1
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R, Banerjee N. Identification of genes associated with persistence in Mycobacterium smegmatis. Front Microbiol 2024; 15:1302883. [PMID: 38410395 PMCID: PMC10894938 DOI: 10.3389/fmicb.2024.1302883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
The prevalence of bacterial persisters is related to their phenotypic diversity and is responsible for the relapse of chronic infections. Tolerance to antibiotic therapy is the hallmark of bacterial persistence. In this study, we have screened a transposon library of Mycobacterium smegmatis mc2155 strain using antibiotic tolerance, survival in mouse macrophages, and biofilm-forming ability of the mutants. Out of 10 thousand clones screened, we selected ten mutants defective in all the three phenotypes. Six mutants showed significantly lower persister abundance under different stress conditions. Insertions in three genes belonging to the pathways of oxidative phosphorylation msmeg_3233 (cydA), biotin metabolism msmeg_3194 (bioB), and oxidative metabolism msmeg_0719, a flavoprotein monooxygenase, significantly reduced the number of live cells, suggesting their role in pathways promoting long-term survival. Another group that displayed a moderate reduction in CFU included a glycosyltransferase, msmeg_0392, a hydrogenase subunit, msmeg_2263 (hybC), and a DNA binding protein, msmeg_2211. The study has revealed potential candidates likely to facilitate the long-term survival of M. smegmatis. The findings offer new targets to develop antibiotics against persisters. Further, investigating the corresponding genes in M. tuberculosis may provide valuable leads in improving the treatment of chronic and persistent tuberculosis infections.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Divacc Research Laboratories Pvt. Ltd., incubated under Atal Incubation Centre, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nirupama Banerjee
- Divacc Research Laboratories Pvt. Ltd., incubated under Atal Incubation Centre, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Lewin A, Kamal E, Semmler T, Winter K, Kaiser S, Schäfer H, Mao L, Eschenhagen P, Grehn C, Bender J, Schwarz C. Genetic diversification of persistent Mycobacterium abscessus within cystic fibrosis patients. Virulence 2021; 12:2415-2429. [PMID: 34546836 PMCID: PMC8526041 DOI: 10.1080/21505594.2021.1959808] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium (M.) abscessus infections in Cystic Fibrosis (CF) patients cause a deterioration of lung function. Treatment of these multidrug-resistant pathogens is associated with severe side-effects, while frequently unsuccessful. Insight on M. abscessus genomic evolvement during chronic lung infection would be beneficial for improving treatment strategies. A longitudinal study enrolling 42 CF patients was performed at a CF center in Berlin, Germany, to elaborate phylogeny and genomic diversification of in-patient M. abscessus. Eleven of the 42 CF patients were infected with M. abscessus. Five of these 11 patients were infected with global human-transmissible M. abscessus cluster strains. Phylogenetic analysis of 88 genomes from isolates of the 11 patients excluded occurrence of M. abscessus transmission among members of the study group. Genome sequencing and variant analysis of 30 isolates from 11 serial respiratory samples collected over 4.5 years from a chronically infected patient demonstrated accumulation of gene mutations. In total, 53 genes exhibiting non-synonymous variations were identified. Enrichment analysis emphasized genes involved in synthesis of glycopeptidolipids, genes from the embABC (arabinosyltransferase) operon, betA (glucose-methanol-choline oxidoreductase) and choD (cholesterol oxidase). Genetic diversity evolved in a variety of virulence- and resistance-associated genes. The strategy of M. abscessus populations in chronic lung infection is not clonal expansion of dominant variants, but to sustain simultaneously a wide range of genetic variants facilitating adaptation of the population to changing living conditions in the lung. Genomic diversification during chronic infection requires increased attention when new control strategies against M. abscessus infections are explored.
Collapse
Affiliation(s)
- Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Elisabeth Kamal
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Unit NG 1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katja Winter
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Sandra Kaiser
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Lei Mao
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.,Unit 31 Infectious Disease Data Science Unit, Robert Koch Institute, Berlin, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Grehn
- Department of Pediatrics, Division of Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Berlin, Germany
| | - Jennifer Bender
- Unit 13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
de Moura VCN, Verma D, Everall I, Brown KP, Belardinelli JM, Shanley C, Stapleton M, Parkhill J, Floto RA, Ordway DJ, Jackson M. Increased Virulence of Outer Membrane Porin Mutants of Mycobacterium abscessus. Front Microbiol 2021; 12:706207. [PMID: 34335541 PMCID: PMC8317493 DOI: 10.3389/fmicb.2021.706207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.
