of a co-culture of the isolates. We found that most of the substrates fit the model predictions, except for glucose and histidine, which were depleted more slowly than predicted, and proline, glycine, glutamate, lysine and arginine, which were all consumed significantly faster. Conclusions Our results indicate that a significant portion of a model community’s overall metabolism can be predicted based on the metabolism of the individuals. Based on the nature of our model, the resources that significantly deviate from the prediction highlight potential metabolic pathways affected by species-species interactions, which when further studied can potentially be used to modulate microbial community structure and/or function. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1478-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Onur Erbilgin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint Genome Institute, 2800 Mitchell Dr, Walnut Creek, CA, 94598, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Stefan Jenkins
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Present Address: Intrexon Corporation, 1750 Kraft Dr, Blacksburg, VA, 24060, USA
| | - Rebecca K Lau
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA. .,Joint Genome Institute, 2800 Mitchell Dr, Walnut Creek, CA, 94598, USA.
| |
Collapse
|
32
|
Williams TC, Peng B, Vickers CE, Nielsen LK. The Saccharomyces cerevisiae pheromone-response is a metabolically active stationary phase for bio-production. Metab Eng Commun 2016; 3:142-152. [PMID: 29468120 PMCID: PMC5779721 DOI: 10.1016/j.meteno.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/04/2022] Open
Abstract
The growth characteristics and underlying metabolism of microbial production hosts are critical to the productivity of metabolically engineered pathways. Production in parallel with growth often leads to biomass/bio-product competition for carbon. The growth arrest phenotype associated with the Saccharomyces cerevisiae pheromone-response is potentially an attractive production phase because it offers the possibility of decoupling production from population growth. However, little is known about the metabolic phenotype associated with the pheromone-response, which has not been tested for suitability as a production phase. Analysis of extracellular metabolite fluxes, available transcriptomic data, and heterologous compound production (para-hydroxybenzoic acid) demonstrate that a highly active and distinct metabolism underlies the pheromone-response. These results indicate that the pheromone-response is a suitable production phase, and that it may be useful for informing synthetic biology design principles for engineering productive stationary phase phenotypes.
Collapse
Affiliation(s)
| | | | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | | |
Collapse
|
33
|
Piccirillo S, Kapros T, Honigberg SM. Phenotypic plasticity within yeast colonies: differential partitioning of cell fates. Curr Genet 2016; 62:467-73. [PMID: 26743103 PMCID: PMC4826809 DOI: 10.1007/s00294-015-0558-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
Across many phyla, a common aspect of multicellularity is the organization of different cell types into spatial patterns. In the budding yeast Saccharomyces cerevisiae, after diploid colonies have completed growth, they differentiate to form alternating layers of sporulating cells and feeder cells. In the current study, we found that as yeast colonies developed, the feeder cell layer was initially separated from the sporulating cell layer. Furthermore, the spatial pattern of sporulation in colonies depended on the colony's nutrient environment; in two environments in which overall colony sporulation efficiency was very similar, the pattern of feeder and sporulating cells within the colony was very different. As noted previously, under moderately suboptimal conditions for sporulation-low acetate concentration or high temperature-the number of feeder cells increases as does the dependence of sporulation on the feeder-cell transcription factor, Rlm1. Here we report that even under a condition that is completely blocked sporulation, the number of feeder cells still increased. These results suggest broader implications to our recently proposed "Differential Partitioning provides Environmental Buffering" or DPEB hypothesis.
Collapse
Affiliation(s)
- Sarah Piccirillo
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Tamas Kapros
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Saul M Honigberg
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO, 64110, USA.
