1
|
Genome-wide methylome analysis of two strains belonging to the hypervirulent Neisseria meningitidis serogroup W ST-11 clonal complex. Sci Rep 2021; 11:6239. [PMID: 33737546 PMCID: PMC7973814 DOI: 10.1038/s41598-021-85266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
A rising incidence of meningococcal serogroup W disease has been evident in many countries worldwide. Serogroup W isolates belonging to the sequence type (ST)-11 clonal complex have been associated with atypical symptoms and increased case fatality rates. The continued expansion of this clonal complex in the later part of the 2010s has been largely due to a shift from the so-called original UK strain to the 2013 strain. Here we used single-molecule real-time (SMRT) sequencing to determine the methylomes of the two major serogroup W strains belonging to ST-11 clonal complex. Five methylated motifs were identified in this study, and three of the motifs, namely 5'-GATC-3', 5'-GAAGG-3', 5'-GCGCGC-3', were found in all 13 isolates investigated. The results showed no strain-specific motifs or difference in active restriction modification systems between the two strains. Two phase variable methylases were identified and the enrichment or depletion of the methylation motifs generated by these methylases varied between the two strains. Results from this work give further insight into the low diversity of methylomes in highly related strains and encourage further research to decipher the role of regions with under- or overrepresented methylation motifs.
Collapse
|
2
|
Sánchez-Busó L, Golparian D, Parkhill J, Unemo M, Harris SR. Genetic variation regulates the activation and specificity of Restriction-Modification systems in Neisseria gonorrhoeae. Sci Rep 2019; 9:14685. [PMID: 31605008 PMCID: PMC6789123 DOI: 10.1038/s41598-019-51102-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/25/2019] [Indexed: 01/14/2023] Open
Abstract
Restriction-Modification systems (RMS) are one of the main mechanisms of defence against foreign DNA invasion and can have an important role in the regulation of gene expression. The obligate human pathogen Neisseria gonorrhoeae carries one of the highest loads of RMS in its genome; between 13 to 15 of the three main types. Previous work has described their organization in the reference genome FA1090 and has inferred the associated methylated motifs. Here, we studied the structure of RMS and target methylated motifs in 25 gonococcal strains sequenced with Single Molecule Real-Time (SMRT) technology, which provides data on DNA modification. The results showed a variable picture of active RMS in different strains, with phase variation switching the activity of Type III RMS, and both the activity and specificity of a Type I RMS. Interestingly, the Dam methylase was found in place of the NgoAXI endonuclease in two of the strains, despite being previously thought to be absent in the gonococcus. We also identified the real methylation target of NgoAXII as 5′-GCAGA-3′, different from that previously described. Results from this work give further insights into the diversity and dynamics of RMS and methylation patterns in N. gonorrhoeae.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. .,Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
3
|
Bażlekowa M, Adamczyk-Popławska M, Kwiatek A. Characterization of Vsr endonucleases from Neisseria meningitidis. MICROBIOLOGY-SGM 2017; 163:1003-1015. [PMID: 28699876 DOI: 10.1099/mic.0.000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA methylation is a common modification occurring in all living organisms. 5-methylcytosine, which is produced in a reaction catalysed by C5-methyltransferases, can spontaneously undergo deamination to thymine, leading to the formation of T:G mismatches and C→T transitions. In Escherichia coli K-12, such mismatches are corrected by the Very Short Patch (VSP) repair system, with Vsr endonuclease as the key enzyme. Neisseria meningitidis possesses genes that encode DNA methyltransferases, including C5-methyltransferases. We report on the mutagenic potential of the meningococcal C5-methyltransferases M.NmeDI and M.NmeAI resulting from deamination of 5-methylcytosine. N. meningitidis strains also possess genes encoding potential Vsr endonucleases. Phylogenetic analysis of meningococcal Vsr endonucleases indicates that they belong to two phylogenetically distinct groups (type I or type II Vsr endonucleases). N. meningitidis serogroup C (FAM18) is a representative of meningococcal strains that carry two Vsr endonuclease genes (V.Nme18IIP and V.Nme18VIP). The V.Nme18VIP (type II) endonuclease cut DNA containing T:G mismatches in all tested nucleotide contexts. V.Nme18IIP (type I) is not active in vitro, but the change of Tyr69 to His69 in the amino acid sequence of the protein restores its endonucleolytic activity. The presence of tyrosine in position 69 is a characteristic feature of type I meningococcal Vsr proteins, while type II Vsr endonucleases possess His69. In addition to the T:G mismatches, V.Nme18VIP and V.Nme18IIPY69H recognize and digest DNA with T:T or U:G mispairs. Thus, for the first time, we demonstrate that the VSP repair system may have a wider significance and broader substrate specificity than DNA lesions that only result from 5-methylcytosine deamination.
