1
|
Liu J, Cui T. Expression, Characterisation, Homology Modelling and Molecular Docking of a Novel M17 Family Leucyl-Aminopeptidase from Bacillus cereus CZ. Int J Mol Sci 2023; 24:15939. [PMID: 37958921 PMCID: PMC10649214 DOI: 10.3390/ijms242115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Leucyl-aminopeptidase (LAP), an important metallopeptidase, hydrolyses amino acid residues from the N-terminus of polypeptides and proteins, acting preferentially on the peptide bond formed by N-terminus leucine. A new leucyl-aminopeptidase was found in Bacillus cereus CZ. Its gene (bclap) contained a 1485 bp ORF encoding 494 amino acids with a molecular weight of 54 kDa. The bcLAP protein was successfully expressed in E. coli BL21(DE3). Optimal activity is obtained at pH 9.0 and 58 °C. The bcLAP displays a moderate thermostability and an alkaline pH adaptation range. Enzymatic activity is dramatically enhanced by Ni2+. EDTA significantly inhibits the enzymatic activity, and bestatin and SDS also show strong inhibition. The three-dimensional model of bcLAP monomer and homohexamer is simulated byPHYRE2 server and SWISS-MODEL server. The docking of bestatin, Leu-Trp, Asp-Trp and Ala-Ala-Gly to bcLAP is performed using AutoDock4.2.5, respectively. Molecular docking results show that the residues Lys260, Asp265, Lys272, Asp283, Asp342, Glu344, Arg346, Gly372 and His437 are involved in the hydrogen bonding with the ligands and zinc ions. There may be two nucleophilic catalytic mechanisms in bcLAP, one involving His 437 or Arg346 and the other involving His437 and Arg346. The bcLAP can hydrolyse the peptide bonds in Leu-Trp, Asp-Trp and Ala-Ala-Gly.
Collapse
Affiliation(s)
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| |
Collapse
|
2
|
González-Bacerio J, Izquierdo M, Aguado ME, Varela AC, González-Matos M, Del Rivero MA. Using microbial metalo-aminopeptidases as targets in human infectious diseases. MICROBIAL CELL 2021; 8:239-246. [PMID: 34692819 PMCID: PMC8485470 DOI: 10.15698/mic2021.10.761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Several microbial metalo-aminopeptidases are emerging as novel targets for the treatment of human infectious diseases. Some of them are well validated as targets and some are not; some are essential enzymes and others are important for virulence and pathogenesis. For another group, it is not clear if their enzymatic activity is involved in the critical functions that they mediate. But one aspect has been established: they display relevant roles in bacteria and protozoa that could be targeted for therapeutic purposes. This work aims to describe these biological functions for several microbial metalo-aminopeptidases.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.,Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maday Alonso Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
3
|
Bhat S, Qureshi IA. Structural and Functional Basis of Potent Inhibition of Leishmanial Leucine Aminopeptidase by Peptidomimetics. ACS OMEGA 2021; 6:19076-19085. [PMID: 34337246 PMCID: PMC8320071 DOI: 10.1021/acsomega.1c02386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A leucine aminopeptidase primarily hydrolyzes amino acid leucine from the N-terminus end of proteins and is involved in free amino acid regulation, which makes it a potential therapeutic target against neglected tropical diseases including leishmaniasis. We here report the purification and characterization of the leucine aminopeptidase from Leishmania donovani (LdLAP). Using a set of biophysical and biochemical methods, we demonstrate that this enzyme was properly folded after expression in a bacterial system and catalytically active when supplemented with divalent metal cofactors with synthetic fluorogenic peptides. Subsequently, enzymatic inhibition assay denoted that LdLAP activity was inhibited by peptidomimetics, particularly actinonin, which caused potent inhibition and exhibited stronger binding association with the LdLAP. Stronger association of actinonin with the LdLAP was due to a stable complex formation mostly mediated by hydrogen bonding with catalytic and substrate-binding residues in the C-terminal catalytic domain. With molecular dynamics simulation studies, we demonstrate that peptidomimetics retain their topological space in the LdLAP catalytic pocket and form a stable complex. These results expand the current knowledge of aminopeptidase biochemistry and highlight that specific actinonin or peptidomimetic-based inhibitors may emerge as leads to combat leishmaniasis.
