1
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
2
|
Bartholomae M, Buivydas A, Viel JH, Montalbán-López M, Kuipers OP. Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis. Mol Microbiol 2017; 106:186-206. [DOI: 10.1111/mmi.13764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Maike Bartholomae
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Andrius Buivydas
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology; University of Granada, C. Fuentenueva s/n; 18071 Granada Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| |
Collapse
|
3
|
Kinnula H, Mappes J, Sundberg LR. Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions. BMC Evol Biol 2017; 17:77. [PMID: 28288561 PMCID: PMC5348763 DOI: 10.1186/s12862-017-0922-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/22/2017] [Indexed: 11/11/2022] Open
Abstract
Background In nature, organisms are commonly coinfected by two or more parasite strains, which has been shown to influence disease virulence. Yet, the effects of coinfections of environmental opportunistic pathogens on disease outcome are still poorly known, although as host-generalists they are highly likely to participate in coinfections. We asked whether coinfection with conspecific opportunistic strains leads to changes in virulence, and if these changes are associated with bacterial growth or interference competition. We infected zebra fish (Danio rerio) with three geographically and/or temporally distant environmental opportunist Flavobacterium columnare strains in single and in coinfection. Growth of the strains was studied in single and in co-cultures in liquid medium, and interference competition (growth-inhibiting ability) on agar. Results The individual strains differed in their virulence, growth and ability for interference competition. Number of coinfecting strains significantly influenced the virulence of infection, with three-strain coinfection differing from the two-strain and single infections. Differences in virulence seemed to associate with the identity of the coinfecting bacterial strains, and their pairwise interactions. This indicates that benefits of competitive ability (production of growth-inhibiting compounds) for virulence are highest when multiple strains co-occur, whereas the high virulence in coinfection may be independent from in vitro bacterial growth. Conclusions Intraspecific competition can lead to plastic increase in virulence, likely caused by faster utilization of host resources stimulated by the competitive interactions between the strains. However, disease outcome depends both on the characteristics of individual strains and their interactions. Our results highlight the importance of strain interactions in disease dynamics in environments where various pathogen genotypes co-occur. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0922-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanna Kinnula
- Department of Biological and Environmental Science (and Nanoscience Center), Jyvaskyla, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Science (and Nanoscience Center), Jyvaskyla, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science (and Nanoscience Center), Jyvaskyla, Finland.
| |
Collapse
|
4
|
Nguyen CT, Park SS, Rhee DK. Stress responses in Streptococcus species and their effects on the host. J Microbiol 2015; 53:741-9. [PMID: 26502957 DOI: 10.1007/s12275-015-5432-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea.
| |
Collapse
|
5
|
A conserved streptococcal membrane protein, LsrS, exhibits a receptor-like function for lantibiotics. J Bacteriol 2014; 196:1578-87. [PMID: 24509319 DOI: 10.1128/jb.00028-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans strain GS-5 produces a two-peptide lantibiotic, Smb, which displays inhibitory activity against a broad spectrum of bacteria, including other streptococci. For inhibition, lantibiotics must recognize specific receptor molecules present on the sensitive bacterial cells. However, so far no such receptor proteins have been identified for any lantibiotics. In this study, using a powerful transposon mutagenesis approach, we have identified in Streptococcus pyogenes a gene that exhibits a receptor-like function for Smb. The protein encoded by that gene, which we named LsrS, is a membrane protein belonging to the CAAX protease family. We also found that nisin, a monopeptide lantibiotic, requires LsrS for its optimum inhibitory activity. However, we found that LsrS is not required for inhibition by haloduracin and galolacticin, both of which are two-peptide lantibiotics closely related to Smb. LsrS appears to be a well-conserved protein that is present in many streptococci, including S. mutans. Inactivation of SMU.662, an LsrS homolog, in S. mutans strains UA159 and V403 rendered the cells refractory to Smb-mediated killing. Furthermore, overexpression of LsrS in S. mutans created cells more susceptible to Smb. Although LsrS and its homolog contain the CAAX protease domain, we demonstrate that inactivation of the putative active sites on the LsrS protein has no effect on its receptor-like function. This is the first report describing a highly conserved membrane protein that displays a receptor-like function for lantibiotics.