Collapse
Affiliation(s)
- Milena Bażlekowa
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Monika Adamczyk-Popławska
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Neisseria gonorrhoeae FA1090 carries genes encoding two classes of Vsr endonucleases. J Bacteriol 2010; 192:3951-60. [PMID: 20511499 DOI: 10.1128/jb.00098-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A very short patch repair system prevents mutations resulting from deamination of 5-methylcytosine to thymine. The Vsr endonuclease is the key enzyme of this system, providing sequence specificity. We identified two genes encoding Vsr endonucleases V.NgoAXIII and V.NgoAXIV from Neisseria gonorrhoeae FA1090 based on DNA sequence similarity to genes encoding Vsr endonucleases from other bacteria. After expression of the gonococcal genes in Escherichia coli, the proteins were biochemically characterized and the endonucleolytic activities and specificities of V.NgoAXIII and V.NgoAXIV were determined. V.NgoAXIII was found to be multispecific and to recognize T:G mismatches in every nucleotide context tested, whereas V.NgoAXIV recognized T:G mismatches in the following sequences: GTGG, CTGG, GTGC, ATGC, and CTGC. Alanine mutagenesis of conserved residues showed that Asp50 and His68 of V.NgoAXIII and Asp51 and His69 of V.NgoAXIV are essential for hydrolytic activity. Glu25, His64, and Asp97 of V.NgoAXIV and Glu24, Asp63, and Asp97 of V.NgoAXIII are important but not crucial for the activity of V.NgoAXIII and V.NgoAXIV. However, Glu24 and Asp63 are also important for the specificity of V.NgoAXIII. On the basis of our results concerning features of Vsr endonucleases expressed by N. gonorrhoeae FA1090, we postulate that at least two types of Vsr endonucleases can be distinguished.
Collapse
|
5
|
Abstract
The endonucleases from the Type IIB restriction-modification systems differ from all other restriction enzymes. The Type IIB enzymes cleave both DNA strands at specified locations distant from their recognition sequences, like Type IIS nucleases, but they are unique in that they do so on both sides of the site, to liberate the site from the remainder of the DNA on a short duplex. The fact that these enzymes cut DNA at specific locations mark them as Type II systems, as opposed to the Type I enzymes that cut DNA randomly, but in terms of gene organization and protein assembly, most Type IIB restriction-modification systems have more in common with Type I than with other Type II systems. Our current knowledge of the Type IIB systems is reviewed in the present paper.
Collapse
Affiliation(s)
- Jacqueline J T Marshall
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
6
|
Abstract
The endonucleases from the Type IIB restriction–modification systems differ from all other restriction enzymes. The Type IIB enzymes cleave both DNA strands at specified locations distant from their recognition sequences, like Type IIS nucleases, but they are unique in that they do so on both sides of the site, to liberate the site from the remainder of the DNA on a short duplex. The fact that these enzymes cut DNA at specific locations mark them as Type II systems, as opposed to the Type I enzymes that cut DNA randomly, but in terms of gene organization and protein assembly, most Type IIB restriction–modification systems have more in common with Type I than with other Type II systems. Our current knowledge of the Type IIB systems is reviewed in the present paper.
Collapse
|
7
|
Kwiatek A, Piekarowicz A. The restriction endonuclease R.NmeDI from Neisseria meningitidis that recognizes a palindromic sequence and cuts the DNA on both sides of the recognition sequence. Nucleic Acids Res 2007; 35:6539-46. [PMID: 17897964 PMCID: PMC2095814 DOI: 10.1093/nar/gkm702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The restriction endonuclease Type II R.NmeDI from Neisseria meningitidis 2120 (serogroup C, ST-11 complex) was characterized. The cloned nmeDIR gene was expressed in Escherichia coli cells, and the endonucleolytic and restriction activities of R.NmeDI were then observed in vitro and in vivo. The nmeDIR gene consists of 1056 bp coding 351 aa protein with a calculated molecular weight of M(r) = 39 000 ± 1000 Da. The R.NmeDI enzyme was purified to apparent homogeneity following overexpression, using metal affinity chromatography. This enzyme recognizes a palindrome sequence and cleaves double-stranded DNA upstream and downstream of its recognition sequence (12/7) RCCGGY (7/12) (R = A/G, Y = C/T) cutting out a 25-bp fragment. R.NmeDI cleaves in two steps. The enzyme cleaves the first strand randomly on either side of the recognition sequence generating an intermediate, and the second cleavage occurs more slowly and results in the production of a final reaction product. The R.NmeDI endonuclease requires two recognition sequences for effective cleavage. The tetramer is an active form of the R.NmeDI enzyme.
Collapse
Affiliation(s)
- Agnieszka Kwiatek
- *To whom the correspondence should be addressed. +48 22 5541521+48 22 5541402
| | | |
Collapse
|
8
|
Banerjee S, Chowdhury R. An orphan DNA (cytosine-5-)-methyltransferase in Vibrio cholerae. MICROBIOLOGY-SGM 2006; 152:1055-1062. [PMID: 16549669 DOI: 10.1099/mic.0.28624-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
5-Methyl cytosine (m5C) was detected in genomic DNA of the enteric pathogen Vibrio cholerae by HPLC analysis and immunoblotting with m5C-specific antibody. Although cleavage with the restriction endonuclease EcoRII revealed the absence of a Dcm homologue in V. cholerae, analysis of the genome sequence indicated the presence of a gene, designated in this study as vchM, which encodes a DNA (cytosine-5-)-methyltransferase (m5C-MTase) designated M.Vch. M.Vch is not associated with a restriction endonuclease or a mismatch very short patch repair (Vsr)-like endonuclease and is hence an 'orphan' or solitary MTase, although analysis of a phylogenetic tree indicated that related cytosine MTases are all components of restriction-modification systems. M.Vch recognizes and methylates the first 5' C in the degenerate sequence 5'-RCCGGY-3'. RT-PCR analysis suggested that vchM gene expression is increased during the stationary phase of growth. During stationary phase, the spontaneous mutation frequency in the V. cholerae wild-type strain was significantly higher than in the corresponding vchM mutant strain, suggesting that the presence of M.Vch and the absence of a very short patch (VSP) repair-like system imposes upon V. cholerae a mutator phenotype.
Collapse
Affiliation(s)
- Sanjib Banerjee
- Biophysics Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Calcutta 700 032, India
| | - Rukhsana Chowdhury
- Biophysics Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Calcutta 700 032, India
| |
Collapse
|