1
|
Skala LE, Philmus B, Mahmud T. Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis. Chembiochem 2024; 25:e202400056. [PMID: 38386898 PMCID: PMC11021167 DOI: 10.1002/cbic.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Enzymatic modifications of small molecules are a common phenomenon in natural product biosynthesis, leading to the production of diverse bioactive compounds. In polyketide biosynthesis, modifications commonly take place after the completion of the polyketide backbone assembly by the polyketide synthases and the mature products are released from the acyl-carrier protein (ACP). However, exceptions to this rule appear to be widespread, as on-line hydroxylation, methyl transfer, and cyclization during polyketide assembly process are common, particularly in trans-AT PKS systems. Many of these modifications are catalyzed by specific domains within the modular PKS systems. However, several of the on-line modifications are catalyzed by stand-alone proteins. Those include the on-line Baeyer-Villiger oxidation, α-hydroxylation, halogenation, epoxidation, and methyl esterification during polyketide assembly, dehydrogenation of ACP-bound short fatty acids by acyl-CoA dehydrogenase-like enzymes, and glycosylation of ACP-bound intermediates by discrete glycosyltransferase enzymes. This review article highlights some of these trans-acting proteins that catalyze enzymatic modifications of ACP-bound small molecules in natural product biosynthesis.
Collapse
Affiliation(s)
- Leigh E Skala
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
2
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Baltz RH. Genome mining for drug discovery: cyclic lipopeptides related to daptomycin. J Ind Microbiol Biotechnol 2021; 48:6178872. [PMID: 33739403 PMCID: PMC9113097 DOI: 10.1093/jimb/kuab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
The cyclic lipopeptide antibiotics structurally related to daptomycin were first reported in the 1950s. Several have common lipopeptide initiation, elongation, and termination mechanisms. Initiation requires the use of a fatty acyl-AMP ligase (FAAL), a free-standing acyl carrier protein (ACP), and a specialized condensation (CIII) domain on the first NRPS elongation module to couple the long chain fatty acid to the first amino acid. Termination is carried out by a dimodular NRPS that contains a terminal thioesterase (Te) domain (CAT-CATTe). Lipopeptide BGCs also encode ABC transporters, apparently for export and resistance. The use of this mechanism of initiation, elongation, and termination, coupled with molecular target-agnostic resistance, has provided a unique basis for robust natural and experimental combinatorial biosynthesis to generate a large variety of structurally related compounds, some with altered or different antibacterial mechanisms of action. The FAAL, ACP, and dimodular NRPS genes were used as molecular beacons to identify phylogenetically related BGCs by BLASTp analysis of finished and draft genome sequences. These and other molecular beacons have identified: (i) known, but previously unsequenced lipopeptide BGCs in draft genomes; (ii) a new daptomycin family BGC in a draft genome of Streptomyces sedi; and (iii) novel lipopeptide BGCs in the finished genome of Streptomyces ambofaciens and the draft genome of Streptomyces zhaozhouensis.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 7757 Uliva Way, Sarasota, FL 34238, USA
| |
Collapse
|
4
|
Price NPJ, Jackson MA, Hartman TM, Brändén G, Ek M, Koch AA, Kennedy PD. Branched Chain Lipid Metabolism As a Determinant of the N-Acyl Variation of Streptomyces Natural Products. ACS Chem Biol 2021; 16:116-124. [PMID: 33411499 DOI: 10.1021/acschembio.0c00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Branched-chain fatty acids (BCFA) are encountered in Gram-positive bacteria, but less so in other organisms. The bacterial BCFA in membranes are typically saturated, with both odd- and even-numbered carbon chain lengths, and with methyl branches at either the ω-1 (iso) or ω-2 (anteiso) positions. The acylation with BCFA also contributes to the structural diversity of microbial natural products and potentially modulates biological activity. For the tunicamycin (TUN) family of natural products, the toxicity toward eukaryotes is highly dependent upon N-acylation with trans-2,3-unsaturated BCFA. The loss of the 2,3-unsaturation gives modified TUN with reduced eukaryotic toxicity but crucially with retention of the synergistic enhancement of the β-lactam group of antibiotics. Here, we infer from genomics, mass spectrometry, and deuterium labeling that the trans-2,3-unsaturated TUN variants and the saturated cellular lipids found in TUN-producing Streptomyces are derived from the same pool of BCFA metabolites. Moreover, non-natural primers of BCFA metabolism are selectively incorporated into the cellular lipids of TUN-producing Streptomyces and concomitantly produce structurally novel neo-branched TUN N-acyl variants.
