1
|
Xia Z, Xu J, Lu E, He W, Deng S, Gong AY, Strass-Soukup J, Martins GA, Lu G, Chen XM. m 6A mRNA Methylation Regulates Epithelial Innate Antimicrobial Defense Against Cryptosporidial Infection. Front Immunol 2021; 12:705232. [PMID: 34295340 PMCID: PMC8291979 DOI: 10.3389/fimmu.2021.705232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence supports that N6-methyladenosine (m6A) mRNA modification may play an important role in regulating immune responses. Intestinal epithelial cells orchestrate gastrointestinal mucosal innate defense to microbial infection, but underlying mechanisms are still not fully understood. In this study, we present data demonstrating significant alterations in the topology of host m6A mRNA methylome in intestinal epithelial cells following infection by Cryptosporidium parvum, a coccidian parasite that infects the gastrointestinal epithelium and causes a self-limited disease in immunocompetent individuals but a life-threatening diarrheal disease in AIDS patients. Altered m6A methylation in mRNAs in intestinal epithelial cells following C. parvum infection is associated with downregulation of alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 and the fat mass and obesity-associated protein with the involvement of NF-кB signaling. Functionally, m6A methylation statuses influence intestinal epithelial innate defense against C. parvum infection. Specifically, expression levels of immune-related genes, such as the immunity-related GTPase family M member 2 and interferon gamma induced GTPase, are increased in infected cells with a decreased m6A mRNA methylation. Our data support that intestinal epithelial cells display significant alterations in the topology of their m6A mRNA methylome in response to C. parvum infection with the involvement of activation of the NF-кB signaling pathway, a process that modulates expression of specific immune-related genes and contributes to fine regulation of epithelial antimicrobial defense.
Collapse
Affiliation(s)
- Zijie Xia
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Jihao Xu
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Eugene Lu
- Department of Biology, School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Wei He
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Silu Deng
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Juliane Strass-Soukup
- Department of Chemistry, Creighton University College of Arts & Sciences, Omaha, NE, United States
| | - Gislaine A Martins
- Department of Medicine and Biomedical Sciences, Research Division of Immunology Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Guoqing Lu
- Department of Biology, School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
2
|
Kissinger JC, Hermetz KE, Woods KM, Upton SJ. Enrichment of Cryptosporidium parvum from in vitro culture as measured by total RNA and subsequent sequence analysis. Mol Biochem Parasitol 2017; 220:5-9. [PMID: 29292212 DOI: 10.1016/j.molbiopara.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/01/2023]
Abstract
Cryptosporidium parvum is an apicomplexan parasite that infects a wide range of hosts including humans. Due to the parasite's quasi-intracellular, intermembrane location on the host cell, it is difficult to purify parasites from in vitro and in vivo infections for molecular studies. We have developed a method to greatly enrich in vitro C. parvum merozoites from host cells. The efficiency of the protocol was assessed with C. parvum (KSU-1 isolate) parasites of different developmental stages isolated following a synchronized infection of HCT-8 host cells. Total RNA was extracted from the samples and used to evaluate the quantity of host cell contamination in enriched parasite fractions. The quality of the RNA was verified using an Agilent BioAnalyzer. cDNA libraries of RNA isolated from 24 and 48 h C. parvum in vitro preparations isolated via this protocol were sequenced at the Broad Institute via an NIH Microbial Sequencing (GSCID) Contract. Cryptosporidium sequences comprised 30% of the cDNA reads, demonstrating significant enrichment.
