1
|
Passot FM, Cantlay S, Flärdh K. Protein phosphatase SppA regulates apical growth and dephosphorylates cell polarity determinant DivIVA in Streptomyces coelicolor. Mol Microbiol 2021; 117:411-428. [PMID: 34862689 DOI: 10.1111/mmi.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/27/2022]
Abstract
Members of the Actinobacteria, including mycobacteria and streptomycetes, exhibit a distinctive mode of polar growth, with cell wall synthesis occurring in zones at cell poles and directed by the essential cell polarity determinant DivIVA. Streptomyces coelicolor modulates polar growth via the Ser/Thr protein kinase AfsK, which phosphorylates DivIVA. Here, we show that the phosphoprotein phosphatase SppA has strong effects on polar growth and cell shape and that it reverses the AfsK-mediated phosphorylation of DivIVA. SppA affects hyphal branching and the rate of tip extension. The sppA mutant hyphae also exhibit a high frequency of spontaneous growth arrests, indicating problems with maintenance of tip extension. The phenotypic effects are partially suppressed in an afsK sppA double mutant, indicating that AfsK and SppA to some extent share target proteins. Strains with a nonphosphorylatable mutant DivIVA confirm that the effect of afsK on hyphal branching during normal growth is mediated by DivIVA phosphorylation. However, the phenotypic effects of sppA deletion are independent of DivIVA phosphorylation and must be mediated via other substrates. This study adds a PPP-family protein phosphatase to the proteins involved in the control of polar growth and cell shape determination in S. coelicolor.
Collapse
Affiliation(s)
| | | | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Zhong Y, Shi L. Genomic Analyses of the Quinol Oxidases and/or Quinone Reductases Involved in Bacterial Extracellular Electron Transfer. Front Microbiol 2018; 9:3029. [PMID: 30619124 PMCID: PMC6295460 DOI: 10.3389/fmicb.2018.03029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
To exchange electrons with extracellular substrates, some microorganisms employ extracellular electron transfer (EET) pathways that physically connect extracellular redox reactions to intracellular metabolic activity. These pathways are made of redox and structural proteins that work cooperatively to transfer electrons between extracellular substrates and the cytoplasmic membrane. Crucial to the bacterial and archaeal EET pathways are the quinol oxidases and/or quinone reductases in the cytoplasmic membrane where they recycle the quinone/quinol pool in the cytoplasmic membrane during EET reaction. Up to date, three different families of quinol oxidases and/or quinone reductases involved in bacterial EET have been discovered. They are the CymA, CbcL/MtrH/MtoC, and ImcH families of quinol oxidases and/or quinone reductases that are all multiheme c-type cytochromes (c-Cyts). To investigate to what extent they are distributed among microorganisms, we search the bacterial as well as archaeal genomes for the homologs of these c-Cyts. Search results reveal that the homologs of these c-Cyts are only found in the Domain Bacteria. Moreover, the CymA homologs are only found in the phylum of Proteobacteria and most of them are in the Shewanella genus. In addition to Shewanella sp., CymA homologs are also found in other Fe(III)-reducing bacteria, such as of Vibrio parahaemolyticus. In contrast to CymA, CbcL/MtrH/MtoC, and ImcH homologs are much more widespread. CbcL/MtrH/MtoC homologs are found in 15 phyla, while ImcH homologs are found in 12 phyla. Furthermore, the heme-binding motifs of CbcL/MtrH/MtoC and ImcH homologs vary greatly, ranging from 3 to 23 and 6 to 10 heme-binding motifs for CbcL/MtrH/MtoC and ImcH homologs, respectively. Moreover, CymA and CbcL/MtrH/MtoC homologs are found in both Fe(III)-reducing and Fe(II)-oxidizing bacteria, suggesting that these families of c-Cyts catalyze both quinol-oxidizing and quinone-reducing reactions. ImcH homologs are only found in the Fe(III)-reducing bacteria, implying that they are only the quinol oxidases. Finally, some bacteria have the homologs of two different families of c-Cyts, which may improve the bacterial capability to exchange electrons with extracellular substrates.