Collapse
Affiliation(s)
- Neil P. J. Price
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Michael A. Jackson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Trina M. Hartman
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Margareta Ek
- Structure, Biophysics & FBLG, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Aaron A. Koch
- Cayman Chemical, 1180 E. Ellsworth Rd., Ann Arbor, Michigan 48108, United States
| | - Paul D. Kennedy
- Cayman Chemical, 1180 E. Ellsworth Rd., Ann Arbor, Michigan 48108, United States
| |
Collapse
|
5
|
Whole Genome Sequencing and Tn 5-Insertion Mutagenesis of Pseudomonas taiwanensis CMS to Probe Its Antagonistic Activity Against Rice Bacterial Blight Disease. Int J Mol Sci 2020; 21:ijms21228639. [PMID: 33207795 PMCID: PMC7696974 DOI: 10.3390/ijms21228639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas taiwanensis is a novel bacterium that uses shrimp shell waste as its sole sources of carbon and nitrogen. It is a versatile bacterium with potential for use in biological control, with activities including toxicity toward insects, fungi, and the rice pathogen Xanthomonas oryzae pv.oryzae (Xoo). In this study, the complete 5.08-Mb genome sequence of P. taiwanensis CMS was determined by a combination of NGS/Sanger sequencing and optical mapping. Comparison of optical maps of seven Pseudomonas species showed that P. taiwanensis is most closely related to P. putida KT 2400. We screened a total of 11,646 individual Tn5-transponson tagged strains to identify genes that are involved in the production and regulation of the iron-chelator pyoverdine in P. taiwanensis, which is a key anti-Xoo factor. Our results indicated that the two-component system (TCS) EnvZ/OmpR plays a positive regulatory role in the production of pyoverdine, whereas the sigma factor RpoS functions as a repressor. The knowledge of the molecular basis of the regulation of pyoverdine by P. taiwanensis provided herein will be useful for its development for use in biological control, including as an anti-Xoo agent.
Collapse
|
6
|
Yushchuk O, Homoniuk V, Datsiuk Y, Ostash B, Marinelli F, Fedorenko V. Development of a gene expression system for the uncommon actinomycete Actinoplanes rectilineatus NRRL B-16090. J Appl Genet 2020; 61:141-149. [PMID: 31912451 DOI: 10.1007/s13353-019-00534-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The urgent need for discovering new bioactive metabolites prompts exploring novel actinobacterial taxa by developing appropriate tools for their genome mining and rational genetic engineering. One promising source of new bioactive natural products is the genus Actinoplanes, a home to filamentous sporangia-forming actinobacteria producing many important specialized metabolites such as teicoplanin, ramoplanin, and acarbose. Here we describe the development of a gene expression system for a new Actinoplanes species, A. rectilineatus (NRRL B-16090), which is a potential producer of moenomycin-like antibiotics. We have determined the optimal conditions for spore formation in A. rectilineatus and a plasmid transfer procedure for its engineering via intergeneric E. coli-A. rectilineatus conjugation. The φC31- and pSG5-based vectors were successfully transferred into A. rectilineatus, but φBT1- and VWB-based vectors were not transferable. Finally, using the glucuronidase reporter system, we assessed the strength of several heterologous promoters for gene expression in A. rectilineatus.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Vitalina Homoniuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
| | - Yurij Datsiuk
- Department of Physics of Earth, Ivan Franko National University of Lviv, 4 Hrushevskoho st, Lviv, 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine.