Collapse
Affiliation(s)
- Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Isobel Everall
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Karen P Brown
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Crystal Shanley
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Megan Stapleton
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R Andres Floto
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
Mycobacterium tuberculosis Small RNA MTS1338 Confers Pathogenic Properties to Non-Pathogenic Mycobacterium smegmatis. Microorganisms 2021; 9:microorganisms9020414. [PMID: 33671144 PMCID: PMC7921967 DOI: 10.3390/microorganisms9020414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Small non-coding RNAs play a key role in bacterial adaptation to various stresses. Mycobacterium tuberculosis small RNA MTS1338 is upregulated during mycobacteria infection of macrophages, suggesting its involvement in the interaction of the pathogen with the host. In this study, we explored the functional effects of MTS1338 by expressing it in non-pathogenic Mycobacterium smegmatis that lacks the MTS1338 gene. The results indicated that MTS1338 slowed the growth of the recombinant mycobacteria in culture and increased their survival in RAW 264.7 macrophages, where the MTS1338-expressing strain significantly (p < 0.05) reduced the number of mature phagolysosomes and changed the production of cytokines IL-1β, IL-6, IL-10, IL-12, TGF-β, and TNF-α compared to those of the control strain. Proteomic and secretomic profiling of recombinant and control strains revealed differential expression of proteins involved in the synthesis of main cell wall components and in the regulation of iron metabolism (ESX-3 secretion system) and response to hypoxia (furA, whiB4, phoP). These effects of MTS1338 expression are characteristic for M. tuberculosis during infection, suggesting that in pathogenic mycobacteria MTS1338 plays the role of a virulence factor supporting the residence of M. tuberculosis in the host.
Collapse
|
5
|
Saxena S, Spaink HP, Forn-Cuní G. Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. BIOLOGY 2021; 10:biology10020096. [PMID: 33573039 PMCID: PMC7911849 DOI: 10.3390/biology10020096] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
The genus Mycobacteria comprises a multitude of species known to cause serious disease in humans, including Mycobacterium tuberculosis and M. leprae, the responsible agents for tuberculosis and leprosy, respectively. In addition, there is a worldwide spike in the number of infections caused by a mixed group of species such as the M. avium, M. abscessus and M. ulcerans complexes, collectively called nontuberculous mycobacteria (NTMs). The situation is forecasted to worsen because, like tuberculosis, NTMs either naturally possess or are developing high resistance against conventional antibiotics. It is, therefore, important to implement and develop models that allow us to effectively examine the fundamental questions of NTM virulence, as well as to apply them for the discovery of new and improved therapies. This literature review will focus on the known molecular mechanisms behind drug resistance in NTM and the current models that may be used to test new effective antimicrobial therapies.
Collapse
|
6
|
Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health 2020; 13:1255-1264. [PMID: 32674978 DOI: 10.1016/j.jiph.2020.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
An alternate host for mycobacteria is Mycobacterium smegmatis which is used frequently. It is a directly budding eco-friendly organism not emulated as human infection. It is mainly useful for the investigation of various microorganisms in the sort of Mycobacteria in cell culture laboratories. Some Mycobacterium species groups that is normal, unsafe ailments, likely to Mycobacterium leprae, Mycobacterium tuberculosis and Mycobacterium bovis. At present, various laboratories are clean and culture this type of species to make an opinion that fascinating route of harmful Mycobacteria. This publication provides aggregate data on cell shape, genome studies, ecology, pathology and utilization of M. smegmatis.
Collapse
|
7
|
Mycobacterium smegmatis But Not Mycobacterium avium subsp. hominissuis Causes Increased Expression of the Long Non-Coding RNA MEG3 in THP-1-Derived Human Macrophages and Associated Decrease of TGF-β. Microorganisms 2019; 7:microorganisms7030063. [PMID: 30818784 PMCID: PMC6463094 DOI: 10.3390/microorganisms7030063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
Pathogenic mycobacteria are able to persist intracellularly in macrophages, whereas non-pathogenic mycobacteria are effectively combated and eliminated after their phagocytosis. It is known that TGF-β plays an important role in this context. Infection with pathogenic mycobacteria such as Mycobacterium tuberculosis or M. avium leads to production of active TGF-β, which blocks the ability of IFN-γ and TNF-α to inhibit intracellular replication. On the other hand, it is known that the long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) is involved in the regulation of TGF-β. In this study, we show how the infection of THP-1-derived human macrophages with the saprophytic M. smegmatis but not with the facultatively pathogenic M. avium subsp. hominissuis leads to increased MEG3 expression. This is associated with the downregulation of DNA methyltransferases (DNMT) 1 and 3b, which are known to regulate MEG3 expression via promoter hypermethylation. Consequently, we observe a significant downregulation of TGF-β in M. smegmatis-infected macrophages but not in M. avium subsp. hominissuis pointing to lncRNAs as novel mediators of host cell response during mycobacterial infections.