| |
Collapse
|
34
|
Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, Maury J, Ebert BE, Christensen HB, Chen Y, Kim IK, Herrgård MJ, Blank LM, Forster J, Nielsen J, Borodina I. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact 2016; 15:53. [PMID: 26980206 PMCID: PMC4791802 DOI: 10.1186/s12934-016-0451-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 11/17/2022] Open
Abstract
Background In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. Results Here we describe the metabolic engineering of baker’s yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella entericaSEacsL641P. Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L−1 3HP with a yield of 13 % C-mol C-mol−1 glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by 13C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. Conclusions In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0451-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kanchana R Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Niels B Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.,Evolva Biotech A/S, Lersø Park Allé 42-44, 2100, Copenhagen, Denmark
| | - Konstantin Schneider
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Eik Czarnotta
- Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52056, Aachen, Germany
| | - Emre Özdemir
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Tobias Klein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Birgitta E Ebert
- Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52056, Aachen, Germany
| | - Hanne B Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.,The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Il-Kwon Kim
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.,The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.,Bio R&D Center, Paikkwang Industrial Co. Ltd, 57 Oehang-4 gil, Gunsan-si, Jellabukdo, Korea
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52056, Aachen, Germany
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.,Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
35
|
Balakumaran PA, Förster J, Zimmermann M, Charumathi J, Schmitz A, Czarnotta E, Lehnen M, Sudarsan S, Ebert BE, Blank LM, Meenakshisundaram S. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris. BMC Biotechnol 2016; 16:20. [PMID: 26897180 PMCID: PMC4761204 DOI: 10.1186/s12896-016-0251-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/11/2016] [Indexed: 01/28/2023] Open
Abstract
Background Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. Results At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h−1 to 0.16 h−1 were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by 13C-metabolic flux analysis. Conclusion Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jan Förster
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Martin Zimmermann
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jayachandran Charumathi
- Centre for Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai, 600025, India.
| | - Andreas Schmitz
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Eik Czarnotta
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Mathias Lehnen
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Suresh Sudarsan
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Birgitta E Ebert
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | | |
Collapse
|
36
|
Paulo JA, O'Connell JD, Gaun A, Gygi SP. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:4063-74. [PMID: 26399295 PMCID: PMC4710237 DOI: 10.1091/mbc.e15-07-0499] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
A mass spectrometry–based tandem mass tag 9-plex strategy was used to determine alterations in relative protein abundance due to three carbon sources—glucose, galactose, and raffinose. More than 4700 proteins were quantified across all nine samples; 1003 demonstrated statistically significant differences in abundance in at least one condition. The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry–based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid–related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | - Aleksandr Gaun
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
37
|
Gopalakrishnan S, Maranas CD. Achieving Metabolic Flux Analysis for S. cerevisiae at a Genome-Scale: Challenges, Requirements, and Considerations. Metabolites 2015; 5:521-35. [PMID: 26393660 PMCID: PMC4588810 DOI: 10.3390/metabo5030521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/04/2015] [Indexed: 12/11/2022] Open
Abstract
Recent advances in 13C-Metabolic flux analysis (13C-MFA) have increased its capability to accurately resolve fluxes using a genome-scale model with narrow confidence intervals without pre-judging the activity or inactivity of alternate metabolic pathways. However, the necessary precautions, computational challenges, and minimum data requirements for successful analysis remain poorly established. This review aims to establish the necessary guidelines for performing 13C-MFA at the genome-scale for a compartmentalized eukaryotic system such as yeast in terms of model and data requirements, while addressing key issues such as statistical analysis and network complexity. We describe the various approaches used to simplify the genome-scale model in the absence of sufficient experimental flux measurements, the availability and generation of reaction atom mapping information, and the experimental flux and metabolite labeling distribution measurements to ensure statistical validity of the obtained flux distribution. Organism-specific challenges such as the impact of compartmentalization of metabolism, variability of biomass composition, and the cell-cycle dependence of metabolism are discussed. Identification of errors arising from incorrect gene annotation and suggested alternate routes using MFA are also highlighted.
Collapse
Affiliation(s)
- Saratram Gopalakrishnan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
38
|
Niedenführ S, Wiechert W, Nöh K. How to measure metabolic fluxes: a taxonomic guide for (13)C fluxomics. Curr Opin Biotechnol 2014; 34:82-90. [PMID: 25531408 DOI: 10.1016/j.copbio.2014.12.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022]
Abstract
Metabolic reaction rates (fluxes) contribute fundamentally to our understanding of metabolic phenotypes and mechanisms of cellular regulation. Stable isotope-based fluxomics integrates experimental data with biochemical networks and mathematical modeling to 'measure' the in vivo fluxes within an organism that are not directly observable. In recent years, (13)C fluxomics has evolved into a technology with great experimental, analytical, and mathematical diversity. This review aims at establishing a unified taxonomy by means of which the various fluxomics methods can be compared to each other. By linking the developed modeling approaches to recent studies, their challenges and opportunities are put into perspective. The proposed classification serves as a guide for scientific 'travelers' who are striving to resolve research questions with the currently available (13)C fluxomics toolset.