| |
Collapse
|
7
|
Wu C, Shang Z, Lemetre C, Ternei MA, Brady SF. Cadasides, Calcium-Dependent Acidic Lipopeptides from the Soil Metagenome That Are Active against Multidrug-Resistant Bacteria. J Am Chem Soc 2019; 141:3910-3919. [PMID: 30735616 PMCID: PMC6592427 DOI: 10.1021/jacs.8b12087] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growing threat of antibiotic resistance necessitates the discovery of antibiotics that are active against resistant pathogens. Calcium-dependent antibiotics are a small family of structurally diverse acidic lipopeptides assembled by nonribosomal peptide synthetases (NRPSs) that are known to display various modes of action against antibiotic-resistant pathogens. Here we use NRPS adenylation (AD) domain sequencing to guide the identification, recovery, and cloning of the cde biosynthetic gene cluster from a soil metagenome. Heterologous expression of the cde biosynthetic gene cluster led to the production of cadasides A (1) and B (2), a subfamily of acidic lipopeptides that is distinct from previously characterized calcium-dependent antibiotics in terms of both overall structure and acidic residue rich peptide core. The cadasides inhibit the growth of multidrug-resistant Gram-positive pathogens by disrupting cell wall biosynthesis in the presence of high concentrations of calcium. Interestingly, sequencing of AD domains from diverse soils revealed that sequences predicted to arise from cadaside-like gene clusters are predominantly found in soils containing high levels of calcium carbonate.
Collapse
Affiliation(s)
| | | | - Christophe Lemetre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065
| | - Melinda A. Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065
| |
Collapse
|
8
|
Paul S, Ishida H, Nguyen LT, Liu Z, Vogel HJ. Structural and dynamic characterization of a freestanding acyl carrier protein involved in the biosynthesis of cyclic lipopeptide antibiotics. Protein Sci 2017; 26:946-959. [PMID: 28187530 PMCID: PMC5405426 DOI: 10.1002/pro.3138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Abstract
Friulimicin is a cyclic lipodecapeptide antibiotic that is produced by Actinoplanes friuliensis. Similar to the related lipopeptide drug daptomycin, the peptide skeleton of friulimicin is synthesized by a large multienzyme nonribosomal peptide synthetase (NRPS) system. The LipD protein plays a major role in the acylation reaction of friulimicin. The attachment of the fatty acid group promotes its antibiotic activity. Phylogenetic analysis reveals that LipD is most closely related to other freestanding acyl carrier proteins (ACPs), for which the genes are located near to NRPS gene clusters. Here, we report that the solution NMR structure of apo-LipD is very similar to other four-helix bundle forming ACPs from fatty acid synthase (FAS), polyketide synthase, and NRPS systems. By recording NMR dynamics data, we found that the backbone motions in holo-LipD are more restricted than in apo-LipD due to the attachment of phosphopantetheine moiety. This enhanced stability of holo-LipD was also observed in differential scanning calorimetry experiments. Furthermore, we demonstrate that, unlike several other ACPs, the folding of LipD does not depend on the presence of divalent cations, although the presence of Mg2+ or Ca2+ can increase the protein stability. We propose that small structural rearrangements in the tertiary structure of holo-LipD which lead to the enhanced stability are important for the cognate enzyme recognition for the acylation reaction. Our results also highlight the different surface charges of LipD and FAS-ACP from A. friuliensis that would allow the acyl-CoA ligase to interact preferentially with the LipD instead of binding to the FAS-ACP.