Collapse
|
8
|
Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F. Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control. Curr Drug Deliv 2019; 16:400-429. [PMID: 30714523 PMCID: PMC6637229 DOI: 10.2174/1567201816666190201144815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
In spite of advances in tuberculosis (TB) chemotherapy, TB is still airborne deadly disorder as a major issue of health concern worldwide today. Extensive researches have been focused to develop novel drug delivery systems to shorten the lengthy therapy approaches, prevention of relapses, reducing dose-related toxicities and to rectify technologically related drawbacks of anti-tubercular drugs. Moreover, the rapid emergence of drug resistance, poor patient compliance due to negative therapeutic outcomes and intracellular survival of Mycobacterium highlighted to develop carrier with optimum effectiveness of the anti-tubercular drugs. This could be achieved by targeting and concentrating the drug on the infection reservoir of Mycobacterium. In this article, we briefly compiled the general aspects of Mycobacterium pathogenesis, disease treatment along with progressive updates in novel drug delivery carrier system to enhance therapeutic effects of drug and the high level of patient compliance. Recently developed several vaccines might be shortly available as reported by WHO.
Collapse
Affiliation(s)
| | | | | | | | | | - Faiyaz Shakeel
- Address correspondence to this author at the Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Tel: +966-14673139; E-mail:
| |
Collapse
|
9
|
Pawar K, Hanisch C, Palma Vera SE, Einspanier R, Sharbati S. Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy. Sci Rep 2016; 6:19416. [PMID: 26757825 PMCID: PMC4725832 DOI: 10.1038/srep19416] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Small non-coding RNA play a major part in host response to bacterial agents. However, the role of long non-coding RNA (lncRNA) in this context remains unknown. LncRNA regulate gene expression by acting e.g. as transcriptional coactivators, RNA decoys or microRNA sponges. They control development, differentiation and cellular processes such as autophagy in disease conditions. Here, we provide an insight into the role of lncRNA in mycobacterial infections. Human macrophages were infected with Mycobacterium bovis BCG and lncRNA expression was studied early post infection. For this purpose, lncRNA with known immune related functions were preselected and a lncRNA specific RT-qPCR protocol was established. In addition to expression-based prediction of lncRNA function, we assessed strategies for thorough normalisation of lncRNA. Arrayed quantification showed infection-dependent repression of several lncRNA including MEG3. Pathway analysis linked MEG3 to mTOR and PI3K-AKT signalling pointing to regulation of autophagy. Accordingly, IFN-γ induced autophagy in infected macrophages resulted in sustained MEG3 down regulation and lack of IFN-γ allowed for counter regulation of MEG3 by viable M. bovis BCG. Knockdown of MEG3 in macrophages resulted in induction of autophagy and enhanced eradication of intracellular M. bovis BCG.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Carlos Hanisch
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Sergio Eliseo Palma Vera
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
10
|
Ates LS, Ummels R, Commandeur S, van der Weerd R, Sparrius M, Weerdenburg E, Alber M, Kalscheuer R, Piersma SR, Abdallah AM, Abd El Ghany M, Abdel-Haleem AM, Pain A, Jiménez CR, Bitter W, Houben EN. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria. PLoS Genet 2015; 11:e1005190. [PMID: 25938982 PMCID: PMC4418733 DOI: 10.1371/journal.pgen.1005190] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/02/2015] [Indexed: 12/03/2022] Open
Abstract
Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow-growing mycobacteria.
Collapse
Affiliation(s)
- Louis S. Ates
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Susanna Commandeur
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert van der Weerd
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Sparrius
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Eveline Weerdenburg
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Marina Alber
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Abdallah M. Abdallah
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Moataz Abd El Ghany
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Alyaa M. Abdel-Haleem
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Connie R. Jiménez
- Department of Medical Oncology, OncoProteomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Edith N.G. Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Drancourt M. Looking in amoebae as a source of mycobacteria. Microb Pathog 2014; 77:119-24. [PMID: 25017516 DOI: 10.1016/j.micpath.2014.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/16/2022]
Abstract
Mycobacteria exhibit various relationships with amoebae, ranging from the killing of one partner by the other one, to amoebae hosting mycobacteria in trophozoites and cysts. This observation indicates that poorly described biological factors affect the relationships, including mycobacterial cell-wall glycolipids and the size of the mycobacteria. Experimental observations indicate that a majority of environmental, opportunistic mycobacteria but also obligate pathogens including Mycobacterium tuberculosis, Mycobacterium leprae and Mycobacterium ulcerans are inter-amoebal organisms. Amoebae may give opportunities for genetic exchanges between mycobacteria, sympatric intra-amoebal organisms and the amoebae themselves. Amoebae clearly protect opportunistic mycobacterial pathogens during their environmental life but their role for obligate mycobacterial infection remains to be established. Accordingly, water was the source for emerging, community-acquired and health care-associated infection with amoeba-resisting mycobacteria of the Mycobacterium avium, Mycobacterium abscessus and Mycobacterium fortuitum groups, among others. Amoebae are organisms where mycobacteria can be found and, accordingly, amoeba co-culture can be used for the isolation of mycobacteria from environmental and clinical specimens. Looking in amoebae may help recovering new species of mycobacteria.