Collapse
Affiliation(s)
- Yuhong Zhong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
3
|
Caselli A, Paoli P, Santi A, Mugnaioni C, Toti A, Camici G, Cirri P. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1339-55. [PMID: 27421795 DOI: 10.1016/j.bbapap.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors.
Collapse
Affiliation(s)
- Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Alice Santi
- Vascular Proteomics, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK.
| | - Camilla Mugnaioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Alessandra Toti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Guido Camici
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
4
|
Burger-Calderon R, Ramsey KJ, Dolittle-Hall JM, Seaman WT, Jeffers-Francis LK, Tesfu D, Nickeleit V, Webster-Cyriaque J. Distinct BK polyomavirus non-coding control region (NCCR) variants in oral fluids of HIV- associated Salivary Gland Disease patients. Virology 2016; 493:255-66. [PMID: 27085139 DOI: 10.1016/j.virol.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/27/2022]
Abstract
HIV-associated Salivary Gland Disease (HIVSGD) is among the most common salivary gland-associated complications in HIV positive individuals and was associated with the small DNA tumorvirus BK polyomavirus (BKPyV). The BKPyV non-coding control region (NCCR) is the main determinant of viral replication and rearranges readily. This study analyzed the BKPyV NCCR architecture and viral loads of 35 immunosuppressed individuals. Throatwash samples from subjects diagnosed with HIVSGD and urine samples from transplant patients were BKPyV positive and yielded BKPyV NCCR sequences. 94.7% of the BKPyV HIVSGD NCCRs carried a rearranged OPQPQQS block arrangement, suggesting a distinct architecture among this sample set. BKPyV from HIV positive individuals without HIVSGD harbored NCCR block sequences that were distinct from OPQPQQS. Cloned HIVSGD BKPyV isolates displayed active promoters and efficient replication capability in human salivary gland cells. The unique HIVSGD NCCR architecture may represent a potentially significant oral-tropic BKPyV substrain.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Epidemiology Department, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathy J Ramsey
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet M Dolittle-Hall
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William T Seaman
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Daniel Tesfu
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Volker Nickeleit
- Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev 2015; 40:41-56. [DOI: 10.1093/femsre/fuv041] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 11/14/2022] Open
|
6
|
Ladwig N, Franz-Wachtel M, Hezel F, Soufi B, Macek B, Wohlleben W, Muth G. Control of Morphological Differentiation of Streptomyces coelicolor A3(2) by Phosphorylation of MreC and PBP2. PLoS One 2015; 10:e0125425. [PMID: 25927987 PMCID: PMC4416010 DOI: 10.1371/journal.pone.0125425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022] Open
Abstract
During morphological differentiation of Streptomyces coelicolor A3(2), the sporogenic aerial hyphae are transformed into a chain of more than fifty spores in a highly coordinated manner. Synthesis of the thickened spore envelope is directed by the Streptomyces spore wall synthesizing complex SSSC which resembles the elongasome of rod-shaped bacteria. The SSSC includes the eukaryotic type serine/threonine protein kinase (eSTPK) PkaI, encoded within a cluster of five independently transcribed eSTPK genes (SCO4775-4779). To understand the role of PkaI in spore wall synthesis, we screened a S. coelicolor genomic library for PkaI interaction partners by bacterial two-hybrid analyses and identified several proteins with a documented role in sporulation. We inactivated pkaI and deleted the complete SCO4775-4779 cluster. Deletion of pkaI alone delayed sporulation and produced some aberrant spores. The five-fold mutant NLΔ4775-4779 had a more severe defect and produced 18% aberrant spores affected in the integrity of the spore envelope. Moreover, overbalancing phosphorylation activity by expressing a second copy of any of these kinases caused a similar defect. Following co-expression of pkaI with either mreC or pbp2 in E. coli, phosphorylation of MreC and PBP2 was demonstrated and multiple phosphosites were identified by LC-MS/MS. Our data suggest that elaborate protein phosphorylation controls activity of the SSSC to ensure proper sporulation by suppressing premature cross-wall synthesis.