Collapse
Affiliation(s)
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
39
|
Fraatz MA, Naeve S, Hausherr V, Zorn H, Blank LM. A minimal growth medium for the basidiomycete Pleurotus sapidus for metabolic flux analysis. Fungal Biol Biotechnol 2014; 1:9. [PMID: 28955451 PMCID: PMC5611629 DOI: 10.1186/s40694-014-0009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/13/2014] [Indexed: 01/27/2023] Open
Abstract
Background Pleurotus sapidus secretes a huge enzymatic repertoire including hydrolytic and oxidative enzymes and is an example for higher basidiomycetes being interesting for biotechnology. The complex growth media used for submerged cultivation limit basic physiological analyses of this group of organisms. Using undefined growth media, only little insights into the operation of central carbon metabolism and biomass formation, i.e., the interplay of catabolic and anabolic pathways, can be gained. Results The development of a chemically defined growth medium allowed rapid growth of P. sapidus in submerged cultures. As P. sapidus grew extremely slow in salt medium, the co-utilization of amino acids using 13C-labelled glucose was investigated by gas chromatography–mass spectrometry (GC-MS) analysis. While some amino acids were synthesized up to 90% in vivo from glucose (e.g., alanine), asparagine and/or aspartate were predominantly taken up from the medium. With this information in hand, a defined yeast free salt medium containing aspartate and ammonium nitrate as a nitrogen source was developed. The observed growth rates of P. sapidus were well comparable with those previously published for complex media. Importantly, fast growth could be observed for 4 days at least, up to cell wet weights (CWW) of 400 g L-1. The chemically defined medium was used to carry out a 13C-based metabolic flux analysis, and the in vivo reactions rates in the central carbon metabolism of P. sapidus were investigated. The results revealed a highly respiratory metabolism with high fluxes through the pentose phosphate pathway and TCA cycle. Conclusions The presented chemically defined growth medium enables researchers to study the metabolism of P. sapidus, significantly enlarging the analytical capabilities. Detailed studies on the production of extracellular enzymes and of secondary metabolites of P. sapidus may be designed based on the reported data. Electronic supplementary material The online version of this article (doi:10.1186/s40694-014-0009-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco A Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, Giessen, 35392 Germany
| | - Stefanie Naeve
- Laboratory of Technical Biochemistry, TU Dortmund, Dortmund, 44221 Germany
| | - Vanessa Hausherr
- IfADo - Leibniz Research Center for Working Environment and Human Factors, Ardeystr. 67, Dortmund, 44139 Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, Giessen, 35392 Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, Aachen, 52074 Germany
| |
Collapse
|
40
|
Henson MA, Hanly TJ. Dynamic flux balance analysis for synthetic microbial communities. IET Syst Biol 2014; 8:214-29. [PMID: 25257022 PMCID: PMC8687154 DOI: 10.1049/iet-syb.2013.0021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 01/14/2023] Open
Abstract
Dynamic flux balance analysis (DFBA) is an extension of classical flux balance analysis that allows the dynamic effects of the extracellular environment on microbial metabolism to be predicted and optimised. Recently this computational framework has been extended to microbial communities for which the individual species are known and genome-scale metabolic reconstructions are available. In this review, the authors provide an overview of the emerging DFBA approach with a focus on two case studies involving the conversion of mixed hexose/pentose sugar mixtures by synthetic microbial co-culture systems. These case studies illustrate the key requirements of the DFBA approach, including the incorporation of individual species metabolic reconstructions, formulation of extracellular mass balances, identification of substrate uptake kinetics, numerical solution of the coupled linear program/differential equations and model adaptation for common, suboptimal growth conditions and identified species interactions. The review concludes with a summary of progress to date and possible directions for future research.