Collapse
Affiliation(s)
- Subrata Paul
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Hiroaki Ishida
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Leonard T. Nguyen
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Zhihong Liu
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Hans J. Vogel
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
9
|
Skin-Specific Unsaturated Fatty Acids Boost the Staphylococcus aureus Innate Immune Response. Infect Immun 2015; 84:205-15. [PMID: 26502910 DOI: 10.1128/iai.00822-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial fatty acids (AFAs) protect the human epidermis against invasion by pathogenic bacteria. In this study, we questioned whether human skin fatty acids (FAs) can be incorporated into the lipid moiety of lipoproteins and whether such incorporation would have an impact on innate immune stimulation in the model organism Staphylococcus aureus USA300 JE2. This organism synthesized only saturated FAs. However, when feeding USA300 with unsaturated FAs present on human skin (C16:1, C18:1, or C18:2), those were taken up, elongated stepwise by two carbon units, and finally found in the bacterial (phospho)lipid fraction. They were also observed in the lipid moiety of lipoproteins. When USA300 JE2 was fed with the unsaturated FAs, the cells and cell lysates showed an increased innate immune activation with various immune cells and peripheral blood mononuclear cells (PBMCs). Immune activation was highest with linoleic acid (C18:2). There are several pieces of evidence that the enhanced immune stimulating effect was due to the incorporation of unsaturated FAs in lipoproteins. First, the enhanced stimulation was dependent on Toll-like receptor 2 (TLR2). Second, an lgt mutant, unable to carry out lipidation of prolipoproteins, was unable to carry out immune stimulation when fed with unsaturated FAs. Third, the supplied FAs did not significantly affect growth, protein release, or expression of the model lipoprotein Lpl1. Although S. aureus is unable to synthesize unsaturated FAs, it incorporates long-chain unsaturated FAs into its lipoproteins, with the effect that the cells are better recognized by the innate immune system. This is an additional mechanism how our skin controls bacterial colonization and infection.
Collapse
|
10
|
Fu C, Keller L, Bauer A, Brönstrup M, Froidbise A, Hammann P, Herrmann J, Mondesert G, Kurz M, Schiell M, Schummer D, Toti L, Wink J, Müller R. Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity. J Am Chem Soc 2015; 137:7692-705. [DOI: 10.1021/jacs.5b01794] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
| | - Lena Keller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Armin Bauer
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Alexandre Froidbise
- TSU Infectious Diseases, Sanofi R&D, 195 Route d‘Espagne, 31036 Toulouse, France
| | - Peter Hammann
- R&D TSU Infectious Diseases, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Guillaume Mondesert
- TSU Infectious Diseases, Sanofi R&D, 195 Route d‘Espagne, 31036 Toulouse, France
| | - Michael Kurz
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Matthias Schiell
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Dietmar Schummer
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Luigi Toti
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Joachim Wink
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
11
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
12
|
Rückert C, Szczepanowski R, Albersmeier A, Goesmann A, Fischer N, Steinkämper A, Pühler A, Biener R, Schwartz D, Kalinowski J. Complete genome sequence of the actinobacterium Actinoplanes friuliensis HAG 010964, producer of the lipopeptide antibiotic friulimycin. J Biotechnol 2014; 178:41-2. [PMID: 24637369 DOI: 10.1016/j.jbiotec.2014.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Actinoplanes friuliensis HAG 010964 (DSM 7358) was isolated from a soil sample from the Friuli region in Italy and characterized as a producer of the antibiotic friulimycin. The complete genome sequence includes genomic information of secondary metabolite biosynthesis and of its lifestyle. Genbank/EMBL/DDBJ Accession Nr: CP006272 (chromosome).