Collapse
|
6
|
SmbFT, a putative ABC transporter complex, confers protection against the lantibiotic Smb in Streptococci. J Bacteriol 2013; 195:5592-601. [PMID: 24123816 DOI: 10.1128/jb.01060-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, a dental pathogen, secretes different kinds of lantibiotic and nonlantibiotic bacteriocins. For self-protection, a bacteriocin producer strain must possess one or more cognate immunity mechanisms. We report here the identification of one such immunity complex in S. mutans strain GS-5 that confers protection against Smb, a two-component lantibiotic. The immunity complex that we identified is an ABC transporter composed of two proteins: SmbF (the ATPase component) and SmbT (the permease component). Both of the protein-encoding genes are located within the smb locus. We show that GS-5 becomes sensitized to Smb upon deletion of smbT, which makes the ABC transporter nonfunctional. To establish the role SmbFT in providing immunity, we heterologously expressed this ABC transporter complex in four different sensitive streptococcal species and demonstrated that it can confer resistance against Smb. To explore the specificity of SmbFT in conferring resistance, we tested mutacin IV (a nonlantibiotic), nisin (a single peptide lantibiotics), and three peptide antibiotics (bacitracin, polymyxin B, and vancomycin). We found that SmbFT does not recognize these structurally different peptides. We then tested whether SmbFT can confer protection against haloduracin, another two-component lantibiotic that is structurally similar to Smb; SmbFT indeed conferred protection against haloduracin. SmbFT can also confer protection against an uncharacterized but structurally similar lantibiotic produced by Streptococcus gallolyticus. Our data suggest that SmbFT truly displays immunity function and confer protection against Smb and structurally similar lantibiotics.
Collapse
|
7
|
Paralanov V, Lu J, Duffy LB, Crabb DM, Shrivastava S, Methé BA, Inman J, Yooseph S, Xiao L, Cassell GH, Waites KB, Glass JI. Comparative genome analysis of 19 Ureaplasma urealyticum and Ureaplasma parvum strains. BMC Microbiol 2012; 12:88. [PMID: 22646228 PMCID: PMC3511179 DOI: 10.1186/1471-2180-12-88] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 05/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background Ureaplasma urealyticum (UUR) and Ureaplasma parvum (UPA) are sexually transmitted bacteria among humans implicated in a variety of disease states including but not limited to: nongonococcal urethritis, infertility, adverse pregnancy outcomes, chorioamnionitis, and bronchopulmonary dysplasia in neonates. There are 10 distinct serotypes of UUR and 4 of UPA. Efforts to determine whether difference in pathogenic potential exists at the ureaplasma serovar level have been hampered by limitations of antibody-based typing methods, multiple cross-reactions and poor discriminating capacity in clinical samples containing two or more serovars. Results We determined the genome sequences of the American Type Culture Collection (ATCC) type strains of all UUR and UPA serovars as well as four clinical isolates of UUR for which we were not able to determine serovar designation. UPA serovars had 0.75−0.78 Mbp genomes and UUR serovars were 0.84−0.95 Mbp. The original classification of ureaplasma isolates into distinct serovars was largely based on differences in the major ureaplasma surface antigen called the multiple banded antigen (MBA) and reactions of human and animal sera to the organisms. Whole genome analysis of the 14 serovars and the 4 clinical isolates showed the mba gene was part of a large superfamily, which is a phase variable gene system, and that some serovars have identical sets of mba genes. Most of the differences among serovars are hypothetical genes, and in general the two species and 14 serovars are extremely similar at the genome level. Conclusions Comparative genome analysis suggests UUR is more capable of acquiring genes horizontally, which may contribute to its greater virulence for some conditions. The overwhelming evidence of extensive horizontal gene transfer among these organisms from our previous studies combined with our comparative analysis indicates that ureaplasmas exist as quasi-species rather than as stable serovars in their native environment. Therefore, differential pathogenicity and clinical outcome of a ureaplasmal infection is most likely not on the serovar level, but rather may be due to the presence or absence of potential pathogenicity factors in an individual ureaplasma clinical isolate and/or patient to patient differences in terms of autoimmunity and microbiome.