Collapse
Affiliation(s)
- Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01007, USA.
| | - Timothy J Hanly
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01007, USA
| |
Collapse
|
41
|
Sohoni SV, Fazio A, Workman CT, Mijakovic I, Lantz AE. Synthetic promoter library for modulation of actinorhodin production in Streptomyces coelicolor A3(2). PLoS One 2014; 9:e99701. [PMID: 24963940 DOI: 10.1371/journal.pone.0099701] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/16/2014] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was the application of the synthetic promoter library (SPL) technology for modulation of actinorhodin production in Streptomyces coelicolor A3(2). The SPL technology was used to optimize the expression of a pathway specific positive transcriptional regulator ActII orf4, which activates the transcription of the S. coelicolor actinorhodin biosynthetic gene cluster. The native actII orf4 promoter was replaced with synthetic promoters, generating a S. coelicolor library with a broad range of expression levels of actII orf4. The resulting library was screened based on the yield of actinorhodin. Selected strains were further physiologically characterized. One of the strains from the library, ScoSPL20, showed considerably higher yield of actinorhodin and final actinorhodin titer, compared to S. coelicolor wild type and S. coelicolor with actII orf4 expressed from a strong constitutive promoter. ScoSPL20 demonstrated exceptional productivity despite having a comparatively weak expression from the promoter. Interestingly, the ScoSPL20 promoter was activated at a much earlier stage of growth compared to the wild type, demonstrating the advantage of fine-tuning and temporal tuning of gene expression in metabolic engineering. Transcriptome studies were performed in exponential and actinorhodin-producing phase of growth to compare gene expression between ScoSPL20 and the wild type. To our knowledge, this is the first successful application of the SPL technology for secondary metabolite production in filamentous bacteria.
Collapse
Affiliation(s)
- Sujata Vijay Sohoni
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Alessandro Fazio
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Christopher T Workman
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Eliasson Lantz
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| |
Collapse
|
42
|
Dempo Y, Ohta E, Nakayama Y, Bamba T, Fukusaki E. Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites 2014; 4:499-516. [PMID: 24957038 PMCID: PMC4101518 DOI: 10.3390/metabo4020499] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/05/2014] [Accepted: 06/12/2014] [Indexed: 11/28/2022] Open
Abstract
Recently, cyanobacteria have become one of the most attractive hosts for biochemical production due to its high proliferative ability and ease of genetic manipulation. Several researches aimed at biological production using modified cyanobacteria have been reported previously. However, to improve the yield of bioproducts, a thorough understanding of the intercellular metabolism of cyanobacteria is necessary. Metabolic profiling techniques have proven to be powerful tools for monitoring cellular metabolism of various organisms and can be applied to elucidate the details of cyanobacterial metabolism. In this study, we constructed a metabolic profiling method for cyanobacteria using 13C-labeled cell extracts as internal standards. Using this method, absolute concentrations of 84 metabolites were successfully determined in three cyanobacterial strains which are commonly used as background strains for metabolic engineering. By comparing the differences in basic metabolic potentials of the three cyanobacterial strains, we found a well-correlated relationship between intracellular energy state and growth in cyanobacteria. By integrating our results with the previously reported biological production pathways in cyanobacteria, we found putative limiting step of carbon flux. The information obtained from this study will not only help gain insights in cyanobacterial physiology but also serve as a foundation for future metabolic engineering studies using cyanobacteria.
Collapse
Affiliation(s)
- Yudai Dempo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Erika Ohta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yasumune Nakayama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
43
|
Rezaei MN, Dornez E, Jacobs P, Parsi A, Verstrepen KJ, Courtin CM. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation. Food Microbiol 2014; 39:108-15. [DOI: 10.1016/j.fm.2013.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 01/09/2023]
|
44
|
Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals. EUKARYOTIC CELL 2014; 13:706-14. [PMID: 24706019 DOI: 10.1128/ec.00050-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae, keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved.