Collapse
|
4
|
Ge YM, Sun AH, Ojcius DM, Li SJ, Hu WL, Lin X, Yan J. M16-Type Metallopeptidases Are Involved in Virulence for Invasiveness and Diffusion of Leptospira interrogans and Transmission of Leptospirosis. J Infect Dis 2021; 222:1008-1020. [PMID: 32274497 DOI: 10.1093/infdis/jiaa176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leptospirosis is a global zoonotic infectious disease caused by Leptospira interrogans. The pathogen rapidly invades into hosts and diffuses from bloodstream into internal organs and excretes from urine to cause transmission of leptospirosis. However, the mechanism of leptospiral invasiveness remains poorly understood. METHODS Proteolytic activity of M16-type metallopeptidases (Lep-MP1/2/3) of L. interrogans was determined by spectrophotometry. Expression and secretion of Lep-MP1/2/3 during infection of cells were detected by quantitative reverse-transcription polymerase chain reaction, Western blot assay, and confocal microscopy. Deletion and complementation mutants of the genes encoding Lep-MP1/2/3 were generated to determine the roles of Lep-MP1/2/3 in invasiveness using transwell assay and virulence in hamsters. RESULTS Leptospira interrogans but not saprophytic Leptospira biflexa strains were detectable for Lep-MP-1/2/3-encoding genes. rLep-MP1/2/3 hydrolyzed extracellular matrix proteins, but rLep-MP1/3 displayed stronger proteolysis than rLep-MP2, with 123.179/340.136 μmol/L Km and 0.154/0.159 s-1 Kcat values. Expression, secretion and translocation of Lep-MP1/2/3 during infection of cells were increased. ΔMP1/3 but not ΔMP2 mutant presented attenuated transmigration through cell monolayers, decreased leptospiral loading in the blood, lungs, liver, kidneys, and urine, and 10/13-fold decreased 50% lethal dose and milder histopathologic injury in hamsters. CONCLUSIONS Lep-MP1 and 3 are involved in virulence of L. interrogans in invasion into hosts and diffusion in vivo, and transmission of leptospirosis.
Collapse
Affiliation(s)
- Yu-Mei Ge
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - David M Ojcius
- Department of Biomedical Sciences, School of Dentistry, University of the Pacific, San Francisco, California, USA.,Université de Paris, Paris, France
| | - Shi-Jun Li
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, People's Republic of China
| | - Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Malcolm TR, Belousoff MJ, Venugopal H, Borg NA, Drinkwater N, Atkinson SC, McGowan S. Active site metals mediate an oligomeric equilibrium in Plasmodium M17 aminopeptidases. J Biol Chem 2020; 296:100173. [PMID: 33303633 PMCID: PMC7948507 DOI: 10.1074/jbc.ra120.016313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/14/2023] Open
Abstract
M17 leucyl aminopeptidases are metal-dependent exopeptidases that rely on oligomerization to diversify their functional roles. The M17 aminopeptidases from Plasmodium falciparum (PfA-M17) and Plasmodium vivax (Pv-M17) function as catalytically active hexamers to generate free amino acids from human hemoglobin and are drug targets for the design of novel antimalarial agents. However, the molecular basis for oligomeric assembly is not fully understood. In this study, we found that the active site metal ions essential for catalytic activity have a secondary structural role mediating the formation of active hexamers. We found that PfA-M17 and Pv-M17 exist in a metal-dependent dynamic equilibrium between active hexameric species and smaller inactive species that can be controlled by manipulating the identity and concentration of metals available. Mutation of residues involved in metal ion binding impaired catalytic activity and the formation of active hexamers. Structural resolution of Pv-M17 by cryoelectron microscopy and X-ray crystallography together with solution studies revealed that PfA-M17 and Pv-M17 bind metal ions and substrates in a conserved fashion, although Pv-M17 forms the active hexamer more readily and processes substrates faster than PfA-M17. On the basis of these studies, we propose a dynamic equilibrium between monomer ↔ dimer ↔ tetramer ↔ hexamer, which becomes directional toward the large oligomeric states with the addition of metal ions. This sophisticated metal-dependent dynamic equilibrium may apply to other M17 aminopeptidases and underpin the moonlighting capabilities of this enzyme family.
