1
|
Marshall DC, Arruda BE, Silby MW. Alginate genes are required for optimal soil colonization and persistence by Pseudomonas fluorescens Pf0-1. Access Microbiol 2019; 1:e000021. [PMID: 32974516 PMCID: PMC7471777 DOI: 10.1099/acmi.0.000021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas fluorescens strains are important candidates for use as biological control agents to reduce fungal diseases on crop plants. To understand the ecological success of these bacteria and for successful and stable biological control, determination of how these bacteria colonize and persist in soil environments is critical. Here we show that P. fluorescens Pf0-1 is negatively impacted by reduced water availability in soil, but adapts and persists. A pilot transcriptomic study of Pf0-1 colonizing moist and dehydrated soil was used to identify candidate genetic loci, which could play a role in the adaptation to dehydration. Genes predicted to specify alginate production were identified and chosen for functional evaluation. Using deletion mutants, predicted alginate biosynthesis genes were shown to be important for optimal colonization of moist soil, and necessary for adaptation to reduced water availability in dried soil. Our findings extend in vitro studies of water stress into a more natural system and suggest alginate may be an essential extracellular product for the lifestyle of P. fluorescens when growing in soil.
Collapse
Affiliation(s)
- Douglas C Marshall
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Brianna E Arruda
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Mark W Silby
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| |
Collapse
|
2
|
Acquisition of Iron Is Required for Growth of Salmonella spp. in Tomato Fruit. Appl Environ Microbiol 2015; 81:3663-70. [PMID: 25795672 DOI: 10.1128/aem.04257-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/14/2015] [Indexed: 11/20/2022] Open
Abstract
Salmonella remains a leading cause of bacterial food-borne disease, sickening millions each year. Although outbreaks of salmonellosis have traditionally been associated with contaminated meat products, recent years have seen numerous disease cases caused by the consumption of produce. Tomatoes have been specifically implicated, due to the ability of Salmonella spp. to enter the tomato fruit and proliferate within, making the decontamination of the raw product impossible. To investigate the genetic means by which Salmonella is able to survive and proliferate within tomatoes, we conducted a screen for bacterial genes of Salmonella enterica serovar Montevideo specifically induced after inoculation into ripe tomato fruit. Among these genes, we found 17 members of the previously described anaerobic Fur (ferric uptake regulator) regulon. Fur is a transcriptional and posttranscriptional regulator known to sense iron, suggesting the importance of this mineral to Salmonella within tomatoes. To test whether iron acquisition is essential for Salmonella growth in tomatoes, we tested a ΔfepDGC mutant, which lacks the ability to import iron-associated siderophores. This mutant grew significantly more poorly within tomatoes than did the wild type, but the growth defect of the mutant was fully reversed by the addition of exogenous iron, demonstrating the need for bacterial iron scavenging. Further, dependence upon iron was not apparent for Salmonella growing in filtered tomato juice, implicating the cellular fraction of the fruit as an important mediator of iron acquisition by the bacteria.
Collapse
|
3
|
Varivarn K, Champa LA, Silby MW, Robleto EA. Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol 2013; 13:92. [PMID: 23622502 PMCID: PMC3646685 DOI: 10.1186/1471-2180-13-92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas fluorescens is a common inhabitant of soil and the rhizosphere environment. In addition to potential applications in biocontrol and bioremediation, P. fluorescens is of interest as a model for studying bacterial survival and fitness in soil. A previous study using in vivo expression technology (IVET) identified 22 genes in P. fluorescens Pf0-1 which are up-regulated during growth in Massachusetts loam soil, a subset of which are important for fitness in soil. Despite this and other information on adaptation to soil, downstream applications such as biocontrol or bioremediation in diverse soils remain underdeveloped. We undertook an IVET screen to identify Pf0-1 genes induced during growth in arid Nevada desert soil, to expand our understanding of growth in soil environments, and examine whether Pf0-1 uses general or soil type-specific mechanisms for success in soil environments. RESULTS Twenty six genes were identified. Consistent with previous studies, these genes cluster in metabolism, information storage/processing, regulation, and 'hypothetical', but there was no overlap with Pf0-1 genes induced during growth in loam soil. Mutation of both a putative glutamine synthetase gene (Pfl01_2143) and a gene predicted to specify a component of a type VI secretion system (Pfl01_5595) resulted in a decline in arid soil persistence. When examined in sterile loam soil, mutation of Pfl01_5595 had no discernible impact. In contrast, the Pfl01_2143 mutant was not impaired in persistence in sterile soil, but showed a significant reduction in competitive fitness. CONCLUSIONS These data support the conclusion that numerous genes are specifically important for survival and fitness in natural environments, and will only be identified using in vivo approaches. Furthermore, we suggest that a subset of soil-induced genes is generally important in different soils, while others may contribute to success in specific types of soil. The importance of glutamine synthetase highlights a critical role for nitrogen metabolism in soil fitness. The implication of Type 6 secretion underscores the importance of microbial interactions in natural environments. Understanding the general and soil-specific genes will greatly improve the persistence of designed biocontrol and bioremediation strains within the target environment.