Collapse
Affiliation(s)
- M Drancourt
- Aix Marseille Université, URMITE, UM 63 UMR_S1095 UMR 7278, Méditerranée Infection, 13385, Marseille, France.
| |
Collapse
|
12
|
Calado Nogueira de Moura V, Gibbs S, Jackson M. Gene replacement in Mycobacterium chelonae: application to the construction of porin knock-out mutants. PLoS One 2014; 9:e94951. [PMID: 24739882 PMCID: PMC3989263 DOI: 10.1371/journal.pone.0094951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/21/2014] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium chelonae is a rapidly growing mycobacterial opportunistic pathogen closely related to Mycobacterium abscessus that causes cornea, skin and soft tissue infections in humans. Although M. chelonae and the emerging mycobacterial pathogen M. abscessus have long been considered to belong to the same species, these two microorganisms considerably differ in terms of optimum growth temperature, drug susceptibility, pathogenicity and the types of infection they cause. The whole genome sequencing of clinical isolates of M. chelonae and M. abscessus is opening the way to comparative studies aimed at understanding the biology of these pathogens and elucidating the molecular bases of their pathogenicity and biocide resistance. Key to the validation of the numerous hypotheses that this approach will raise, however, is the availability of genetic tools allowing for the expression and targeted mutagenesis of genes in these species. While homologous recombination systems have recently been described for M. abscessus, genetic tools are lacking for M. chelonae. We here show that two different allelic replacement methods, one based on mycobacteriophage-encoded recombinases and the other on a temperature-sensitive plasmid harboring the counterselectable marker sacB, can be used to efficiently disrupt genes in this species. Knock-out mutants for each of the three porin genes of M. chelonae ATCC 35752 were constructed using both methodologies, one of which displays a significantly reduced glucose uptake rate consistent with decreased porin expression.
Collapse
Affiliation(s)
- Vinicius Calado Nogueira de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sara Gibbs
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lamrabet O, Mba Medie F, Drancourt M. Acanthamoeba polyphaga-enhanced growth of Mycobacterium smegmatis. PLoS One 2012; 7:e29833. [PMID: 22253795 PMCID: PMC3256201 DOI: 10.1371/journal.pone.0029833] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/06/2011] [Indexed: 11/17/2022] Open
Abstract
Background Mycobacterium smegmatis is a rapidly-growing mycobacterium causing rare opportunistic infections in human patients. It is present in soil and water environments where free-living amoeba also reside, but data regarding M. smegmatis-amoeba relationships have been contradictory from mycobacteria destruction to mycobacteria survival. Methodology/Principal Findings Using optic and electron microscopy and culture-based microbial enumeration we investigated the ability of M. smegmatis mc2 155, M. smegmatis ATCC 19420T and M. smegmatis ATCC 27204 organisms to survive into Acanthamoeba polyphaga trophozoites and cysts. We observed that M. smegmatis mycobacteria penetrated and survived in A. polyphaga trophozoites over five-day co-culture resulting in amoeba lysis and the release of viable M. smegmatis mycobacteria without amoebal cyst formation. We further observed that amoeba-co-culture, and lysed amoeba and supernatant and pellet, significantly increased five-day growth of the three tested M. smegmatis strains, including a four-fold increase in intra-amoebal growth. Conclusions/Significance Amoebal co-culture increases the growth of M. smegmatis resulting in amoeba killing by replicating M. smegmatis mycobacteria. This amoeba-M. smegmatis co-culture system illustrates an unusual paradigm in the mycobacteria-amoeba interactions as mycobacteria have been mainly regarded as amoeba-resistant organisms. Using these model organisms, this co-culture system could be used as a simple and rapid model to probe mycobacterial factors implicated in the intracellular growth of mycobacteria.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, IFR48, Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
14
|
Fujiwara N, Naka T, Ogawa M, Yamamoto R, Ogura H, Taniguchi H. Characteristics of Mycobacterium smegmatis J15cs strain lipids. Tuberculosis (Edinb) 2011; 92:187-92. [PMID: 22056691 DOI: 10.1016/j.tube.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 11/16/2022]
Abstract
Mycobacterium smegmatis is a rapidly growing, non-pathogenic mycobacterium, and M. smegmatis strain mc(2)155 in particular has been used as a tool for molecular analysis of mycobacteria because of its high rate of transformation. We examined another strain, M. smegmatis J15cs, which has the advantage of surviving for six days in murine macrophages. The J15cs strain produces a rough dry colony, and we hypothesized that the long survival of the J15cs strain was correlated with its cell wall components. Therefore, the lipid compositions of these two strains were compared. The subclasses and carbon species of the mycolic acids were very similar, and the major glycolipids and phospholipids were expressed in both strains. However, apolar glycopeptidolipids were deleted only in the J15cs strain. The presence of apolar glycopeptidolipids gives the cell wall a different structure. Moreover, the apolar glycopeptidolipids were recognized by macrophages via toll-like receptor 2, but not 4. We concluded that the absence of apolar glycopeptidolipids is a definitive feature of the J15cs strain, and affects its morphology and survival in host cells.