Collapse
Affiliation(s)
- Christian Rückert
- Technology Platform Genomics, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Rafael Szczepanowski
- Technology Platform Genomics, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Andreas Albersmeier
- Technology Platform Genomics, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Nicole Fischer
- University of Applied Sciences Esslingen, Department of Natural Sciences, Kanalstrasse 33, 73728 Esslingen, Germany
| | - Anne Steinkämper
- University of Applied Sciences Esslingen, Department of Natural Sciences, Kanalstrasse 33, 73728 Esslingen, Germany
| | - Alfred Pühler
- Senior Research Group, Genome Research of Industrial Microorganisms, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Richard Biener
- University of Applied Sciences Esslingen, Department of Natural Sciences, Kanalstrasse 33, 73728 Esslingen, Germany
| | - Dirk Schwartz
- University of Applied Sciences Esslingen, Department of Natural Sciences, Kanalstrasse 33, 73728 Esslingen, Germany
| | - Jörn Kalinowski
- Technology Platform Genomics, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany.
| |
Collapse
|
13
|
Liu Z, Ioerger TR, Wang F, Sacchettini JC. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme. J Biol Chem 2013; 288:18473-83. [PMID: 23625916 DOI: 10.1074/jbc.m113.466912] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis has a group of 34 FadD proteins that belong to the adenylate-forming superfamily. They are classified as either fatty acyl-AMP ligases (FAALs) or fatty acyl-CoA ligases based on sequence analysis. FadD10, involved in the synthesis of a virulence-related lipopeptide, was mis-annotated as a fatty acyl-CoA ligase; however, it is in fact a FAAL that transfers fatty acids to an acyl carrier protein (Rv0100). In this study, we have determined the structures of FadD10 in both the apo-form and the complexed form with dodecanoyl-AMP, where we see for the first time an adenylate-forming enzyme that does not adopt a closed conformation for catalysis. Indeed, this novel conformation of FadD10, facilitated by its unique inter-domain and intermolecular interactions, is critical for the enzyme to carry out the acyl transfer onto Rv0100 rather than coenzyme A. This contradicts the existing model of FAALs that rely on an insertion motif for the acyltransferase specificity and thus makes FadD10 a new type of FAAL. We have also characterized the fatty acid preference of FadD10 through biological and structural analyses, and the data indicate long chain saturated fatty acids as the biological substrates of the enzyme.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | | | | | | |
Collapse
|
14
|
Subramoni S, Agnoli K, Eberl L, Lewenza S, Sokol PA. Role of Burkholderia cenocepacia afcE and afcF genes in determining lipid-metabolism-associated phenotypes. Microbiology (Reading) 2013; 159:603-614. [DOI: 10.1099/mic.0.064683-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sujatha Subramoni
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Kirsty Agnoli
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland
| | - Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland
| | - Shawn Lewenza
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Pamela A. Sokol
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Genome context as a predictive tool for identifying regulatory targets of the TetR family transcriptional regulators. PLoS One 2012; 7:e50562. [PMID: 23226315 PMCID: PMC3511530 DOI: 10.1371/journal.pone.0050562] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/23/2012] [Indexed: 01/21/2023] Open
Abstract
TetR family transcriptional regulators (TFRs) are found in most bacteria and archea. Most of the family members that have been investigated to date are repressors of their target genes, and the majority of these, like the well-characterized protein TetR, regulate genes that encode transmembrane efflux pumps. In many cases repression by TFR proteins is reversed through the direct binding of a small-molecule ligand. The number of TFRs in the public database has grown rapidly as a result of genome sequencing and there are now thousands of family members; however virtually nothing is known about the biology and biochemistry they regulate. Generally applicable methods for predicting their regulatory targets would assist efforts to characterize the family. Here, we investigate chromosomal context of 372 TFRs from three Streptomyces species. We find that the majority (250 TFRs) are transcribed divergently from one neighboring gene, as is the case for TetR and its target tetA. We explore predicted target gene product identity and intergenic separation to see which either correlates with a direct regulatory relationship. While intergenic separation is a critical factor in regulatory prediction the identity of the putative target gene product is not. Our data suggest that those TFRs that are <200 bp from their divergently oriented neighbors are most likely to regulate them. These target genes include membrane proteins (26% of which 22% are probable membrane-associated pumps), enzymes (60%), other proteins such as transcriptional regulators (1%), and proteins having no predictive sequence motifs (13%). In addition to establishing a solid foundation for identifying targets for TFRs of unknown function, our analysis demonstrates a much greater diversity of TFR-regulated biochemical functions.