Collapse
Affiliation(s)
- Katila Varivarn
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | | | | |
Collapse
|
4
|
Fernández M, Conde S, Duque E, Ramos JL. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microb Biotechnol 2013; 6:307-13. [PMID: 23433036 PMCID: PMC3815925 DOI: 10.1111/1751-7915.12037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida KT2440 has the ability to colonize the rhizosphere of a wide range of plants and can reach cell densities in the range of 105–106 cfu g soil−1. Using the IVET technology we investigated which KT2440 genes were expressed in the rhizosphere of four different plants: pine, cypress, evergreen oak and rosemary. We identified 39 different transcriptional fusions containing the promoters of annotated genes that were preferentially expressed in the rhizosphere. Six of them were expressed in the rhizosphere of all the plant types tested, 11 were expressed in more than one plant and the remaining 22 fusions were found to be expressed in only one type of plant. Another 40 fusions were found to correspond to likely promoters that encode antisense RNAs of unknown function, some of which were isolated as fusions from the bacteria recovered in the rhizosphere from all of the plants, while others were specific to one or several of the plants. The results obtained in this study suggest that plant-specific signals are sensed by KT2440 in the rhizosphere and that the signals and consequent gene expression are related to the bacteria's successful establishment in this niche.
Collapse
Affiliation(s)
- Matilde Fernández
- Bio-Iliberis Research and Development, I+D Department, 18210, Peligros, Granada, Spain
| | | | | | | |
Collapse
|
5
|
Predicting statistical properties of open reading frames in bacterial genomes. PLoS One 2012; 7:e45103. [PMID: 23028785 PMCID: PMC3454372 DOI: 10.1371/journal.pone.0045103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/14/2012] [Indexed: 11/26/2022] Open
Abstract
An analytical model based on the statistical properties of Open Reading Frames (ORFs) of eubacterial genomes such as codon composition and sequence length of all reading frames was developed. This new model predicts the average length, maximum length as well as the length distribution of the ORFs of 70 species with GC contents varying between 21% and 74%. Furthermore, the number of annotated genes is predicted with high accordance. However, the ORF length distribution in the five alternative reading frames shows interesting deviations from the predicted distribution. In particular, long ORFs appear more often than expected statistically. The unexpected depletion of stop codons in these alternative open reading frames cannot completely be explained by a biased codon usage in the +1 frame. While it is unknown if the stop codon depletion has a biological function, it could be due to a protein coding capacity of alternative ORFs exerting a selection pressure which prevents the fixation of stop codon mutations. The comparison of the analytical model with bacterial genomes, therefore, leads to a hypothesis suggesting novel gene candidates which can now be investigated in subsequent wet lab experiments.
Collapse
|
6
|
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonasgenomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652-80. [DOI: 10.1111/j.1574-6976.2011.00269.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
7
|
Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 2011; 91:63-79. [PMID: 21607656 DOI: 10.1007/s00253-011-3332-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Small RNAs (sRNAs) exert important functions in pseudomonads. Classical sRNAs comprise the 4.5S, 6S, 10Sa and 10Sb RNAs, which are known in enteric bacteria as part of the signal recognition particle, a regulatory component of RNA polymerase, transfer-messenger RNA (tmRNA) and the RNA component of RNase P, respectively. Their homologues in pseudomonads are presumed to have analogous functions. Other sRNAs of pseudomonads generally have little or no sequence similarity with sRNAs of enteric bacteria. Numerous sRNAs repress or activate the translation of target mRNAs by a base-pairing mechanism. Examples of this group in Pseudomonas aeruginosa are the iron-repressible PrrF1 and PrrF2 sRNAs, which repress the translation of genes encoding iron-containing proteins, and PhrS, an anaerobically inducible sRNA, which activates the expression of PqsR, a regulator of the Pseudomonas quinolone signal. Other sRNAs sequester RNA-binding proteins that act as translational repressors. Examples of this group in P. aeruginosa include RsmY and RsmZ, which are central regulatory elements in the GacS/GacA signal transduction pathway, and CrcZ, which is a key regulator in the CbrA/CbrB signal transduction pathway. These pathways largely control the extracellular activities (including virulence traits) and the selection of the energetically most favourable carbon sources, respectively, in pseudomonads.