Collapse
Affiliation(s)
- Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA; Department of Genetics, University of Georgia, Athens, GA, 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Karen E Hermetz
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Keith M Woods
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steve J Upton
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
3
|
Fritzler JM, Zhu G. Novel anti-Cryptosporidium activity of known drugs identified by high-throughput screening against parasite fatty acyl-CoA binding protein (ACBP). J Antimicrob Chemother 2011; 67:609-17. [PMID: 22167242 DOI: 10.1093/jac/dkr516] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cryptosporidium parvum causes an opportunistic infection in AIDS patients, and no effective treatments are yet available. This parasite possesses a single fatty acyl-CoA binding protein (CpACBP1) that is localized to the unique parasitophorous vacuole membrane (PVM). The major goal of this study was to identify inhibitors from known drugs against CpACBP1 as potential new anti-Cryptosporidium agents. METHODS A fluorescence assay was developed to detect CpACBP1 activity and to identify inhibitors by screening known drugs. Efficacies of top CpACBP1 inhibitors against Cryptosporidium growth in vitro were evaluated using a quantitative RT-PCR assay. RESULTS Nitrobenzoxadiazole-labelled palmitoyl-CoA significantly increased the fluorescent emission upon binding to CpACBP1 (excitation/emission 460/538 nm), which was quantified to determine the CpACBP1 activity and binding kinetics. The fluorescence assay was used to screen a collection of 1040 compounds containing mostly known drugs, and identified the 28 most active compounds that could inhibit CpACBP1 activity with sub-micromolar IC(50) values. Among them, four compounds displayed efficacies against parasite growth in vitro with low micromolar IC(50) values. The effective compounds were broxyquinoline (IC(50) 64.9 μM), cloxyquin (IC(50) 25.1 μM), cloxacillin sodium (IC(50) 36.2 μM) and sodium dehydrocholate (IC(50) 53.2 μM). CONCLUSIONS The fluorescence ACBP assay can be effectively used to screen known drugs or other compound libraries. Novel anti-Cryptosporidium activity was observed in four top CpACBP1 inhibitors, which may be further investigated for their potential to be repurposed to treat cryptosporidiosis and to serve as leads for drug development.
Collapse
Affiliation(s)
- Jason M Fritzler
- Department of Biology, College of Sciences and Mathematics, Stephen F. Austin State University, Nacogdoches, TX 75962, USA
| | | |
Collapse
|
4
|
Karanis P, Aldeyarbi HM. Evolution of Cryptosporidium in vitro culture. Int J Parasitol 2011; 41:1231-42. [PMID: 21889507 DOI: 10.1016/j.ijpara.2011.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023]
Abstract
This overview discusses findings from culturing Cryptosporidium spp. in cell and axenic cultures as well as factors limiting the development of this parasite in cultivation systems during recent years. A systematic review is undertaken of findings regarding the life cycle of the parasite, taking into account physiological, biochemical and genetic aspects, in the hope that this attempt will facilitate future approaches to research and developments in the understanding of Cryptosporidium biology.
Collapse
Affiliation(s)
- P Karanis
- University of Cologne, Center for Anatomy, Institute II, Molecular and Medical Parasitology, Joseph-Stelzmann-Street 9, Geb.35, 50937 Köln, Germany.
| | | |
Collapse
|
5
|
Lei C, Rider SD, Wang C, Zhang H, Tan X, Zhu G. The apicomplexan Cryptosporidium parvum possesses a single mitochondrial-type ferredoxin and ferredoxin:NADP+ reductase system. Protein Sci 2011; 19:2073-84. [PMID: 20737579 DOI: 10.1002/pro.487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have successfully expressed recombinant mitochondrial-type ferredoxin (mtFd) and ferredoxin:NADP(+) reductase (mtFNR) from Cryptosporidium parvum and characterized their biochemical features for the first time for an apicomplexan. Both C. parvum mtFd (CpmtFd) and FNR (CpmtFNR) were obtained and purified as holo-proteins, in which the correct assembly of [2Fe-2S] cluster in Fd and that of FAD in FNR were confirmed and characterized by UV/vis and electron paramagnetic resonance. These proteins were fully functional and CpmtFNR was capable of transferring electrons from NADPH to CpmtFd in a cytochrome c-coupled assay that followed a typical Michaelis-Menten kinetics. Apicomplexan mtFd and mtFNR proteins were evolutionarily divergent from their counterparts in humans and animals and could be explored as potential drug targets in Cryptosporidium and other apicomplexans.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Putignani L, Possenti A, Cherchi S, Pozio E, Crisanti A, Spano F. The thrombospondin-related protein CpMIC1 (CpTSP8) belongs to the repertoire of micronemal proteins of Cryptosporidium parvum. Mol Biochem Parasitol 2007; 157:98-101. [PMID: 17981348 DOI: 10.1016/j.molbiopara.2007.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/30/2022]
Abstract
Bioinformatic data show that, in addition to TRAP-C1, Cryptosporidium parvum encodes 11 thrombospondin-related proteins (CpTSP2 through CpTSP12), none of which has been characterized yet. We describe herein the cloning of a 2048 bp-long sporozoite cDNA encoding CpTSP8, a type I integral membrane protein of 614 amino acids, possessing three thrombospondin type I (TSP1) repeats and one epidermal growth factor (EGF)-like domain. Transcriptionally, CpTSP8 is represented by a fully spliced and two immature mRNA forms, in which the intron is either totally or partially retained. Immunofluorescence analysis detected CpTSP8 in the apical complex of both sporozoites and type I merozoites, and showed that, upon sporozoite exposure to host cells in vitro, the protein is translocated onto the parasite surface as typical of micronemal proteins (MICs). Accordingly, double immunofluorescence localized CpTSP8 to C. parvum micronemes, prompting us to rename it CpMIC1 in agreement with the current MICs nomenclature.