Collapse
|
16
|
Wang Y, Chen Y, Shen Q, Yin X. Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces viridochromogenes. Gene 2011; 483:11-21. [PMID: 21640802 PMCID: PMC3391544 DOI: 10.1016/j.gene.2011.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912bp of S. viridochromogenes genomic sequence revealed the putative lpm cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Pharmacy Building Room 203, Corvallis, Oregon 97331-3507, USA
- College of Resource and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, P.R. China
| | - Ying Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Pharmacy Building Room 203, Corvallis, Oregon 97331-3507, USA
| | - Qirong Shen
- College of Resource and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, P.R. China
| | - Xihou Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Pharmacy Building Room 203, Corvallis, Oregon 97331-3507, USA
| |
Collapse
|
17
|
Mann S, Lombard B, Loew D, Méjean A, Ploux O. Insights into the Reaction Mechanism of the Prolyl–Acyl Carrier Protein Oxidase Involved in Anatoxin-a and Homoanatoxin-a Biosynthesis. Biochemistry 2011; 50:7184-97. [DOI: 10.1021/bi200892a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stéphane Mann
- Laboratoire
Charles Friedel,
Chimie ParisTech, ENSCP, 11 rue Pierre
et Marie Curie, 75231 Paris Cedex 05, France
- CNRS, UMR 7223, 75005
Paris, France
| | - Bérangère Lombard
- Laboratory of Proteomic Mass
Spectrometry, Centre de Recherche, Institut Curie, 26 rue d'Ulm 75248, Paris Cedex 05, France
| | - Damarys Loew
- Laboratory of Proteomic Mass
Spectrometry, Centre de Recherche, Institut Curie, 26 rue d'Ulm 75248, Paris Cedex 05, France
| | - Annick Méjean
- Laboratoire
Charles Friedel,
Chimie ParisTech, ENSCP, 11 rue Pierre
et Marie Curie, 75231 Paris Cedex 05, France
- CNRS, UMR 7223, 75005
Paris, France
- Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Olivier Ploux
- Laboratoire
Charles Friedel,
Chimie ParisTech, ENSCP, 11 rue Pierre
et Marie Curie, 75231 Paris Cedex 05, France
- CNRS, UMR 7223, 75005
Paris, France
| |
Collapse
|
18
|
Baltz RH. Genomics and the ancient origins of the daptomycin biosynthetic gene cluster. J Antibiot (Tokyo) 2010; 63:506-11. [DOI: 10.1038/ja.2010.82] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Analysis of RegA, a pathway-specific regulator of the friulimicin biosynthesis in Actinoplanes friuliensis. J Biotechnol 2008; 140:99-106. [PMID: 19159651 DOI: 10.1016/j.jbiotec.2008.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 12/09/2008] [Accepted: 12/15/2008] [Indexed: 11/22/2022]
Abstract
The rare actinomycete Actinoplanes friuliensis is the producer of the lipopeptide antibiotic friulimicin, which is active against a broad range of Gram-positive bacteria such as methicillin-resistant Enterococcus spec. and Staphylococcus aureus (MRE, MRSA) strains. Friulimicin consists of a decapeptide core and an acyl residue linked to an exocyclic amino acid. The complete biosynthetic gene cluster consisting of 24 open reading frames was characterized by sequence analysis and the transcription units were subsequently determined by RT-PCR experiments. In addition to several genes for biosynthesis, self-resistance and transport four different regulatory genes (regA, regB, regC and regD) were identified within the cluster. To analyse the role of the pathway-specific regulatory protein RegA in the friulimicin biosynthesis, the corresponding gene was inactivated resulting in friulimicin non-producing mutants. Furthermore, several protein-binding sites within the friulimicin gene cluster were identified by gel retardation assays. By real-time RT-PCR experiments, it was shown that the majority of the friulimicin biosynthetic genes is positively regulated by RegA.