Collapse
Affiliation(s)
- Nils Ladwig
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Felix Hezel
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Boumediene Soufi
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Günther Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| |
Collapse
|
7
|
Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. Biochem Soc Trans 2012; 40:1261-7. [DOI: 10.1042/bst20120098] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), key components of the Mtr (i.e. metal-reducing) pathway exist in all strains of metal-reducing Shewanella characterized. The protein components identified to date for the Mtr pathway of MR-1 include four multihaem c-Cyts (c-type cytochromes), CymA, MtrA, MtrC and OmcA, and a porin-like outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner membrane to Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes has identified homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The apparent widespread distribution of Mtr pathways in both Fe(III)-reducing and Fe(II)-oxidizing bacteria suggests a bidirectional electron transfer role, and emphasizes the importance of this type of extracellular electron-transfer pathway in microbial redox transformation of iron. The organizational and electron-transfer characteristics of the Mtr pathways may be shared by other pathways used by micro-organisms for exchanging electrons with their extracellular environments.
Collapse
|
8
|
Liu J, Wang Z, Belchik SM, Edwards MJ, Liu C, Kennedy DW, Merkley ED, Lipton MS, Butt JN, Richardson DJ, Zachara JM, Fredrickson JK, Rosso KM, Shi L. Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1. Front Microbiol 2012; 3:37. [PMID: 22347878 PMCID: PMC3274759 DOI: 10.3389/fmicb.2012.00037] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 01/23/2012] [Indexed: 11/13/2022] Open
Abstract
The Gram-negative bacterium Sideroxydans lithotrophicus ES-1 (ES-1) grows on FeCO(3) or FeS at oxic-anoxic interfaces at circumneutral pH, and the ES-1-mediated Fe(II) oxidation occurs extracellularly. However, the molecular mechanisms underlying ES-1's ability to oxidize Fe(II) remain unknown. Survey of the ES-1 genome for candidate genes for microbial extracellular Fe(II) oxidation revealed that it contained a three-gene cluster encoding homologs of Shewanella oneidensis MR-1 (MR-1) MtrA, MtrB, and CymA that are involved in extracellular Fe(III) reduction. Homologs of MtrA and MtrB were also previously shown to be involved in extracellular Fe(II) oxidation by Rhodopseudomonas palustris TIE-1. To distinguish them from those found in MR-1, the identified homologs were named MtoAB and CymA(ES-1). Cloned mtoA partially complemented an MR-1 mutant without MtrA with regards to ferrihydrite reduction. Characterization of purified MtoA showed that it was a decaheme c-type cytochrome and oxidized soluble Fe(II). Oxidation of Fe(II) by MtoA was pH- and Fe(II)-complexing ligand-dependent. Under conditions tested, MtoA oxidized Fe(II) from pH 7 to pH 9 with the optimal rate at pH 9. MtoA oxidized Fe(II) complexed with different ligands at different rates. The reaction rates followed the order Fe(II)Cl(2) > Fe(II)-citrate > Fe(II)-NTA > Fe(II)-EDTA with the second-order rate constants ranging from 6.3 × 10(-3) μM(-1) s(-1) for oxidation of Fe(II)Cl(2) to 1.0 × 10(-3) μM(-1) s(-1) for oxidation of Fe(II)-EDTA. Thermodynamic modeling showed that redox reaction rates for the different Fe(II)-complexes correlated with their respective estimated reaction-free energies. Collectively, these results demonstrate that MtoA is a functional Fe(II)-oxidizing protein that, by working in concert with MtoB and CymA(ES-1), may oxidize Fe(II) at the bacterial surface and transfer released electrons across the bacterial cell envelope to the quinone pool in the inner membrane during extracellular Fe(II) oxidation by ES-1.
Collapse
Affiliation(s)
- Juan Liu
- Pacific Northwest National Laboratory Richland, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Identification and characterization of UndAHRCR-6, an outer membrane endecaheme c-type cytochrome of Shewanella sp. strain HRCR-6. Appl Environ Microbiol 2011; 77:5521-3. [PMID: 21652739 DOI: 10.1128/aem.00614-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UndA(HRCR-6) was identified from the metal-reducing bacterium Shewanella sp. strain HRCR-6. Both in vivo and in vitro characterization results indicate that UndA(HRCR-6) is an outer membrane endecaheme c-type cytochrome and probably has a key functional role in the extracellular reduction of iron [Fe(III)] oxides and uranium [U(VI)] by Shewanella sp. HRCR-6.