Collapse
Affiliation(s)
- Nagatoshi Fujiwara
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Sharbati J, Lewin A, Kutz-Lohroff B, Kamal E, Einspanier R, Sharbati S. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS One 2011; 6:e20258. [PMID: 21629653 PMCID: PMC3101234 DOI: 10.1371/journal.pone.0020258] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/22/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections. METHODOLOGY/PRINCIPAL FINDINGS We performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR). The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs. CONCLUSIONS/SIGNIFICANCE We show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response. In addition, functional relevance was confirmed by uncovering the control of major caspases 3 and 7 by let-7e and miR-29a, respectively.
Collapse
Affiliation(s)
- Jutta Sharbati
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Cateau E, Verdon J, Fernandez B, Hechard Y, Rodier MH. Acanthamoeba sp. promotes the survival and growth of Acinetobacter baumanii. FEMS Microbiol Lett 2011; 319:19-25. [PMID: 21395660 DOI: 10.1111/j.1574-6968.2011.02261.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acinetobacter baumanii, which may be found in water, is an important emerging hospital-acquired pathogen. Free-living amoebae can be recovered from the same water networks, and it has been shown that these protozoa may support the growth of other bacteria. In this paper, we have studied potential relationships between A. baumanii and Acanthamoeba species. Two strains of A. baumanii isolated from hospital water were co-cultivated with the trophozoites or supernatants of two free-living amoebae strains: Acanthamoeba castellanii or Acanthamoeba culbertsoni. Firstly, the presence of the amoebae or their supernatants induced a major increase in A. baumanii growth, compared with controls. Secondly, A. baumanii affected only the viability of A. culbertsonii, with no effect on A. castellanii. Electron microscopy observations of the cultures investigating the bacterial location in the protozoa showed persistence of the bacteria within cyst wall even after 60 days of incubation. In our study, the survival and growth of A. baumanii could be favored by Acanthamoeba strains. Special attention should consequently be paid to the presence of free-living amoebae in hospital water systems, which can promote A. baumanii persistence.
Collapse
Affiliation(s)
- Estelle Cateau
- Laboratoire de parasitologie et mycologie médicale, Faculté de médecine et de pharmacie, Poitiers, France.
| | | | | | | | | |
Collapse
|
17
|
Coulon C, Collignon A, McDonnell G, Thomas V. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J Clin Microbiol 2010; 48:2689-97. [PMID: 20519477 PMCID: PMC2916629 DOI: 10.1128/jcm.00309-10] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/14/2010] [Accepted: 05/21/2010] [Indexed: 11/20/2022] Open
Abstract
Free-living amoebae that belong to the genus Acanthamoeba are widespread in the environment, including water. They are responsible for human infections and can host pathogenic microorganisms. Under unfavorable conditions, they form cysts with high levels of resistance to disinfection methods, thus potentially representing a threat to public health. In the present study we evaluated the efficacies of various biocides against trophozoites and cysts of several Acanthamoeba strains. We demonstrated that disinfectant efficacy varied depending on the strains tested, with environmental strains demonstrating greater resistance than collection strains. Trophozoites were inactivated by all treatments except those using glutaraldehyde as an active compound: for these treatments, we observed resistance even after 30 min exposure. Cysts resisted many treatments, including certain conditions with glutaraldehyde and other biocides. Moist heat at 55 degrees C was not efficient against cysts, whereas exposure at 65 degrees C was. Several chemical formulations containing peracetic acid, hydrogen peroxide, or ortho-phthalaldehyde presented greater efficacy than glutaraldehyde, as did ethanol and sodium hypochlorite; however, some of these treatments required relatively long incubation times to achieve cyst inactivation. Amoebal cysts can be highly resistant to some high-level disinfectants, which has implications for clinical practice. These results highlight the need to consider the effective disinfection of protozoa in their vegetative and resistant forms due to their intrinsic resistance. This is important not only to prevent the transmission of protozoa themselves but also due to the risks associated with a range of microbial pathogens that are found to be associated intracellularly with these microorganisms.