Collapse
Affiliation(s)
- Lorenza Putignani
- Unit of Microbiology and Virology, Children's Hospital and Research Institute Bambino Gesù, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Bettini E, Margolis FL. Expression of an intron-containing beta-tubulin mRNA in catfish olfactory epithelium. J Mol Histol 2007; 38:571-9. [PMID: 17849223 DOI: 10.1007/s10735-007-9139-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 08/22/2007] [Indexed: 01/05/2023]
Abstract
Beta-tubulin genes code for very similar proteins, sharing extensive identity in amino acid sequence within and across species, each of which manifests characteristic patterns of cell and tissue expression. While searching for olfactory specific mRNAs in the channel catfish (Ictalurus punctatus), we isolated a novel beta-tubulin cDNA. In the putative ORF, 1298 nucleotides were 80-88% identical to cloned cDNAs from zebrafish to human for beta-tubulin isotype IVb. This ORF is interrupted by an insert of 111 nucleotides located between the regions corresponding to exons 2 and 3 in other species. This insert lacks similarity to any sequence in the NCBI databases. We showed that this novel cDNA fragment hybridizes specifically to catfish olfactory epithelium mRNA on Northern analysis. Here we demonstrate by in situ analysis of catfish olfactory epithelium that the expression of this mRNA is spatially restricted to the outer two-thirds of each olfactory lamella where olfactory receptor neurons reside. These results suggest that this nucleotide sequence is the result of incomplete RNA transcript processing. The growing awareness of the regulatory roles played by RNAs transcribed from intronic regions of genes suggests that this observation may have relevance to regulation of gene expression in olfactory tissue during development and axon targeting.
Collapse
Affiliation(s)
- Ezio Bettini
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, HSF 2, Baltimore, MD 21210, USA
| | | |
Collapse
|
8
|
Wong PHP, Ong CSL. Molecular characterization of the Cryptosporidium cervine genotype. Parasitology 2006; 133:693-700. [PMID: 16899138 DOI: 10.1017/s0031182006000990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/05/2006] [Accepted: 06/08/2006] [Indexed: 11/08/2022]
Abstract
In this study, the 27 kDa immunodominant antigen (CP23), 70 kDa heat shock protein (HSP70), actin and beta-tubulin genes were amplified and sequenced for the first time from human isolates of Cryptosporidium cervine genotype. New primers were designed from reported sequences of other Cryptosporidium species and genotypes as well as the whole genome sequences of C. parvum and C. hominis, which enabled novel gene sequences and regions extending beyond those deposited in GenBank to be determined. In comparison with other species in the Cryptosporidium genus, multiple sequence alignment and phylogenetic analysis revealed that the Cryptosporidium cervine genotype isolates from humans clustered most closely with Cryptosporidium deer mouse genotype and C. suis (n. sp. formerly pig genotype I). The complete coding sequence of CP23 was determined to reveal low (72.4% and 68.0-69.8% respectively) identity to C. parvum and C. hominis sequences and the presence of a unique multiple proline-alanine-proline-valine (PAPV) repeat region.