Collapse
|
8
|
Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:271-84. [PMID: 21043573 DOI: 10.1094/mpmi-07-10-0148] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
During evolution, plants have become associated with guilds of plant-growth-promoting rhizobacteria (PGPR), which raises the possibility that individual PGPR populations may have developed mechanisms to cointeract with one another on plant roots. We hypothesize that this has resulted in signaling phenomena between different types of PGPR colonizing the same roots. Here, the objective was to determine whether the Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol (DAPG) can act as a signal on Azospirillum PGPR and enhance the phytostimulation effects of the latter. On roots, the DAPG-producing Pseudomonas fluorescens F113 strain but not its phl-negative mutant enhanced the phytostimulatory effect of Azospirillum brasilense Sp245-Rif on wheat. Accordingly, DAPG enhanced Sp245-Rif traits involved in root colonization (cell motility, biofilm formation, and poly-β-hydroxybutyrate production) and phytostimulation (auxin production). A differential fluorescence induction promoter-trapping approach based on flow cytometry was then used to identify Sp245-Rif genes upregulated by DAPG. DAPG enhanced expression of a wide range of Sp245-Rif genes, including genes involved in phytostimulation. Four of them (i.e., ppdC, flgE, nirK, and nifX-nifB) tended to be upregulated on roots in the presence of P. fluorescens F113 compared with its phl-negative mutant. Our results indicate that DAPG can act as a signal by which some beneficial pseudomonads may stimulate plant-beneficial activities of Azospirillum PGPR.
Collapse
|
9
|
Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 2010; 192:2359-72. [PMID: 20190049 DOI: 10.1128/jb.01445-09] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illumina's high-throughput sequencing technology. The resulting sequences were used to construct genome-wide transcriptional profiles. Novel bioinformatics analyses were developed and used in combination with proteomics data for the qualitative classification of transcriptional activity in defined regions. As expected, most transcriptional activity was consistent with predictions from the genome annotation. Importantly, we identified and confirmed transcriptional activity in areas of the genome inconsistent with the annotation and in unannotated regions. Further analyses revealed potential RpoN-dependent promoter sequences upstream of several noncoding RNAs (ncRNAs), suggesting a role for these ncRNAs in RpoN-dependent phenotypes. We were also able to validate a number of transcriptional start sites, many of which were consistent with predicted promoter motifs. Overall, our approach provides an efficient way to survey global transcriptional activity in bacteria and enables rapid discovery of specific areas in the genome that merit further investigation.
Collapse
|
10
|
Kim W, Silby MW, Purvine SO, Nicoll JS, Hixson KK, Monroe M, Nicora CD, Lipton MS, Levy SB. Proteomic detection of non-annotated protein-coding genes in Pseudomonas fluorescens Pf0-1. PLoS One 2009; 4:e8455. [PMID: 20041161 PMCID: PMC2794547 DOI: 10.1371/journal.pone.0008455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022] Open
Abstract
Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.
Collapse
Affiliation(s)
- Wook Kim
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mark W. Silby
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sam O. Purvine
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Julie S. Nicoll
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Kim K. Hixson
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matt Monroe
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Stuart B. Levy
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SAC, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 2009; 10:R51. [PMID: 19432983 PMCID: PMC2718517 DOI: 10.1186/gb-2009-10-5-r51] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/21/2009] [Accepted: 05/11/2009] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. RESULTS Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. CONCLUSIONS P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.