Collapse
|
10
|
Treuner-Lange A. The phosphatomes of the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum in comparison with other prokaryotic genomes. PLoS One 2010; 5:e11164. [PMID: 20567509 PMCID: PMC2887360 DOI: 10.1371/journal.pone.0011164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/04/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Analysis of the complete genomes from the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum identified the highest number of eukaryotic-like protein kinases (ELKs) compared to all other genomes analyzed. High numbers of protein phosphatases (PPs) could therefore be anticipated, as reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes. METHODOLOGY Here we report an intensive analysis of the phosphatomes of M. xanthus and S. cellulosum in which we constructed phylogenetic trees to position these sequences relative to PPs from other prokaryotic organisms. PRINCIPAL FINDINGS PREDOMINANT OBSERVATIONS WERE: (i) M. xanthus and S. cellulosum possess predominantly Ser/Thr PPs; (ii) S. cellulosum encodes the highest number of PP2c-type phosphatases so far reported for a prokaryotic organism; (iii) in contrast to M. xanthus only S. cellulosum encodes high numbers of SpoIIE-like PPs; (iv) there is a significant lack of synteny among M. xanthus and S. cellulosum, and (v) the degree of co-organization between kinase and phosphatase genes is extremely low in these myxobacterial genomes. CONCLUSIONS We conclude that there has been a greater expansion of ELKs than PPs in multicellular myxobacteria.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|
11
|
Palecková P, Kontrová F, Kofronová O, Bobek J, Benada O, Mikulík K. Effect of protein kinase inhibitors on protein phosphorylation and germination of aerial spores from Streptomyces coelicolor. Folia Microbiol (Praha) 2007; 52:215-22. [PMID: 17702458 DOI: 10.1007/bf02931301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In vitro phosphorylation reaction using extracts prepared from cells in the exponential phase of growth and aerial spores of Streptomyces coelicolor displayed the presence of multiply phosphorylated proteins. Effect of protein kinase inhibitors (PKIs) (geldanamycin, wortmannin, apigenin, genistein, roscovitine, methyl 2,5-dihydroxycinnamate, rapamycin, staurosporine) was determined on protein phosphorylation and on germination of spores. The in vitro experiments showed differences in phosphoprotein pattern due to the presence of PKIs. Cultivation of aerial spores with PKIs led to a significant delay in germ tube emergence and filament formation. However, none of the tested PKIs completely blocked the germination process. These results indicate that protein kinases of spores form complex networks sharing common modulating site that plays an important role in proper timing of early developmental events.
Collapse
Affiliation(s)
- P Palecková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | | | | | | | | | |
Collapse
|
12
|
Manteca A, Pelaez AI, Zardoya R, Sanchez J. Actinobacteria cyclophilins: phylogenetic relationships and description of new class- and order-specific paralogues. J Mol Evol 2006; 63:719-32. [PMID: 17103061 DOI: 10.1007/s00239-005-0130-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/30/2006] [Indexed: 10/23/2022]
Abstract
Cyclophilins are folding helper enzymes belonging to the class of peptidyl-prolyl cis-trans isomerases (PPIases; EC 5.2.1.8) that catalyze the cis-trans isomerization of peptidyl-prolyl bonds in proteins. They are ubiquitous proteins present in almost all living organisms analyzed to date, with extremely rare exceptions. Few cyclophilins have been described in Actinobacteria, except for three reported in the genus Streptomyces and another one in Mycobacterium tuberculosis. In this study, we performed a complete phylogenetic analysis of all Actinobacteria cyclophilins available in sequence databases and new Streptomyces cyclophilin genes sequenced in our laboratory. Phylogenetic analyses of cyclophilins recovered six highly supported groups of paralogy. Streptomyces appears as the bacteria having the highest cyclophilin diversity, harboring proteins from four groups. The first group was named "A" and is made up of highly conserved cytosolic proteins of approximately 18 kDa present in all Actinobacteria. The second group, "B," includes cytosolic proteins widely distributed throughout the genus Streptomyces and closely related to eukaryotic cyclophilins. The third group, "M" cyclophilins, consists of high molecular mass cyclophilins ( approximately 30 kDa) that contain putative membrane binding domains and would constitute the only membrane cyclophilins described to date in bacteria. The fourth group, named "C" cyclophilins, is made up of proteins of approximately 18 kDa that are orthologous to Gram-negative proteobacteria cyclophilins. Ancestral character reconstruction under parsimony was used to identify shared-derived (and likely functionally important) amino acid residues of each paralogue. Southern and Western blot experiments were performed to determine the taxonomic distribution of the different cyclophilins in Actinobacteria.