Collapse
Affiliation(s)
- Tess R Malcolm
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Matthew J Belousoff
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hariprasad Venugopal
- Ramacciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Natalie A Borg
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nyssa Drinkwater
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah C Atkinson
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Sheena McGowan
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
P1' Residue-Oriented Virtual Screening for Potent and Selective Phosphinic (Dehydro) Dipeptide Inhibitors of Metallo-Aminopeptidases. Biomolecules 2020; 10:biom10040659. [PMID: 32344658 PMCID: PMC7225938 DOI: 10.3390/biom10040659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Designing side chain substituents complementary to enzyme binding pockets is of great importance in the construction of potent and selective phosphinic dipeptide inhibitors of metallo-aminopeptidases. Proper structure selection makes inhibitor construction more economic, as the development process typically consists of multiple iterative preparation/bioassay steps. On the basis of these principles, using noncomplex computation and modeling methodologies, we comprehensively screened 900 commercial precursors of the P1′ residues of phosphinic dipeptide and dehydrodipeptide analogs to identify the most promising ligands of 52 metallo-dependent aminopeptidases with known crystal structures. The results revealed several nonproteinogenic residues with an improved energy of binding compared with the best known inhibitors. The data are discussed taking into account the selectivity and stereochemical implications of the enzymes. Using this approach, we were able to identify nontrivial structural elements substituting the recognized phosphinic peptidomimetic scaffold of metallo-aminopeptidase inhibitors.
Collapse
|
7
|
Bhat SY, Qureshi IA. Mutations of key substrate binding residues of leishmanial peptidase T alter its functional and structural dynamics. Biochim Biophys Acta Gen Subj 2020; 1864:129465. [DOI: 10.1016/j.bbagen.2019.129465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 11/27/2022]
|
8
|
Drinkwater N, Malcolm TR, McGowan S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie 2019; 166:38-51. [DOI: 10.1016/j.biochi.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
|
9
|
Cho SM, Lee HK, Liu Q, Wang MW, Kwon HJ. A Guanidine-Based Synthetic Compound Suppresses Angiogenesis via Inhibition of Acid Ceramidase. ACS Chem Biol 2019; 14:11-19. [PMID: 30507149 DOI: 10.1021/acschembio.8b00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis generates new blood vessels from pre-existing vessels. Tumors induce the formation of new blood vessels to ensure sufficient oxygen and nutrients for their growth. Normally, angiogenesis is induced by various pro-angiogenesis factors, including vascular endothelial growth factor (VEGF). Inhibition of VEGF is a promising approach to cancer treatment. A guanidine-based synthetic compound, E2, was identified as a potent hit from 68 guanidine-based derivatives by screening for angiogenesis inhibitors showing antiproliferative activity in human umbilical vein endothelial cells (HUVECs). To explore the mode of action of E2, target proteins were investigated using phage display biopanning, and acid ceramidase 1 (ASAH1) was identified as an E2-binding protein. Drug affinity responsive target stability (DARTS) and ASAH1 activity assays revealed the direct binding of E2 to ASAH1. Moreover, siRNA knockdown of ASAH1 demonstrated its role as an angiogenesis factor. Consequently, E2 inhibited chemoinvasion and tube formation of HUVECs in a dose-dependent manner. E2 also potently suppressed neo-vascularization of chorioallantoic membranes in vivo. Collectively, these data suggest that E2 is a novel angiogenesis inhibitor and ASAH1 is proposed to be a new antiangiogenesis target.