Collapse
Affiliation(s)
- Mark W Silby
- Centre for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Ana M Cerdeño-Tárraga
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Georgios S Vernikos
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen R Giddens
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Robert W Jackson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Xue-Xian Zhang
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - Christina D Moon
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Stefanie M Gehrig
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Scott AC Godfrey
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: School of Life Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Christopher G Knight
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jacob G Malone
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Zena Robinson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Andrew J Spiers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: SIMBIOS Centre, Level 5, Kydd Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, UK
| | - Simon Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Alice M Yaxley
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kathy Seeger
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Lee Murphy
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon Rutter
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Rob Squares
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Michael A Quail
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Elizabeth Saunders
- DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Konstantinos Mavromatis
- Genome Biology Program, Department of Energy's Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Thomas S Brettin
- DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen D Bentley
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Joanne Hothersall
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elton Stephens
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher M Thomas
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stuart B Levy
- Centre for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University Auckland, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - Nicholas R Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
12
|
Silby MW, Levy SB. Overlapping protein-encoding genes in Pseudomonas fluorescens Pf0-1. PLoS Genet 2008; 4:e1000094. [PMID: 18551168 PMCID: PMC2396522 DOI: 10.1371/journal.pgen.1000094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 05/12/2008] [Indexed: 11/22/2022] Open
Abstract
The annotated genome sequences of prokaryotes seldom include overlapping genes encoded opposite each other by the same stretch of DNA. However, antisense transcription is becoming recognized as a widespread phenomenon in eukaryotes, and examples have been linked to important biological processes. Pseudomonas fluorescens inhabits aquatic and terrestrial environments, and can be regarded as an environmental generalist. The genetic basis for this ecological success is not well understood. In a previous search for soil-induced genes in P. fluorescens Pf0-1, ten antisense genes were discovered. These were termed ‘cryptic’ genes, as they had escaped detection by gene-hunting algorithms, and lacked easily recognizable promoters. In this communication, we designate such genes as ‘non-predicted’ or ‘hidden’. Using reverse transcription PCR, we show that at each of six non-predicted gene loci chosen for study, transcription occurs from both ‘sense’ and ‘antisense’ DNA strands. Further, at least one of these hidden antisense genes, iiv14, encodes a protein, as does the sense transcript, both identified by poly-histidine tags on the C-terminus of the proteins. Mutational and complementation studies showed that this novel antisense gene was important for efficient colonization of soil, and multiple copies in the wildtype host improved the speed of soil colonization. Introduction of a stop codon early in the gene eliminated complementation, further implicating the protein in colonization of soil. We therefore designate iiv14 “cosA”. These data suggest that, as is the case with eukaryotes, some bacterial genomes are more densely coded than currently recognized. Sequenced bacterial genomes provide a vast resource for research fields such as pathogenesis, drug discovery, and microbial ecology. Once sequenced, the genes within a genome are predicted using computational and manual methods. An assumption underlying both approaches is that any given length of DNA encodes only a single gene. This concept has been challenged by findings in eukaryotic genomes, and in bacterial plasmids and viruses where it is known that some stretches of DNA specify both ‘sense’ and ‘antisense’ RNA molecules. In prokaryotic cells there is little information regarding the potential of the genome to code two genes within the same stretch of DNA. We show that in the bacterium Pseudomonas fluorescens Pf0-1, both strands of DNA are transcribed at six locations in the genome, and that at one of these locations (iiv14), two different proteins are specified by the same piece of DNA. At the iiv14 locus, we demonstrate that the newly identified gene (antisense to the predicted gene) functions to promote colonization of soil, and name this gene cosA. Our findings indicate that bacterial genomes have more genes than currently thought, and important genes that have escaped detection occupy the same stretch of DNA as known genes.
Collapse
Affiliation(s)
- Mark W. Silby
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stuart B. Levy
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Increased fitness of Pseudomonas fluorescens Pf0-1 leucine auxotrophs in soil. Appl Environ Microbiol 2008; 74:3644-51. [PMID: 18441116 DOI: 10.1128/aem.00429-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The annotation process of a newly sequenced bacterial genome is largely based on algorithms derived from databases of previously defined RNA and protein-encoding gene structures. This process generally excludes the possibility that the two strands of a given stretch of DNA can each harbor a gene in an overlapping manner. While the presence of such structures in eukaryotic genomes is considered to be relatively common, their counterparts in prokaryotic genomes are just beginning to be recognized. Application of an in vivo expression technology has previously identified 22 discrete genetic loci in Pseudomonas fluorescens Pf0-1 that were specifically activated in the soil environment, of which 10 were present in an antisense orientation relative to previously annotated genes. This observation led to the hypothesis that the physiological role of overlapping genetic structures may be relevant to growth conditions outside artificial laboratory media. Here, we examined the role of one of the overlapping gene pairs, iiv19 and leuA2, in soil. Although iiv19 was previously demonstrated to be preferentially activated in the soil environment, its absence did not alter the ability of P. fluorescens to colonize or survive in soil. Surprisingly, the absence of the leuA2 gene conferred a fitness advantage in the soil environment when leucine was supplied exogenously. This effect was determined to be independent of the iiv19 gene, and further analyses revealed that amino acid antagonism was the underlying mechanism behind the observed fitness advantage of the bacterium in soil. Our findings provide a potential mechanism for the frequent occurrence of auxotrophic mutants of Pseudomonas spp. in the lungs of cystic fibrosis patients.