Collapse
|
20
|
Wittmann M, Linne U, Pohlmann V, Marahiel MA. Role of DptE and DptF in the lipidation reaction of daptomycin. FEBS J 2008; 275:5343-54. [DOI: 10.1111/j.1742-4658.2008.06664.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Kopp F, Linne U, Oberthür M, Marahiel MA. Harnessing the chemical activation inherent to carrier protein-bound thioesters for the characterization of lipopeptide fatty acid tailoring enzymes. J Am Chem Soc 2008; 130:2656-66. [PMID: 18237171 DOI: 10.1021/ja078081n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Here, we report a new experimental approach utilizing an amide ligation reaction for the characterization of acyl carrier protein (ACP)-bound reaction intermediates, which are otherwise difficult to analyze by traditional biochemical methods. To explore fatty acid tailoring enzymes of the calcium-dependent antibiotic (CDA) biosynthetic pathway, this strategy enabled the transformation of modified fatty acids, covalently bound as thioesters to an ACP, into amide ligation products that can be directly analyzed and compared to synthetic standards by HPLC-MS. The driving force of the amide formation is the thermodynamic activation inherent to thioester-bound compounds. Using this novel method, we were able to characterize the ACP-mediated biosynthesis of the unique 2,3-epoxyhexanoyl moiety of CDA, revealing a new type of FAD-dependent oxidase HxcO with intrinsic enoyl-ACP epoxidase activity, as well as a second enoyl-ACP epoxidase, HcmO. In general, our approach should be widely applicable for the in vitro characterization of other biosynthetic systems acting on carrier proteins, such as integrated enzymes from NRPS and PKS assembly lines or tailoring enzymes of fatty and amino acid precursor synthesis.
Collapse
Affiliation(s)
- Florian Kopp
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
22
|
Powell A, Borg M, Amir-Heidari B, Neary JM, Thirlway J, Wilkinson B, Smith CP, Micklefield J. Engineered biosynthesis of nonribosomal lipopeptides with modified fatty acid side chains. J Am Chem Soc 2007; 129:15182-91. [PMID: 18020333 DOI: 10.1021/ja074331o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biological properties of the calcium-dependent antibiotics (CDAs), daptomycin and related nonribosomal lipopeptides, depend to a large extent on the nature of the N-terminal fatty acid moiety. It is suggested that the chain length of the unusually short (C6) 2,3-epoxyhexanoyl fatty acid moiety of CDA is determined by the specificity of the KAS-II enzyme encoded by fabF3 in the CDA biosynthetic gene cluster. Indeed, deletion of the downstream gene hxcO results in three new lipopeptides, all of which possess hexanoyl side chains (hCDAs). This confirms that HxcO functions as a hexanoyl-CoA or -ACP oxidase. The absence of additional CDA products with longer fatty acid groups further suggests that the CDA lipid chain is biosynthesized on a single ACP and is then transferred directly from this ACP to the first CDA peptide synthetase (CdaPS1). Interestingly, the hexanoyl-containing CDAs retain antibiotic activity. To further modulate the biological properties of CDA by introducing alternative fatty acid groups, a mutasynthesis approach was developed. This involved mutating the key active site Ser residue of the CdaPS1, module 1 PCP domain to Ala, which prevents subsequent phosphopantetheinylation. In the absence of the natural module 1 PCP tethered intermediate, it is possible to effect incorporation of different N-acyl-L-serinyl N-acetylcysteamine (NAC) thioester analogues, leading to CDA products with pentanoyl as well as hexanoyl side chains.