Collapse
Affiliation(s)
- Céline Coulon
- STERIS SA R&D, Fontenay-aux-Roses, France, Université de Paris-Sud XI, Faculté de Pharmacie, Département de Microbiologie, Châtenay-Malabry, France, STERIS Ltd., Basingstoke, United Kingdom
| | - Anne Collignon
- STERIS SA R&D, Fontenay-aux-Roses, France, Université de Paris-Sud XI, Faculté de Pharmacie, Département de Microbiologie, Châtenay-Malabry, France, STERIS Ltd., Basingstoke, United Kingdom
| | - Gerald McDonnell
- STERIS SA R&D, Fontenay-aux-Roses, France, Université de Paris-Sud XI, Faculté de Pharmacie, Département de Microbiologie, Châtenay-Malabry, France, STERIS Ltd., Basingstoke, United Kingdom
| | - Vincent Thomas
- STERIS SA R&D, Fontenay-aux-Roses, France, Université de Paris-Sud XI, Faculté de Pharmacie, Département de Microbiologie, Châtenay-Malabry, France, STERIS Ltd., Basingstoke, United Kingdom
| |
Collapse
|
18
|
Ben Salah I, Drancourt M. Surviving within the amoebal exocyst: the Mycobacterium avium complex paradigm. BMC Microbiol 2010; 10:99. [PMID: 20359345 PMCID: PMC2856558 DOI: 10.1186/1471-2180-10-99] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 04/01/2010] [Indexed: 01/01/2023] Open
Abstract
Background Most of environmental mycobacteria have been previously demonstrated to resist free-living amoeba with subsequent increased virulence and resistance to antibiotics and biocides. The Mycobacterium avium complex (MAC) comprises of environmental organisms that inhabit a wide variety of ecological niches and exhibit a significant degree of genetic variability. We herein studied the intra-ameobal location of all members of the MAC as model organisms for environmental mycobacteria. Results Type strains for M. avium, Mycobacterium intracellulare, Mycobacterium chimaera, Mycobacterium colombiense, Mycobacterium arosiense, Mycobacterium marseillense, Mycobacterium timonense and Mycobacterium bouchedurhonense were co-cultivated with the free-living amoeba Acanthamoeba polyphaga strain Linc-AP1. Microscopic analyses demonstrated the engulfment and replication of mycobacteria into vacuoles of A. polyphaga trophozoites. Mycobacteria were further entrapped within amoebal cysts, and survived encystment as demonstrated by subculturing. Electron microscopy observations show that, three days after entrapment into A. polyphaga cysts, all MAC members typically resided within the exocyst. Conclusions Combined with published data, these observations indicate that mycobacteria are unique among amoeba-resistant bacteria, in residing within the exocyst.
Collapse
Affiliation(s)
- Iskandar Ben Salah
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS-6236, IRD 189, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille France
| | | |
Collapse
|
19
|
Salah IB, Ghigo E, Drancourt M. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin Microbiol Infect 2009; 15:894-905. [PMID: 19845701 DOI: 10.1111/j.1469-0691.2009.03011.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mycobacterium species evolved from an environmental recent common ancestor by reductive evolution and lateral gene transfer. Strategies selected through evolution and developed by mycobacteria resulted in resistance to predation by environmental unicellular protists, including free-living amoebae. Indeed, mycobacteria are isolated from the same soil and water environments as are amoebae, and experimental models using Acanthamoeba spp. and Dictyostelium discoideum were exploited to analyse the mechanisms for intracellular survival. Most of these mechanisms have been further reproduced in macrophages for mycobacteria regarded as opportunistic and obligate pathogens. Amoebal cysts may protect intracellular mycobacteria against adverse conditions and may act as a vector for mycobacteria. The latter hypothesis warrants further environmental and clinical studies to better assess the role of free-living amoebae in the epidemiology of infections caused by mycobacteria.
Collapse
Affiliation(s)
- I B Salah
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS 6236 IRD 198, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
20
|
Nomoto M, Ogawa M, Fukuda K, Miyamoto H, Taniguchi H. A host-vector system for molecular study of the intracellular growth ofMycobacterium tuberculosisin phagocytic cells. Microbiol Immunol 2009; 53:550-8. [DOI: 10.1111/j.1348-0421.2009.00158.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Purdy GE, Niederweis M, Russell DG. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol 2009; 73:844-57. [PMID: 19682257 DOI: 10.1111/j.1365-2958.2009.06801.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ubiquitin-derived peptides are bactericidal in vitro and contribute to the mycobactericidal activity of the lysosome. To further define interactions of ubiquitin-derived peptides with mycobacteria, we screened for mutants with increased resistance to the bactericidal activity of the synthetic ubiquitin-derived peptide Ub2. The four Ub2-resistant Mycobacterium smegmatis mutants were also resistant to the bactericidal action of other antimicrobial peptides and macrophages. Two mutants were in the mspA gene encoding the main M. smegmatis porin. Using a translocation-deficient MspA point mutant, we showed that susceptibility of M. smegmatis to Ub2 was independent of MspA channel activity. Instead, the M. smegmatis Ub2-resistant mutants shared a common phenotype of decreased cell wall permeability compared with wild-type bacteria. Expression of mspA rendered Mycobacterium tuberculosis CDC1551 more susceptible both to ubiquitin-derived peptides in vitro and to lysosomal killing in macrophages. Finally, biochemical assays designed to assess membrane integrity indicated that Ub2 treatment impairs membrane function of M. smegmatis and M. tuberculosis cells. The M. smegmatis Ub2-resistant mutants were more resistant than wild-type M. smegmatis to this damage. We conclude that Ub2 targets mycobacterial membranes and that reduced membrane permeability provides mycobacteria intrinsic resistance against antimicrobial compounds including bactericidal ubiquitin-derived peptides.