Collapse
Affiliation(s)
- Vanya Paralanov
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Regulation of bacteriocin production and cell death by the VicRK signaling system in Streptococcus mutans. J Bacteriol 2012; 194:1307-16. [PMID: 22228735 DOI: 10.1128/jb.06071-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The VicRK two-component signaling system modulates biofilm formation, genetic competence, and stress tolerance in Streptococcus mutans. We show here that the VicRK modulates bacteriocin production and cell viability, in part by direct modulation of competence-stimulating peptide (CSP) production in S. mutans. Global transcriptome and real-time transcriptional analysis of the VicK-deficient mutant (SmuvicK) revealed significant modulation of several bacteriocin-related loci, including nlmAB, nlmC, and nlmD (P < 0.001), suggesting a role for the VicRK in producing mutacins IV, V, and VI. Bacteriocin overlay assays revealed an altered ability of the vic mutants to kill related species. Since a well-conserved VicR binding site (TGTWAH-N(5)-TGTWAH) was identified within the comC coding region, we confirmed VicR binding to this sequence using DNA footprinting. Overexpression of the vic operon caused growth-phase-dependent repression of comC, comDE, and comX. In the vic mutants, transcription of nlmC/cipB encoding mutacin V, previously linked to CSP-dependent cell lysis, as well as expression of its putative immunity factor encoded by immB, were significantly affected relative to the wild type (P < 0.05). In contrast to previous reports that proposed a hyper-resistant phenotype for the VicK mutant in cell viability, the release of extracellular genomic DNA was significantly enhanced in SmuvicK (P < 0.05), likely as a result of increased autolysis compared with the parent. The drastic influence of VicRK on cell viability was also demonstrated using vic mutant biofilms. Taken together, we have identified a novel regulatory link between the VicRK and ComDE systems to modulate bacteriocin production and cell viability of S. mutans.
Collapse
|
9
|
Kamiya RU, Taiete T, Gonçalves RB. Mutacins of Streptococcus mutans. Braz J Microbiol 2011; 42:1248-58. [PMID: 24031748 PMCID: PMC3768731 DOI: 10.1590/s1517-83822011000400001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 03/21/2011] [Accepted: 05/30/2011] [Indexed: 11/22/2022] Open
Abstract
The colonization and accumulation of Streptococcus mutans are influenced by various factors in the oral cavity, such as nutrition and hygiene conditions of the host, salivary components, cleaning power and salivary flow and characteristics related with microbial virulence factors. Among these virulence factors, the ability to synthesize glucan of adhesion, glucan-binding proteins, lactic acid and bacteriocins could modify the infection process and pathogenesis of this species in the dental biofilm. This review will describe the role of mutacins in transmission, colonization, and/or establishment of S. mutans, the major etiological agent of human dental caries. In addition, we will describe the method for detecting the production of these inhibitory substances in vitro (mutacin typing), classification and diversity of mutacins and the regulatory mechanisms related to its synthesis.
Collapse
Affiliation(s)
- Regianne Umeko Kamiya
- Instituto de Ciências Biológicas e da Saúde da Universidade Federal de Alagoas , Maceió, AL , Brasil
| | | | | |
Collapse
|
10
|
Uju DE, Obioma NP. Anticariogenic potentials of clove, tobacco and bitter kola. ASIAN PAC J TROP MED 2011; 4:814-8. [PMID: 22014739 DOI: 10.1016/s1995-7645(11)60200-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/18/2011] [Accepted: 06/15/2011] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate three tropical plant materials - clove seeds [Syzygium aromaticum (S. aromaticum)], bitter kola fruits [Garcinia kola (G. kola)] and tobacco leaves (Nicotiana species) as potential targeted killers of Streptococcus mutans (S. mutans), a cavity-causing bacterium (gram-positive, facultative anaerobe) that resides in a multispecies microbial community (dental plaque) for the treatment of dental caries (tooth decay). METHODS Thirty one (31) teeth samples were collected from patients with obvious signs of tooth decay (swollen gum, weak or fallen tooth, etc.) using sterile swab sticks. These samples were collected from two major dental clinics in Nsukka, Enugu State, Nigeria and investigated by spread inoculation onto sterile blood agar and Mueller Hinton agar (MHA) respectively and incubated at 37 °C for 24 h. The discrete colonies obtained were further re-inoculated onto sterile Mitis salivarius agar (MSA) plates and incubated as above. The isolates were characterized by gram staining and catalase test. Tobacco leaves, clove seeds and bitter kola fruits were ground into powder, extracted with three different solvents (n-hexane, hot water and ethanol), filtered, dried and stored in clean containers, corked and kept until used. The plant extracts were investigated for phytochemistry, minimum inhibitory concentration (MIC), minimum cidal concentration (MCC) and compared with some conventional antibiotics commonly used against tooth decay. Antibiotic sensitivity test was also carried out. The results were statistically analyzed. RESULTS The extracts showed varied phytochemical composition but most abundantly the flavonoids. Our result also shows that females (16) have more tooth decay than males (15) and that 16 samples were very bloody while 15 were slightly bloody. The microbial characterization showed that 18 samples were catalase-positive indicating the presence of S. mutans while 13 were catalase-negative suspected to be Staphylococcus spp. The Gram reaction confirmed 13 Gram-negative and 18 Gram-positive organisms. The n-hexane extract had the best antimicrobial activity followed by the ethanol and lastly hot water. MIC showed that n-hexane clove extract had the largest inhibition zone diameter, followed by bitter kola extract and lastly tobacco extract. The antibiotic sensitivity test credited ciprofloxacin the best because it exhibited broad spectrum of action. CONCLUSIONS Since the n-hexane extract of clove seeds demonstrated preferential growth-inhibitory activity against the causal cariogenic pathogens (S. mutans) in dental caries, we therefore, report here that clove extract be henceforth considered as a potential ingredient in toothpaste preparation.