Collapse
Affiliation(s)
- Amanda Powell
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Müller C, Nolden S, Gebhardt P, Heinzelmann E, Lange C, Puk O, Welzel K, Wohlleben W, Schwartz D. Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother 2007; 51:1028-37. [PMID: 17220414 PMCID: PMC1803135 DOI: 10.1128/aac.00942-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinoplanes friuliensis produces the lipopeptide antibiotic friulimicin, which is a cyclic peptide with one exocyclic amino acid linked to a branched-chain fatty acid acyl residue. The structural relationship to daptomycin and the excellent antibacterial performance of friulimicin make the antibiotic an attractive drug candidate. The complete friulimicin biosynthetic gene cluster of 24 open reading frames from A. friuliensis was sequenced and analyzed. In addition to genes for regulation, self-resistance, and transport, the cluster contains genes encoding peptide synthetases, proteins involved in the synthesis and linkage of the fatty acid component of the antibiotic, and proteins involved in the synthesis of the nonproteinogenic amino acids pipecolinic acid, methylaspartic acid, and 2,3-diaminobutyric acid. By using heterologous gene expression in Escherichia coli, we provide biochemical evidence for the stereoselective synthesis of L-pipecolinic acid by the deduced protein of the lysine cyclodeaminase gene pip. Furthermore, we show the involvement of the dabA and dabB genes in the biosynthesis of 2,3-diaminobutyric acid by gene inactivation and subsequent feeding experiments.
Collapse
Affiliation(s)
- C Müller
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.ZV., Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yin X, Zabriskie TM. The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology (Reading) 2006; 152:2969-2983. [PMID: 17005978 DOI: 10.1099/mic.0.29043-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biosynthetic gene cluster for the 17 aa peptide antibiotic enduracidin has been cloned and sequenced from Streptomyces fungicidicus ATCC 21013. The 84 kb gene cluster contains 25 ORFs and is located within a 116 kb genetic locus that was fully sequenced. Targeted disruption of non-ribosomal peptide synthetase (NRPS) genes in the cluster abolished enduracidin production and confirmed function. The cluster includes four genes, endA-D, encoding two-, seven-, eight- and one-module NRPSs, respectively, and includes unique modules for the incorporation of citrulline and enduracididine. The NRPS organization generally follows the collinearity principle, and starts with a condensation domain (C domain) similar to those found in other lipopeptide systems for the coupling of an acyl group to the starting amino acid. The sixth module of EndB, corresponding to Thr8, is missing an adenylation domain (A domain) and this module is presumed to be loaded in trans by the single module protein EndD. The most striking feature of the NRPS organization is the lack of epimerization domains (E domains) in light of the fact that the product has seven d-amino acid residues. Sequence analysis reveals that C domains following modules corresponding to d-amino acids belong to a unique subset of C domains able to catalyse both epimerization and condensation reactions. Other genes directing lipid modification and activation, and formation of the non-proteinogenic amino acids 4-hydroxyphenylglycine and enduracididine are readily identified, as are genes possibly involved in regulation of antibiotic biosynthesis and export. These findings provide the basis to further genetically manipulate and improve lipodepsipeptide antibiotics via combinatorial and chemical methods.
Collapse
Affiliation(s)
- Xihou Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507, USA
| | - T Mark Zabriskie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507, USA
| |
Collapse
|
25
|
Baltz RH, Miao V, Wrigley SK. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 2005; 22:717-41. [PMID: 16311632 DOI: 10.1039/b416648p] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Daptomycin (Cubicin) is a lipopeptide antibiotic approved in the USA in 2003 for the treatment of skin and skin structure infections caused by Gram-positive pathogens. It is a member of the 10-membered cyclic lipopeptide family of antibiotics that includes A54145, calcium-dependent antibiotic (CDA), amphomycin, friulimicin, laspartomycin, and others. This review highlights research on this class of antibiotics from 1953 to 2005, focusing on more recent studies with particular emphasis on the interplay between structural features and antibacterial activities; chemical modifications to improve activity; the genetic organization and biosynthesis of lipopeptides; and the genetic engineering of the daptomycin biosynthetic pathway to produce novel derivatives for further chemical modification to develop candidates for clinical evaluation.
Collapse
|