Collapse
Affiliation(s)
- Georgiana E Purdy
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
22
|
Role of porins in the susceptibility of Mycobacterium smegmatis and Mycobacterium chelonae to aldehyde-based disinfectants and drugs. Antimicrob Agents Chemother 2009; 53:4015-8. [PMID: 19581465 DOI: 10.1128/aac.00590-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nosocomial outbreaks attributable to glutaraldehyde-resistant, rapidly growing mycobacteria are increasing. Here, evidence is provided that defects in porin expression dramatically increase the resistance of Mycobacterium smegmatis and Mycobacterium chelonae to glutaraldehyde and another aldehyde disinfectant, ortho-phthalaldehyde. Since defects in porin activity also dramatically increased the resistance of M. chelonae to drugs, there is thus some concern that the widespread use of glutaraldehyde and ortho-phthalaldehyde in clinical settings may select for drug-resistant bacteria.
Collapse
|
23
|
Fabrino DL, Bleck CKE, Anes E, Hasilik A, Melo RCN, Niederweis M, Griffiths G, Gutierrez MG. Porins facilitate nitric oxide-mediated killing of mycobacteria. Microbes Infect 2009; 11:868-75. [PMID: 19460455 DOI: 10.1016/j.micinf.2009.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 05/03/2009] [Accepted: 05/08/2009] [Indexed: 11/26/2022]
Abstract
Non-pathogenic mycobacteria such us Mycobacterium smegmatis reside in macrophages within phagosomes that fuse with late endocytic/lysosomal compartments. This sequential fusion process is required for the killing of non-pathogenic mycobacteria by macrophages. Porins are proteins that allow the influx of hydrophilic molecules across the mycobacterial outer membrane. Deletion of the porins MspA, MspC and MspD significantly increased survival of M. smegmatis in J774 macrophages. However, the mechanism underlying this observation is unknown. Internalization of wild-type M. smegmatis (SMR5) and the porin triple mutant (ML16) by macrophages was identical indicating that the viability of the porin mutant in vivo was enhanced. This was not due to effects on phagosome trafficking since fusion of phagosomes containing the mutant with late endocytic compartments was unaffected. Moreover, in ML16-infected macrophages, the generation of nitric oxide (NO) was similar to the wild type-infected cells. However, ML16 was significantly more resistant to the effects of NO in vitro compared to SMR5. Our data provide evidence that porins render mycobacteria vulnerable to killing by reactive nitrogen intermediates within phagosomes probably by facilitating uptake of NO across the mycobacterial outer membrane.
Collapse
|
24
|
Sharbati S, Schramm K, Rempel S, Wang H, Andrich R, Tykiel V, Kunisch R, Lewin A. Characterisation of porin genes from Mycobacterium fortuitum and their impact on growth. BMC Microbiol 2009; 9:31. [PMID: 19203364 PMCID: PMC2651896 DOI: 10.1186/1471-2180-9-31] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 02/09/2009] [Indexed: 01/25/2023] Open
Abstract
Background Highly pathogenic mycobacteria like Mycobacterium tuberculosis are characterised by their slow growth and their ability to reside and multiply in the very hostile phagosomal environment and a correlation between the growth rate of mycobacteria and their pathogenicity has been hypothesised. Here, porin genes from M. fortuitum were cloned and characterised to address their impact on the growth rate of fast-growing and pathogenic mycobacteria. Results Two genes encoding porins orthologous to MspA from M. smegmatis, porM1 and porM2, were cloned from M. fortuitum strains, which were originally isolated from human patients. Both porin genes were at least partially able to complement the mutations of a M. smegmatis mutant strain lacking the genes mspA and mspC with respect to the growth rate. PorM1 and porM2 were present in different strains of M. fortuitum including the type strain. Comparative expression analysis of porM genes revealed divergent porin expression among analysed M. fortuitum strains. Repression of the expression of porins by antisense technique decreased the growth rates of different M. fortuitum. The effects of over-expression of porM1 as well as porM2 varied depending on the strain and the concentration of antibiotic added to the medium and indicated that PorM1 and PorM2 enhance the growth of M. fortuitum strains, but also the diffusion of the antibiotic kanamycin into the cells. Conclusion This study demonstrates the important role of porin expression in growth as well as antibiotic susceptibility of the opportunistic bacterium M. fortuitum.