Collapse
|
14
|
Huang Y, Leming CL, Suyemoto M, Altier C. Genome-wide screen of Salmonella genes expressed during infection in pigs, using in vivo expression technology. Appl Environ Microbiol 2007; 73:7522-30. [PMID: 17921269 PMCID: PMC2168049 DOI: 10.1128/aem.01481-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/26/2007] [Indexed: 11/20/2022] Open
Abstract
Pigs are a food-producing species that readily carry Salmonella but, in the great majority of cases, do not show clinical signs of disease. Little is known about the functions required by Salmonella to be maintained in pigs. We have devised a recombinase-based promoter-trapping strategy to identify genes with elevated expression during pig infection with Salmonella enterica serovar Typhimurium. A total of 55 clones with in vivo-induced promoters were selected from a genomic library of approximately 10,000 random Salmonella DNA fragments fused to the recombinase cre, and the cloned DNA fragments were analyzed by sequencing. Thirty-one genes encoding proteins involved in bacterial adhesion and colonization (including bcfA, hscA, rffG, and yciR), virulence (metL), heat shock (hscA), and a sensor of a two-component regulator (hydH) were identified. Among the 55 clones, 19 were isolated from both the tonsils and the intestine, while 23 were identified only in the intestine and 13 only in tonsils. High temperature and increased osmolarity were identified as environmental signals that induced in vivo-expressed genes, suggesting possible signals for expression.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
15
|
An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A 2007; 104:18229-34. [PMID: 17986616 DOI: 10.1073/pnas.0705636104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vivo expression technology (IVET) has been widely used to study gene expression of human bacterial pathogens in animal models, but has heretofore not been used in humans to our knowledge. As part of ongoing efforts to understand Vibrio cholerae pathogenesis and develop improved V. cholerae vaccines, we have performed an IVET screen in humans for genes that are preferentially expressed by V. cholerae during infection. A library of 8,734 nontoxigenic V. cholerae strains carrying transcriptional fusions of genomic DNA to a resolvase gene was ingested by five healthy adult volunteers. Transcription of the fusion leads to resolvase-dependent excision of a sacB-containing cassette and thus the selectable phenotype of sucrose resistance (Suc(R)). A total of approximately 20,000 Suc(R) isolates, those carrying putative in vivo-induced fusions, were recovered from volunteer stool samples. Analysis of the fusion junctions from >7,000 Suc(R) isolates from multiple samples from multiple volunteers identified 217 candidate genes for preferential expression during human infection. Of genes or operons induced in three or more volunteers, the majority of those tested (65%) were induced in an infant mouse model. VC0201 (fhuC), which encodes the ATPase of a ferrichrome ABC transporter, is one of the identified in vivo-induced genes and is required for virulence in the mouse model.
Collapse
|
16
|
Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. MICROBIOLOGY (READING, ENGLAND) 2007; 153:3608-3622. [PMID: 17906157 DOI: 10.1099/mic.0.2007/009381-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Azospirillum strains have been used as plant-growth-promoting rhizobacteria (PGPR) of cereal crops, but their adaptation to the root remains poorly understood. Here, we used a global approach based on differential fluorescence induction (DFI) promoter trapping to identify genes of the wheat isolate Azospirillum brasilense Sp245 that are induced in the presence of spring wheat seed extracts. Fluorescence-based flow cytometry sorting of Sp245 cells was validated using PlacZ, PsbpA and PnifH promoters and egfp. A random promoter library was constructed by cloning 1-3 kb Sp245 fragments upstream of a promoterless version of egfp in the promoter-trap plasmid pOT1e (genome coverage estimated at threefold). Exposure to spring wheat seed extracts obtained using a methanol solution led to the detection of 300 induced DFI clones, and upregulation by seed extracts was confirmed in vitro for 46 clones. Sequencing of 21 clones enabled identification of seven promoter regions. Five of them displayed upregulation once inoculated onto spring wheat seedlings. Their downstream sequence was similar to (i) a predicted transcriptional regulator, (ii) a serine/threonine protein kinase, (iii) two conserved hypothetical proteins, or (iv) the copper-containing dissimilatory nitrite reductase NirK. Two of them were also upregulated when inoculated on winter wheat and pea but not on maize, whereas the three others (including PnirK) were upregulated on the three hosts. The amounts of nitrate and/or nitrite present in spring wheat seed extracts were sufficient for PnirK upregulation. Overall, DFI promoter trapping was useful to reveal Azospirillum genes involved in the interaction with the plant.