Collapse
Affiliation(s)
- Sung Min Cho
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyung Keun Lee
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Qing Liu
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Wei Wang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
10
|
Saylor Z, Maier R. Helicobacter pylori nickel storage proteins: recognition and modulation of diverse metabolic targets. Microbiology (Reading) 2018; 164:1059-1068. [DOI: 10.1099/mic.0.000680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Zachary Saylor
- Department of Microbiology and Center for Metalloprotein Studies, University of Georgia, Athens, GA, USA
| | - Robert Maier
- Department of Microbiology and Center for Metalloprotein Studies, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Sierra EM, Pereira MR, Maester TC, Gomes-Pepe ES, Mendoza ER, Lemos EGDM. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis. Sci Rep 2017; 7:10684. [PMID: 28878230 PMCID: PMC5587760 DOI: 10.1038/s41598-017-10932-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/16/2017] [Indexed: 12/04/2022] Open
Abstract
The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2364 ± 0.018 mM and 712.1 ± 88.12 s−1, respectively. Additionally, the enzyme showed remarkable stability in organic solvents and was active at high concentrations of NaCl, suggesting that the enzyme might be suitable for use in biotechnology. MesoAmp is responsible for 40% of the organism’s aminopeptidase activity. However, the enzyme’s absence does not affect bacterial growth in synthetic broth, although it interfered with biofilm synthesis and osmoregulation. To the best of our knowledge, this report describes the first detailed characterization of aminopeptidase from Mesorhizobium and suggests its importance in biofilm formation and osmotic stress tolerance. In summary, this work lays the foundation for potential biotechnological applications and/or the development of environmentally friendly technologies and describes the first solvent- and halo-tolerant aminopeptidases identified from the Mesorhizobium genus and its importance in bacterial metabolism.
Collapse
Affiliation(s)
- Elwi Machado Sierra
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Universidad Simón Bolívar, Barranquilla, Colombia
| | | | | | - Elisangela Soares Gomes-Pepe
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil
| | - Elkin Rodas Mendoza
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil
| | - Eliana G de Macedo Lemos
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil. .,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil. .,Av. Prof. Paulo Donato Castellane, s/n. Jaboticabal, Post code 14884-900, São Paulo State, Brazil.
| |
Collapse
|
12
|
Modak JK, Rut W, Wijeyewickrema LC, Pike RN, Drag M, Roujeinikova A. Structural basis for substrate specificity of Helicobacter pylori M17 aminopeptidase. Biochimie 2015; 121:60-71. [PMID: 26616008 DOI: 10.1016/j.biochi.2015.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 11/25/2022]
Abstract
The M17 aminopeptidase from the carcinogenic gastric bacterium Helicobacter pylori (HpM17AP) is an important housekeeping enzyme involved in catabolism of endogenous and exogenous peptides. It is implicated in H. pylori defence against the human innate immune response and in the mechanism of metronidazole resistance. Bestatin inhibits HpM17AP and suppresses H. pylori growth. To address the structural basis of catalysis and inhibition of this enzyme, we have established its specificity towards the N-terminal amino acid of peptide substrates and determined the crystal structures of HpM17AP and its complex with bestatin. The position of the D-phenylalanine moiety of the inhibitor with respect to the active-site metal ions, bicarbonate ion and with respect to other M17 aminopeptidases suggested that this residue binds to the S1 subsite of HpM17AP. In contrast to most characterized M17 aminopeptidases, HpM17AP displays preference for L-Arg over L-Leu residues in peptide substrates. Compared to very similar homologues from other bacteria, a distinguishing feature of HpM17AP is a hydrophilic pocket at the end of the S1 subsite that is likely to accommodate the charged head group of the L-Arg residue of the substrate. The pocket is flanked by a sodium ion (not present in M17 aminopeptidases that show preference for L-Leu) and its coordinating water molecules. In addition, the structure suggests that variable loops at the entrance to, and in the middle of, the substrate-binding channel are important determinants of substrate specificity of M17 aminopeptidases.