Collapse
Affiliation(s)
- Angel Manteca
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Universidad de Oviedo, Julian Claveria s/n, Oviedo, 33006, Spain
| | | | | | | |
Collapse
|
13
|
Wu G, Culley DE, Zhang W. Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. MICROBIOLOGY-SGM 2005; 151:2175-2187. [PMID: 16000708 DOI: 10.1099/mic.0.27833-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Highly expressed genes in bacteria often have a stronger codon bias than genes expressed at lower levels, due to translational selection. In this study, a comparative analysis of predicted highly expressed (PHX) genes in the Streptomyces coelicolor and Streptomyces avermitilis genomes was performed using the codon adaptation index (CAI) as a numerical estimator of gene expression level. Although it has been suggested that there is little heterogeneity in codon usage in G+C-rich bacteria, considerable heterogeneity was found among genes in these two G+C-rich Streptomyces genomes. Using ribosomal protein genes as references, approximately 10% of the genes were predicted to be PHX genes using a CAI cutoff value of greater than 0.78 and 0.75 in S. coelicolor and S. avermitilis, respectively. The PHX genes showed good agreement with the experimental data on expression levels obtained from proteomic analysis by previous workers. Among 724 and 730 PHX genes identified from S. coelicolor and S. avermitilis, 368 are orthologue genes present in both genomes, which were mostly 'housekeeping' genes involved in cell growth. In addition, 61 orthologous gene pairs with unknown functions were identified as PHX. Only one polyketide synthase gene from each Streptomyces genome was predicted as PHX. Nevertheless, several key genes responsible for producing precursors for secondary metabolites, such as crotonyl-CoA reductase and propionyl-CoA carboxylase, and genes necessary for initiation of secondary metabolism, such as adenosylmethionine synthetase, were among the PHX genes in the two Streptomyces species. The PHX genes exclusive to each genome, and what they imply regarding cellular metabolism, are also discussed.
Collapse
Affiliation(s)
- Gang Wu
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - David E Culley
- Microbiology Department, Pacific Northwest National Laboratory, 902 Battelle Boulevard, PO Box 999, Mail Stop P7-50, Richland, WA 99352, USA
| | - Weiwen Zhang
- Microbiology Department, Pacific Northwest National Laboratory, 902 Battelle Boulevard, PO Box 999, Mail Stop P7-50, Richland, WA 99352, USA
| |
Collapse
|
14
|
Galperin MY. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 2005; 5:35. [PMID: 15955239 PMCID: PMC1183210 DOI: 10.1186/1471-2180-5-35] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 06/14/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. RESULTS This paper presents results of a comprehensive census of signal transduction proteins--histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases--encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. CONCLUSION The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes, are found among the poorly studied beta-, delta- and epsilon-proteobacteria. Among all bacterial phyla, only cyanobacteria appear to be true introverts, probably due to their capacity to conduct oxygenic photosynthesis, using a complex system of intracellular membranes. The census data, available at http://www.ncbi.nlm.nih.gov/Complete_Genomes/SignalCensus.html, can be used to get an insight into metabolic and behavioral propensities of each given organism and improve prediction of the organism's properties based solely on its genome sequence.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
15
|