Collapse
Affiliation(s)
- Joël F Pothier
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| | - Florence Wisniewski-Dyé
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| | - Michèle Weiss-Gayet
- CNRS, UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| | - Yvan Moënne-Loccoz
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| | - Claire Prigent-Combaret
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, F-69622, France
- Université Lyon 1, Lyon, F-69003, France
- Université de Lyon, Lyon, F-69003, France
| |
Collapse
|
17
|
Sivanandan C, Sujatha TP, Prasad AM, Resminath R, Thakare DR, Bhat SR. T-DNA tagging and characterization of a cryptic root-specific promoter in Arabidopsis. ACTA ACUST UNITED AC 2005; 1731:202-8. [PMID: 16307804 DOI: 10.1016/j.bbaexp.2005.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 09/29/2005] [Accepted: 10/03/2005] [Indexed: 11/17/2022]
Abstract
From a T-DNA tagged Arabidopsis population, a line, M-57 showing GUS (beta-glucuronidase) expression in the vascular regions of young roots was identified. Southern analysis revealed presence of a single T-DNA insert. Using inverse PCR, the plant sequence flanking the T-DNA insertion was cloned. The insertion was identified to be in the intergenic area between loci At4G13940 and At4G13930, coding for SAHH (S-Adenosyl-l-Homocysteine Hydrolase) and SHMT (Serine Hydroxy Methyl Transferase) genes, respectively. A 452-bp fragment immediately upstream of the T-DNA insertion when cloned and mobilized as a GUS fusion was capable of driving a similar root-specific expression of reporter gene in transgenic Arabidopsis plants and their progenies. This cryptic promoter element does not show the presence of any known root-specific promoter element.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Blotting, Southern
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Intergenic
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genes, Reporter
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional/methods
- Plant Roots/genetics
- Plant Roots/growth & development
- Plants, Genetically Modified
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Regulatory Elements, Transcriptional
- Sequence Alignment
- Transcription Initiation Site
Collapse
Affiliation(s)
- C Sivanandan
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | | | | | | |
Collapse
|
18
|
Marco ML, Legac J, Lindow SE. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol 2005; 7:1379-91. [PMID: 16104861 DOI: 10.1111/j.1462-2920.2005.00825.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The foliar pathogen and ice nucleator, Pseudomonas syringae pv. syringae B728a, demonstrates a high level of epiphytic fitness on plants. Using a promoter-trapping strategy termed habitat-inducible rescue of survival (HIRS), we identified genes of this organism that are induced during colonization of healthy bean leaf surfaces. These plant-inducible genes (pigs) encode diverse cellular functions including virulence, transcription regulation, transport, nutrient acquisition and other known and unknown loci, some of which may result in antisense transcripts to annotated P. syringae genes. Prominent among the pigs was ssuE, a gene in the sulfate-starvation regulon, indicating that sulfate is not abundant on leaf surfaces. inaZ reporter gene fusion assays of the plant-inducible loci revealed up to 300-fold higher levels of pig transcriptional activity on plant leaves compared with minimal medium. However, the maximum levels of pig transcriptional activity were typically too weak to be measured using a gfp reporter gene. One exception was orf6 in the hrp/hrc pathogenicity island which was highly induced in epiphytic P. syringae cells. Four pigs were disrupted by insertional mutagenesis. While growth of the ssuE mutant was impaired under certain conditions in laboratory medium, the epiphytic and virulence properties of the mutants on bean plants were identical to wild-type P. syringae. Our results demonstrate the utility of HIRS to identify genes expressed on leaves and provide new insight into the leaf surface environment.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
19
|
Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 2005; 69:217-61. [PMID: 15944455 PMCID: PMC1197422 DOI: 10.1128/mmbr.69.2.217-261.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for microbiologists is to elucidate the strategies deployed by microorganisms to adapt to and thrive in highly complex and dynamic environments. In vitro studies, including those monitoring genomewide changes, have proven their value, but they can, at best, mimic only a subset of the ensemble of abiotic and biotic stimuli that microorganisms experience in their natural habitats. The widely used gene-to-phenotype approach involves the identification of altered niche-related phenotypes on the basis of gene inactivation. However, many traits contributing to ecological performance that, upon inactivation, result in only subtle or difficult to score phenotypic changes are likely to be overlooked by this otherwise powerful approach. Based on the premise that many, if not most, of the corresponding genes will be induced or upregulated in the environment under study, ecologically significant genes can alternatively be traced using the promoter trap techniques differential fluorescence induction and in vivo expression technology (IVET). The potential and limitations are discussed for the different IVET selection strategies and system-specific variants thereof. Based on a compendium of genes that have emerged from these promoter-trapping studies, several functional groups have been distinguished, and their physiological relevance is illustrated with follow-up studies of selected genes. In addition to confirming results from largely complementary approaches such as signature-tagged mutagenesis, some unexpected parallels as well as distinguishing features of microbial phenotypic acclimation in diverse environmental niches have surfaced. On the other hand, by the identification of a large proportion of genes with unknown function, these promoter-trapping studies underscore how little we know about the secret lives of bacteria and other microorganisms.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | | | |
Collapse
|
20
|
Brown DG, Allen C. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol Microbiol 2004; 53:1641-60. [PMID: 15341645 DOI: 10.1111/j.1365-2958.2004.04237.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phytopathogen Ralstonia solanacearum has over 5000 genes, many of which probably facilitate bacterial wilt disease development. Using in vivo expression technology (IVET), we screened a library of 133 200 R. solanacearum strain K60 promoter fusions and isolated approximately 900 fusions expressed during bacterial growth in tomato plants. Sequence analysis of 307 fusions revealed 153 unique in planta-expressed (ipx) genes. These genes included seven previously identified virulence genes (pehR, vsrB, vsrD, rpoS, hrcC, pme and gspK) as well as seven additional putative virulence factors. A significant number of ipx genes may reflect adaptation to the host xylem environment; 19.6%ipx genes are predicted to encode proteins with metabolic and/or transport functions, and 9.8%ipx genes encode proteins possibly involved in stress responses. Many ipx genes (18%) encode putative transmembrane proteins. A majority of ipx genes isolated encode proteins of unknown function, and 13% were unique to R. solanacearum. The ipx genes were variably induced in planta; beta-glucuronidase reporter gene expression analysis of a subset of 44 ipx fusions revealed that in planta expression levels were between two- and 37-fold higher than in culture. The expression of many ipx genes was subject to known R. solanacearum virulence regulators. Of 32 fusions tested, 28 were affected by at least one virulence regulator; several fusions were controlled by multiple regulators. Two ipx fusion strains isolated in this screen were reduced in virulence on tomato, indicating that gene(s) important for bacterial wilt pathogenesis were interrupted by the IVET insertion; mutations in other ipx genes are necessary to determine their roles in virulence and in planta growth. Collectively, this profile of ipx genes suggests that in its host, R. solanacearum confronts and overcomes a stressful and nutrient-poor environment.
Collapse
Affiliation(s)
- Darby G Brown
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
21
|
Silby MW, Levy SB. Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. J Bacteriol 2004; 186:7411-9. [PMID: 15489453 PMCID: PMC523206 DOI: 10.1128/jb.186.21.7411-7419.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies were undertaken to determine the genetic needs for the survival of Pseudomonas fluorescens Pf0-1, a gram-negative soil bacterium potentially important for biocontrol and bioremediation, in soil. In vivo expression technology (IVET) identified 22 genes with elevated expression in soil relative to laboratory media. Soil-induced sequences included genes with probable functions of nutrient acquisition and use, and of gene regulation. Ten sequences, lacking similarity to known genes, overlapped divergent known genes, revealing a novel genetic organization at those soil-induced loci. Mutations in three soil-induced genes led to impaired early growth in soil but had no impact on growth in laboratory media. Thus, IVET studies have identified sequences important for soil growth and have revealed a gene organization that was undetected by traditional laboratory approaches.
Collapse
Affiliation(s)
- Mark W Silby
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | |
Collapse
|