Collapse
Affiliation(s)
- Joyanta K Modak
- Infection and Immunity Program, Monash Biomedical Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Lakshmi C Wijeyewickrema
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Robert N Pike
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedical Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
13
|
Sánchez-Mundo M, Bautista-Muñoz C, Jaramillo-Flores M. Characterization of protease activities in a crude extract of germinated cacao. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Mistry SN, Drinkwater N, Ruggeri C, Sivaraman KK, Loganathan S, Fletcher S, Drag M, Paiardini A, Avery VM, Scammells PJ, McGowan S. Two-Pronged Attack: Dual Inhibition of Plasmodium falciparum M1 and M17 Metalloaminopeptidases by a Novel Series of Hydroxamic Acid-Based Inhibitors. J Med Chem 2014; 57:9168-83. [DOI: 10.1021/jm501323a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shailesh N. Mistry
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nyssa Drinkwater
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Chiara Ruggeri
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Dipartmento
di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, 00185 Roma, Italy
| | - Komagal Kannan Sivaraman
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sasdekumar Loganathan
- Discovery
Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Sabine Fletcher
- Discovery
Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Marcin Drag
- Division
of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Alessandro Paiardini
- Dipartmento
di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, 00185 Roma, Italy
| | - Vicky M. Avery
- Discovery
Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Peter J. Scammells
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sheena McGowan
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Carroll RK, Veillard F, Gagne DT, Lindenmuth JM, Poreba M, Drag M, Potempa J, Shaw LN. The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine. Biol Chem 2014; 394:791-803. [PMID: 23241672 DOI: 10.1515/hsz-2012-0308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is a potent pathogen of humans exhibiting a broad disease range, in part due to an extensive repertoire of secreted virulence factors, including proteases. Recently, we identified the first example of an intracellular protease (leucine aminopeptidase, LAP) that is required for virulence in S. aureus. Disruption of pepZ, the gene encoding LAP, had no affect on the growth rate of bacteria; however, in systemic and localized infection models the pepZ mutant had significantly attenuated virulence. Recently, a contradictory report was published suggesting that LAP is an extracellular enzyme and it is required for growth in S. aureus. Here, we investigate these results and confirm our previous findings that LAP is localized to the bacterial cytosol and is not required for growth. In addition, we conduct a biochemical investigation of purified recombinant LAP, identifying optimal conditions for enzymatic activity and substrate preference for hydrolysis. Our results show that LAP has a broad substrate range, including activity against the dipeptide cysteine-glycine, and that leucine is not the primary target of LAP.
Collapse
Affiliation(s)
- Ronan K Carroll
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Modak JK, Roujeinikova A. Cloning, purification and preliminary crystallographic analysis of the Helicobacter pylori leucyl aminopeptidase-bestatin complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1011-4. [PMID: 23989151 PMCID: PMC3758151 DOI: 10.1107/s174430911302054x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022]
Abstract
Helicobacter pylori is an important human pathogenic bacterium associated with numerous severe gastroduodenal diseases, including ulcers and gastric cancer. Cytosolic leucyl aminopeptidase (LAP) is an important housekeeping protein that is involved in peptide and protein turnover, catabolism of proteins and modulation of gene expression. LAP is upregulated in metronidazole-resistant H. pylori, which suggests that, in addition to having an important housekeeping role, LAP contributes to the mechanism of drug resistance. Crystals of H. pylori LAP have been grown by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitating agent. The crystals belonged to the primitive triclinic space group P1, with unit-cell parameters a = 97.5, b = 100.2, c = 100.4 Å, α = 75.4, β = 60.9, γ = 81.8°. An X-ray diffraction data set was collected to 2.8 Å resolution from a single crystal. Molecular-replacement results using these data indicate that H. pylori LAP is a hexamer with 32 symmetry.
Collapse
Affiliation(s)
- Joyanta K. Modak
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Liew SM, Tay ST, Puthucheary SD. Enzymatic and molecular characterisation of leucine aminopeptidase of Burkholderia pseudomallei. BMC Microbiol 2013; 13:110. [PMID: 23682954 PMCID: PMC3680066 DOI: 10.1186/1471-2180-13-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Leucine aminopeptidase (LAP) has been known to be a housekeeping protease, DNA-binding protein and repressor or activator in the operon regulation of virulence-associated genes in several bacterial species. LAP activity was consistently detected in overnight cultures of Burkholderia pseudomallei, the causative agent of melioidosis and this enzyme was partially purified and characterised in this study. The intra- and inter-species nucleotide and deduced amino acid sequence variation of LAP encoding gene (pepA) was determined. A pepA/PCR-RFLP assay was designed to facilitate the identification of major LAP sequence types amongst clinical and environmental isolates of B. pseudomallei. Results LAP activity was detected in B. pseudomallei culture supernantants by zymographic analysis. Optimum activity was at pH 9 and stable at 50°C. Enhanced enzymatic activity was observed in the presence of metallic ions Mg2+, Ca2+, Na+ and K+. LAP activity was inhibited by EDTA, 1,10-phenanthroline, amastatin, Mn2+ and Zn2+. Sequence analysis of the complete nucleotide and deduced amino acid sequences of LAP-encoding (pepA) gene showed close genetic relatedness to B. mallei (similarity 99.7%/99.6%), but not with B. thailandensis (96.4%/96.4%). Eight pepA sequence types were identified by comparison with a 596 bp DNA fragment encompassing central regions of the pepA gene. A pepA/PCR-RFLP was designed to differentiate pepA sequence types. Based on restriction analysis with StuI and HincII enzymes of the amplified pepA gene, clinical and environmental isolates showed different predominant RFLP types. Type I was the most predominant type amongst 73.6% (67/91) of the clinical isolates, while Type II was predominant in 55.6% (5/9) of the environmental isolates. Conclusions This study showed that LAP is a secretory product of B. pseudomallei with features similar to LAP of other organisms. Identification of major LAP sequence types of B. pseudomallei was made possible based on RFLP analysis of the pepA gene. The high LAP activity detected in both B. pseudomallei and B. thailandensis, suggests that LAP is probably a housekeeping enzyme rather than a virulence determinant.