Lai SM, Moual HL. PrpZ, a Salmonella enterica serovar Typhi serine/threonine protein phosphatase 2C with dual substrate specificity. MICROBIOLOGY-SGM 2005; 151:1159-1167. [PMID: 15817783 DOI: 10.1099/mic.0.27585-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genes encoding eukaryotic-type protein kinases and phosphatases are present in many bacterial genomes. An ORF encoding a polypeptide with homology to protein phosphatases 2C (PP2Cs) was identified in the genomes of Salmonella enterica serovar Typhi strains CT18 and Ty2. This protein, termed PrpZ, is the first PP2C to be identified in enterobacteria. Analysis of the amino acid sequence revealed two distinct domains: the N-terminal segment containing motifs of the catalytic domain of PP2Cs and the C-terminal segment with unknown function. PrpZ was expressed in Escherichia coli as a histidine-tagged fusion protein (PrpZ(His)) and the purified protein was analysed for its ability to dephosphorylate various substrates. Using p-nitrophenyl phosphate as a substrate, optimal PrpZ(His) activity was observed at pH 9.5, with a strong preference for Mn(2+) over Mg(2+). Activity of PrpZ(His) was inhibited by EDTA, sodium fluoride, sodium phosphate and sodium pyrophosphate but unaffected by okadaic acid, indicating that PrpZ is a PP2C. Using synthetic phosphopeptides as substrates, PrpZ(His) could hydrolyse phosphorylated serine, threonine or tyrosine residues, with the highest catalytic efficiency (k(cat)/K(m)) for the threonine phosphopeptide. With phosphorylated myelin basic protein (MBP) as the substrate, Mn(2+) was only twofold more efficient than Mg(2+) in stimulating PrpZ(His) activity at pH 8.0. The ability of PrpZ(His) to remove the phosphoryl group from phosphotyrosine residues was confirmed by measuring the release of inorganic phosphate from phospho-Tyr MBP. Together, these data indicate that PrpZ has all the features of a PP2C with dual substrate specificity in vitro.
Collapse
Affiliation(s)
- Sio Mei Lai
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Québec, Canada H3A 2B4
| | - Hervé Le Moual
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Québec, Canada H3A 2B4
| |
Collapse
|
16
|
Zhang W, Shi L. Evolution of the PPM-family protein phosphatases in Streptomyces: duplication of catalytic domain and lateral recruitment of additional sensory domains. Microbiology (Reading) 2004; 150:4189-4197. [PMID: 15583171 DOI: 10.1099/mic.0.27480-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Originally identified from eukaryotes, the Mg2+- or Mn2+-dependent protein phosphatases (PPMs) are a diverse group of enzymes whose members include eukaryotic PP2C and some prokaryotic serine/threonine phosphatases. In a previous study, unexpectedly large numbers of PPMs were identified in two Streptomyces genomes. In this work, a phylogenetic analysis was performed with all the PPMs available from a wide variety of microbial sources to determine the evolutionary origin of the Streptomyces PPM proteins. Consistent with earlier hypotheses, the results suggested that the microbial PPMs were relatively recent additions from eukaryotic sources. Results also indicated that the Streptomyces PPMs were divided into two major subfamilies at an early stage of their emergence in Streptomyces genomes. The first subfamily, which contains only six Streptomyces PPMs, possesses a catalytic domain whose sequence and architecture are similar to that of eukaryotic PPMs; the second subfamily contains 89 Streptomyces PPMs that lack the 5a and 5b catalytic domain motifs, similar to the PPMs SpoIIE and RsbU of Bacillus subtilis. Significant gene duplication was observed for the PPMs in the second subfamily. In addition, more than half (54 %) of the Streptomyces PPMs from the second subfamily were found to have at least one additional sensory domain, most commonly the PAS or the GAF domain. Phylogenetic analysis showed that these domains tended to be clustered according to the putative physiological functions rather than taxonomic relationship, implying that they might have arisen as a result of domain recruitment in a late evolutionary stage. This study provides an insight into how Streptomyces spp. may have expanded their PPM-based signal transduction networks to enable them to respond to a greater range of environmental changes.
Collapse
Affiliation(s)
- Weiwen Zhang
- Microbiology Department, Pacific Northwest National Laboratory, 902 Battelle Blvd, PO Box 999, Mail Stop: P7-50, Richland, WA 99352, USA
| | - Liang Shi
- Microbiology Department, Pacific Northwest National Laboratory, 902 Battelle Blvd, PO Box 999, Mail Stop: P7-50, Richland, WA 99352, USA
| |
Collapse
|