Collapse
|
45
|
Abstract
Overexpression of a foreign protein may negatively affect several cell growth parameters, as well as cause cellular stress. Central (or core) metabolism plays a crucial role since it supplies energy, reduction equivalents, and precursor molecules for the recombinant product, cell's maintenance, and growth needs. However, the number of quantitative physiology studies of the impact of recombinant protein production on the central metabolic pathways of yeast cell factories has been traditionally rather limited, thereby hampering the application of rational strain engineering strategies targeting central metabolism.The development and application of quantitative physiology and modelling tools and methodologies is allowing for a systems-level understanding of the effect of bioprocess parameters such as growth rate, temperature, oxygen availability, and substrate(s) choice on metabolism, and its subsequent interactions with recombinant protein synthesis, folding, and secretion.Here, we review the recent developments and applications of (13)C-based metabolic flux analysis ((13)C-MFA) of Pichia pastoris and the gained understanding of the metabolic behavior of this yeast in recombinant protein production bioprocesses. We also discuss the potential of multilevel studies integrating (13)C-MFA with other omics analyses, as well as future perspectives on the metabolic modelling approaches to study and design metabolic engineering strategies for improved protein production.
Collapse
Affiliation(s)
- Pau Ferrer
- Escola d'Enginyeria, Edifici Q, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain,
| | | |
Collapse
|
46
|
Agrimi G, Mena MC, Izumi K, Pisano I, Germinario L, Fukuzaki H, Palmieri L, Blank LM, Kitagaki H. Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation. FEMS Yeast Res 2013; 14:249-60. [DOI: 10.1111/1567-1364.12120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Maria C. Mena
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Kazuki Izumi
- Department of Environmental Sciences; Faculty of Agriculture; Saga University; Saga Japan
| | - Isabella Pisano
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Lucrezia Germinario
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Hisashi Fukuzaki
- Department of Environmental Sciences; Faculty of Agriculture; Saga University; Saga Japan
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
- CNR Institute of Biomembranes and Bioenergetics; Bari Italy
| | - Lars M. Blank
- ABBt - Aachen Biology and Biotechnology; Institute of Applied Microbiology - iAMB; RWTH Aachen University; Aachen Germany
| | - Hiroshi Kitagaki
- Department of Environmental Sciences; Faculty of Agriculture; Saga University; Saga Japan
- Department of Biochemistry and Applied Biosciences; United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
| |
Collapse
|
47
|
Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Fact 2013; 12:114. [PMID: 24245823 PMCID: PMC3842631 DOI: 10.1186/1475-2859-12-114] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND To engineer Saccharomyces cerevisiae for efficient xylose utilization, a fungal pathway consisting of xylose reductase, xylitol dehydrogenase, and xylulose kinase is often introduced to the host strain. Despite extensive in vitro studies on the xylose pathway, the intracellular metabolism rewiring in response to the heterologous xylose pathway remains largely unknown. In this study, we applied 13C metabolic flux analysis and stoichiometric modeling to systemically investigate the flux distributions in a series of xylose utilizing S. cerevisiae strains. RESULTS As revealed by 13C metabolic flux analysis, the oxidative pentose phosphate pathway was actively used for producing NADPH required by the fungal xylose pathway during xylose utilization of recombinant S. cerevisiae strains. The TCA cycle activity was found to be tightly correlated with the requirements of maintenance energy and biomass yield. Based on in silico simulations of metabolic fluxes, reducing the cell maintenance energy was found crucial to achieve the optimal xylose-based ethanol production. The stoichiometric modeling also suggested that both the cofactor-imbalanced and cofactor-balanced pathways could lead to optimal ethanol production, by flexibly adjusting the metabolic fluxes in futile cycle. However, compared to the cofactor-imbalanced pathway, the cofactor-balanced xylose pathway can lead to optimal ethanol production in a wider range of fermentation conditions. CONCLUSIONS By applying 13C-MFA and in silico flux balance analysis to a series of recombinant xylose-utilizing S. cerevisiae strains, this work brings new knowledge about xylose utilization in two aspects. First, the interplays between the fungal xylose pathway and the native host metabolism were uncovered. Specifically, we found that the high cell maintenance energy was one of the key factors involved in xylose utilization. Potential strategies to reduce the cell maintenance energy, such as adding exogenous nutrients and evolutionary adaptation, were suggested based on the in vivo and in silico flux analysis in this study. In addition, the impacts of cofactor balance issues on xylose utilization were systemically investigated. The futile pathways were identified as the key factor to adapt to different degrees of cofactor imbalances and suggested as the targets for further engineering to tackle cofactor-balance issues.