Collapse
Affiliation(s)
- P H P Wong
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Centre for Disease Control, 655 West 12th Avenue, Vancouver, British Columbia, Canada, V5Z 4R4
| | | |
Collapse
|
9
|
Cai X, Woods KM, Upton SJ, Zhu G. Application of quantitative real-time reverse transcription-PCR in assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum in vitro. Antimicrob Agents Chemother 2006; 49:4437-42. [PMID: 16251280 PMCID: PMC1280145 DOI: 10.1128/aac.49.11.4437-4442.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here on a quantitative real-time reverse transcription-PCR (qRT-PCR) assay for assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum. The qRT-PCR assay detects 18S rRNA transcripts from both parasites, that is, the cycle threshold for 18S rRNA from parasites (C(T)([P18S])) and host cells (C(T)([H18S])), and evaluates the relative expression between parasite and host rRNA levels (i.e., deltaC(T) = C(T)([P18S]) - C(T)([H18S])) to minimize experimental and operational errors. The choice of qRT-PCR over quantitative PCR (qPCR) in this study is based on the observations that (i) the relationship between the logarithm of infected parasites (log[P]) and the normalized relative level of rRNA (deltadeltaC(T)) is linear, with a fourfold dynamic range, by qRT-PCR but sigmoidal (nonlinear) by qPCR; and (ii) the level of RNA represents that of live parasites better than that of DNA, because the decay of RNA (99% in approximately 3 h) in dead parasites is faster than that of DNA (99% in approximately 24 to 48 h) under in vitro conditions. The reliability of the qRT-PCR method was validated by testing the efficacies of nitazoxanide and paromomycin on the development of two strains of C. parvum (IOWA and KSU-1) in HCT-8 cells in vitro. Both compounds displayed dose-dependent inhibitions. The observed MIC50 values for nitazoxanide and paromomycin were 0.30 to 0.45 micro/ml and 89.7 to 119.0 microg/ml, respectively, comparable to the values reported previously. Using the qRT-PCR assay, we have also observed that pyrazole could inhibit C. parvum development in vitro (MIC50 = 15.8 mM), suggesting that the recently discovered Cryptosporidium alcohol dehydrogenases may be explored as new drug targets.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
10
|
Cai X, Herschap D, Zhu G. Functional characterization of an evolutionarily distinct phosphopantetheinyl transferase in the apicomplexan Cryptosporidium parvum. EUKARYOTIC CELL 2005; 4:1211-20. [PMID: 16002647 PMCID: PMC1168963 DOI: 10.1128/ec.4.7.1211-1220.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, two types of fatty acid synthases (FASs) have been discovered from apicomplexan parasites. Although significant progress has been made in characterizing these apicomplexan FASs, virtually nothing was previously known about the activation and regulation of these enzymes. In this study, we report the discovery and characterization of two distinct types of phosphopantetheinyl transferase (PPTase) that are responsible for synthesizing holo-acyl carrier protein (ACP) from three apicomplexan parasites: surfactin production element (SFP) type in Cryptosporidium parvum (CpSFP-PPT), holo-ACP synthase (ACPS)-type in Plasmodium falciparum (PfACPS-PPT), and both SFP and ACPS types in Toxoplasma gondii (TgSFP-PPT and TgACPS-PPT). CpSFP-PPT and TgSFP-PPT are monofunctional, cytosolic, and phylogenetically related to animal PPTases. However, PfACPS-PPT and TgACPS-PPT are bifunctional (fused with a metal-dependent hydrolase), likely targeted to the apicoplast, and more closely related to proteobacterial PPTases. The function of apicomplexan PPTases has been confirmed by detailed functional analysis using recombinant CpSFP-PPT expressed from an artificially synthesized gene with codon usage optimized for Escherichia coli. The recombinant CpSFP-PPT was able to activate the ACP domains from the C. parvum type I FAS in vitro using either CoA or acetyl-CoA as a substrate, or in vivo when coexpressed in bacteria, with kinetic characteristics typical of PPTases. These observations suggest that the two types of fatty acid synthases in the Apicomplexa are activated and regulated by two evolutionarily distinct PPTases.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A and M University, 4467 TAMU, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|