Collapse
|
18
|
Su M, Wei M, Zhou Z, Liu S. Application of capillary electrophoresis coupling with electrochemiluminescence detection to estimate activity of leucine aminopeptidas. Biomed Chromatogr 2013; 27:946-52. [DOI: 10.1002/bmc.2890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/27/2013] [Accepted: 01/31/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Su
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Chemistry and Chemical Engineering; Southeast University; Nanjing 210096 People's Republic of China
| | - Min Wei
- College of Food Science and Technology; Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Zhixin Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Chemistry and Chemical Engineering; Southeast University; Nanjing 210096 People's Republic of China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Chemistry and Chemical Engineering; Southeast University; Nanjing 210096 People's Republic of China
| |
Collapse
|
19
|
Wang F, Guo S, Liu Y, Lan D, Yang B, Wang Y. Biochemical and conformational characterization of a leucine aminopeptidase from Geobacillus thermodenitrificans NG80-2. World J Microbiol Biotechnol 2012; 28:3227-37. [DOI: 10.1007/s11274-012-1133-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/13/2012] [Indexed: 11/30/2022]
|
20
|
The leucine aminopeptidase of Staphylococcus aureus is secreted and contributes to biofilm formation. Int J Infect Dis 2012; 16:e375-81. [DOI: 10.1016/j.ijid.2012.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 01/22/2023] Open
|
21
|
Comparative Proteomic Analyses of Streptococcus suis Serotype 2 Cell Wall-Associated Proteins. Curr Microbiol 2010; 62:578-88. [DOI: 10.1007/s00284-010-9747-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/16/2010] [Indexed: 01/03/2023]
|
22
|
Sánchez-Mundo M, Bautista-Muñoz C, Jaramillo-Flores M. Characterization of the exopeptidase activity existing in Theobroma cacao L. during germination. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Mucha A, Drag M, Dalton JP, Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie 2010; 92:1509-29. [PMID: 20457213 PMCID: PMC7117057 DOI: 10.1016/j.biochi.2010.04.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/29/2010] [Indexed: 01/05/2023]
Abstract
Aminopeptidases are enzymes that selectively hydrolyze an amino acid residue from the N-terminus of proteins and peptides. They are important for the proper functioning of prokaryotic and eukaryotic cells, but very often are central players in the devastating human diseases like cancer, malaria and diabetes. The largest aminopeptidase group include enzymes containing metal ion(s) in their active centers, which often determines the type of inhibitors that are the most suitable for them. Effective ligands mostly bind in a non-covalent mode by forming complexes with the metal ion(s). Here, we present several approaches for the design of inhibitors for metallo-aminopeptidases. The optimized structures should be considered as potential leads in the drug discovery process against endogenous and infectious diseases.