Collapse
Affiliation(s)
- Xueyang Feng
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, Urbana, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, Urbana, USA
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Feng X, Zhao H. Investigating glucose and xylose metabolism inSaccharomyces cerevisiaeandScheffersomyces stipitisvia13C metabolic flux analysis. AIChE J 2013. [DOI: 10.1002/aic.14182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xueyang Feng
- Dept. of Chemical and Biomolecular Engineering; Institute for Genomic Biology, University of Illinois at Urbana-Champaign; Urbana; IL; 61801
| | - Huimin Zhao
- Dept. of Chemistry, Biochemistry, and Bioengineering, and Dept. of Chemical and Biomolecular Engineering; Institute for Genomic Biology, University of Illinois at Urbana-Champaign; Urbana; IL; 61801
| |
Collapse
|
49
|
Kocharin K, Siewers V, Nielsen J. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol Bioeng 2013; 110:2216-24. [PMID: 23456608 DOI: 10.1002/bit.24888] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/09/2022]
Abstract
The metabolic pathways of the central carbon metabolism in Saccharomyces cerevisiae are well studied and consequently S. cerevisiae has been widely evaluated as a cell factory for many industrial biological products. In this study, we investigated the effect of engineering the supply of precursor, acetyl-CoA, and cofactor, NADPH, on the biosynthesis of the bacterial biopolymer polyhydroxybutyrate (PHB), in S. cerevisiae. Supply of acetyl-CoA was engineered by over-expression of genes from the ethanol degradation pathway or by heterologous expression of the phophoketolase pathway from Aspergillus nidulans. Both strategies improved the production of PHB. Integration of gapN encoding NADP(+) -dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans into the genome enabled an increased supply of NADPH resulting in a decrease in glycerol production and increased production of PHB. The strategy that resulted in the highest PHB production after 100 h was with a strain harboring the phosphoketolase pathway to supply acetyl-CoA without the need of increased NADPH production by gapN integration. The results from this study imply that during the exponential growth on glucose, the biosynthesis of PHB in S. cerevisiae is likely to be limited by the supply of NADPH whereas supply of acetyl-CoA as precursor plays a more important role in the improvement of PHB production during growth on ethanol.
Collapse
Affiliation(s)
- Kanokarn Kocharin
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | | | | |
Collapse
|
50
|
Kocharin K, Nielsen J. Specific growth rate and substrate dependent polyhydroxybutyrate production in Saccharomyces cerevisiae. AMB Express 2013; 3:18. [PMID: 23514405 PMCID: PMC3610212 DOI: 10.1186/2191-0855-3-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/10/2022] Open
Abstract
Production of the biopolymer polyhydroxybutyrate (PHB) in Saccharomyces cerevisiae starts at the end of exponential phase particularly when the specific growth rate is decreased due to the depletion of glucose in the medium. The specific growth rate and the type of carbon source (fermentable/non-fermentable) have been known to influence the cell physiology and hence affect the fermentability of S. cerevisiae. The production of PHB utilizes cytosolic acetyl-CoA as a precursor and the S. cerevisiae employed in this study is therefore a strain with the enhanced cytosolic acetyl-CoA supply. Growth and PHB production at different specific growth rates were evaluated on glucose, ethanol and a mixture of glucose and ethanol as carbon source. Ethanol as carbon source yielded a higher PHB production compared to glucose since it can be directly used for cytosolic acetyl-CoA production and hence serves as a precursor for PHB production. However, this carbon source results in lower biomass yield and hence it was found that to ensure both biomass formation and PHB production a mixture of glucose and ethanol was optimal, and this resulted in the highest volumetric productivity of PHB, 8.23 mg/L · h-1, at a dilution rate of 0.1 h-1.
Collapse
|