Collapse
Affiliation(s)
- Soroush Sharbati
- Freie Universität Berlin, Institute of Veterinary Biochemistry, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Thomas V, McDonnell G. Relationship between mycobacteria and amoebae: ecological and epidemiological concerns. Lett Appl Microbiol 2007; 45:349-57. [PMID: 17897376 DOI: 10.1111/j.1472-765x.2007.02206.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since the discovery that Legionella pneumophila can survive and grow within free-living amoebae, there has been an increasing number of microbial species shown to have similar relationships. These include many bacterial species, fungi, other protozoa (e.g. Cryptosporidium) and viruses. Among bacteria, mycobacteria are of particular importance because of their role in human and animal infections. This review will consider the progress made in understanding the relationships between mycobacteria and amoebae, and their consequences in terms of ecology and epidemiology.
Collapse
Affiliation(s)
- V Thomas
- STERIS Laboratory, CEA/DSV/IMETI/SEPIA, 18 route du Panorama, 92260 Fontenay-aux-Roses, France.
| | | |
Collapse
|
26
|
Goy G, Thomas V, Rimann K, Jaton K, Prod'hom G, Greub G. The Neff strain of Acanthamoeba castellanii, a tool for testing the virulence of Mycobacterium kansasii. Res Microbiol 2007; 158:393-7. [PMID: 17398074 DOI: 10.1016/j.resmic.2007.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/15/2007] [Accepted: 01/22/2007] [Indexed: 11/15/2022]
Abstract
Virulent Mycobacterium kansasii (mainly subtype 1) may cause lung infections, whereas certain other strains (essentially subtype 3) are commonly non-pathogenic mycobacteria colonizing the human lower respiratory tract of patients. Determining the clinical significance of a strain isolated from a respiratory sample represents a major challenge for clinicians. Since some mycobacteria may use free-living amoebae as a training ground to select virulence traits, we wondered whether the Acanthamoeba castellanii amoeba could be used to determine the virulence of these intracellular bacteria. We investigated whether the growth and cytopathic effect of M. kansasii in A. castellanii correlate with the virulence of M. kansasii determined clinically and by subtyping. Pathogenic subtype 1 M. kansasii strains grew better in A. castellanii than non-pathogenic subtype 3 strains when considering both the number of bacteria per amoeba and the percentage of infected amoebae. Moreover, a subtype 3 M. kansasii strain isolated from blood culture, and thus considered pathogenic, was revealed to grow in A. castellanii similarly to pathogenic subtype 1 strains. These results suggest that amoebae may represent useful tools for testing the virulence of intracellular mycobacteria and other amoeba-resisting bacteria. This is important, since identification of novel bacterial virulence factors relies largely on in vitro assessment of virulence.
Collapse
Affiliation(s)
- Geneviève Goy
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Stephan J, Bender J, Wolschendorf F, Hoffmann C, Roth E, Mailänder C, Engelhardt H, Niederweis M. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol 2006; 58:714-30. [PMID: 16238622 DOI: 10.1111/j.1365-2958.2005.04878.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacteria have a unique outer membrane (OM) that is thicker than any other known biological membrane. Nutrients cross this permeability barrier by diffusion through porins. MspA is the major porin of Mycobacterium smegmatis. In this study we showed that three paralogues of MspA, namely MspB, MspC and MspD are also porins. However, only the mspA and mspC genes were expressed in the wild-type strain. None of the single deletion mutants displayed a significant OM permeability defect except for the mspA mutant. Deletion of the mspA gene caused activation of transcription of mspB and/or mspD in three independent strains by unknown chromosomal mutations. It is concluded that mspB and mspD provide backup porins for M. smegmatis. This also indicated that a minimal porin-mediated OM permeability is essential for survival of M. smegmatis. Electron microscopy in combination with quantitative image analysis of protein gels revealed that the number of pores per cell dropped from 2400 to 800 and 150 for the DeltamspA and DeltamspA DeltamspC mutant (ML10) respectively. The very low number of pores correlated well with the at least 20-fold lower channel activity of detergent extracts of the ML10 strain and its 15- and 75-fold lower permeability to nutrient molecules such as serine and glucose respectively. The amount of Msp porin and the OM permeability of the triple porin mutant lacking mspA, mspC and mspD was not altered. The growth rate of M. smegmatis dropped drastically with its porin-mediated OM permeability in contrast to porin mutants of Escherichia coli. These results show that porin-mediated influx of nutrients is a major determinant of the growth rate of M. smegmatis.
Collapse
Affiliation(s)
- Joachim Stephan
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|