Collapse
Affiliation(s)
- Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | | | |
Collapse
|
24
|
Deregulation of allosteric response of Lactococcus lactis prolidase and its effects on enzyme activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:968-75. [PMID: 19336036 DOI: 10.1016/j.bbapap.2009.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/06/2009] [Accepted: 01/28/2009] [Indexed: 11/22/2022]
Abstract
The allosteric behaviour of Lactococcus lactis prolidase (Xaa-Pro dipeptidase) of this proline-specific peptidase was investigated where it was hypothesized that intersubunit interactions between a loop structure and three residues near the active site contributed to this behaviour. Seven mutant prolidases were constructed, and it was observed that the loopless mutant and His303 substitution inactivated the enzyme. Ser307 substitution revealed that this residue influenced the substrate binding, as judged from its kinetic constants and substrate specificity; however, this residue did not contribute to allostery of prolidase. R293S mutation resulted in the disappearance of the allosteric behaviour yielding a Hill constant of 0.98 while the wild type had a constant of 1.58. In addition, the R293S mutation suppressed the substrate inhibition that was observed in other mutants and wild type. The K(m) value of R293S was 2.9-fold larger and V(max) was approximately 50% less as compared to the wild type. The results indicated that Arg293 increased the affinity for substrates while introducing allosteric behaviour and substrate inhibition. Computer modelling suggested that negative charges on the loop structure interacted with Arg293 and Ser307 to maintain these characteristics. It was, therefore, concluded that Arg293, His303, Ser307 and the loop contributed to the enzyme's allosteric characteristics.
Collapse
|
25
|
Chu L, Lai Y, Xu X, Eddy S, Yang S, Song L, Kolodrubetz D. A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem 2008; 283:19351-8. [PMID: 18482986 PMCID: PMC2443665 DOI: 10.1074/jbc.m801034200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/28/2008] [Indexed: 11/06/2022] Open
Abstract
The metabolism of glutathione by the periodontal pathogen Treponema denticola produces hydrogen sulfide, which may play a role in the host tissue destruction seen in periodontitis. H2S production in this organism has been proposed to occur via a three enzyme pathway, gamma-glutamyltransferase, cysteinylglycinase (CGase), and cystalysin. In this study, we describe the purification and characterization of T. denticola CGase. Standard approaches were used to purify a 52-kDa CGase activity from T. denticola, and high pressure liquid chromatography electrospray ionization tandem mass spectrometry analysis of this molecule showed that it matches the amino acid sequence of a predicted 52-kDa protein in the T. denticola genome data base. A recombinant version of this protein was overexpressed in and purified from Escherichia coli and shown to catalyze the hydrolysis of cysteinylglycine (Cys-Gly) with the same kinetics as the native protein. Surprisingly, because sequence homology indicates that this protein is a member of a family of metalloproteases called M17 leucine aminopeptidases, the preferred substrate for the T. denticola protein is Cys-Gly (k cat/Km of 8.2 microm(-1) min(-1)) not l-Leu-p-NA (k cat/Km of 1.1 microm(-1) min(-1)). The activity of CGase for Cys-Gly is optimum at pH 7.3 and is enhanced by Mn2+, Co2+, or Mg2+ but not by Zn2+ or Ca2+. Importantly, in combination with the two other previously purified T. denticola enzymes, gamma-glutamyltransferase and cystalysin, CGase mediates the in vitro degradation of glutathione into the expected end products, including H2S. These results prove that T. denticola contains the entire three-step pathway to produce H2S from glutathione, which may be important for pathogenesis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Orthodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yang SI, Tanaka T. Characterization of recombinant prolidase from Lactococcus lactis- changes in substrate specificity by metal cations, and allosteric behavior of the peptidase. FEBS J 2007; 275:271-80. [PMID: 18070105 DOI: 10.1111/j.1742-4658.2007.06197.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Lactococcus lactis NRRL B-1821 prolidase gene was cloned and overexpressed in Escherichia coli. Under suboptimum growth conditions, recombinant soluble and active prolidase was produced; in contrast, inclusion bodies were formed under conditions preferred for cell growth. Recombinant prolidase retained more than half its full activity between 30 and 60 degrees C, and was completely inactivated after 30 min at 70 degrees C. CD analysis confirmed that prolidase was inactivated at 67 degrees C. The enzyme was active under weak alkali to weak acidic conditions, and showed maximum activity at pH 7.0. Although these characteristics are similar to those for other reported prolidases, this prolidase was distinctive for two kinetic characteristics. Firstly, different substrate specificity was observed for its two preferred metal cations, zinc and manganese: Leu-Pro was preferred with zinc, whereas Arg-Pro was preferred with manganese. Secondly, the enzyme showed an allosteric response to changes in substrate concentrations, with Hill constants of 1.53 for Leu-Pro and 1.57 for Arg-Pro. Molecular modeling of this prolidase suggests that these unique characteristics may be attributed to a loop structure near the active site.
Collapse
Affiliation(s)
- Soo I Yang
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|