Collapse
Affiliation(s)
- Dibua Esther Uju
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | | |
Collapse
|
11
|
Cloning-independent and counterselectable markerless mutagenesis system in Streptococcus mutans. Appl Environ Microbiol 2011; 77:8025-33. [PMID: 21948849 DOI: 10.1128/aem.06362-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion duplication mutagenesis and allelic replacement mutagenesis are among the most commonly utilized approaches for targeted mutagenesis in bacteria. However, both techniques are limited by a variety of factors that can complicate mutant phenotypic studies. To circumvent these limitations, multiple markerless mutagenesis techniques have been developed that utilize either temperature-sensitive plasmids or counterselectable suicide vectors containing both positive- and negative-selection markers. For many species, these techniques are not especially useful due to difficulties of cloning with Escherichia coli and/or a lack of functional negative-selection markers. In this study, we describe the development of a novel approach for the creation of markerless mutations. This system employs a cloning-independent methodology and should be easily adaptable to a wide array of Gram-positive and Gram-negative bacterial species. The entire process of creating both the counterselection cassette and mutation constructs can be completed using overlapping PCR protocols, which allows extremely quick assembly and eliminates the requirement for either temperature-sensitive replicons or suicide vectors. As a proof of principle, we used Streptococcus mutans reference strain UA159 to create markerless in-frame deletions of 3 separate bacteriocin genes as well as triple mutants containing all 3 deletions. Using a panel of 5 separate wild-type S. mutans strains, we further demonstrated that the procedure is nearly 100% efficient at generating clones with the desired markerless mutation, which is a considerable improvement in yield compared to existing approaches.
Collapse
|
12
|
Nguyen T, Zhang Z, Huang IH, Wu C, Merritt J, Shi W, Qi F. Genes involved in the repression of mutacin I production in Streptococcus mutans. MICROBIOLOGY-SGM 2009; 155:551-556. [PMID: 19202103 DOI: 10.1099/mic.0.021303-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans is considered a primary pathogen for human dental caries. Its ability to produce a variety of peptide antibiotics called mutacins may play an important role in its invasion and establishment in the dental biofilm. S. mutans strain UA140 produces two types of mutacins, the lantibiotic mutacin I and the non-lantibiotic mutacin IV. In a previous study, we constructed a random insertional-mutation library to screen for genes involved in regulating mutacin I production, and found 25 genes/operons that have a positive effect on mutacin I production. In this study, we continued our previous work to identify genes that are negatively involved in mutacin I production. By using a high-phosphate brain heart infusion agar medium that inhibited mutacin I production of the wild-type, we isolated 77 clones that consistently produced mutacin I under repressive conditions. From the 34 clones for which we were able to obtain a sequence, 17 unique genes were identified. These genes encompass a variety of functional groups, including central metabolism, surface binding and sugar transport, and unknown functions. Some of the 17 mutations were further characterized and shown to increase mutacin gene expression during growth when the gene is usually not expressed in the wild-type. These results further demonstrate an intimate and intricate connection between mutacin production and the overall cellular homeostasis.
Collapse
Affiliation(s)
- Trang Nguyen
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Zhijun Zhang
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73034, USA
| | - I-Hsiu Huang
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73034, USA
| | - Chenggang Wu
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73034, USA
| | - Justin Merritt
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73034, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Fengxia Qi
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73034, USA
| |
Collapse
|
13
|
Characterization of irvR, a novel regulator of the irvA-dependent pathway required for genetic competence and dextran-dependent aggregation in Streptococcus mutans. J Bacteriol 2008; 190:7268-74. [PMID: 18757533 DOI: 10.1128/jb.00967-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies identified irvA as a normally repressed but highly inducible transcription regulator capable of repressing mutacin I gene expression in Streptococcus mutans. In this study, we aimed to identify and characterize the regulator(s) responsible for repressing the expression of irvA. An uncharacterized open reading frame (SMU.1398) located immediately adjacent to irvA and annotated as a putative transcription repressor was identified as a likely candidate. The results of mutation studies confirmed that the expression of irvA was greatly increased in the SMU.1398 background. Mutation of SMU.1398 ("irvR") abolished genetic competence and reduced the expression of the late competence genes/operons comEA, comY, and dprA without affecting the expression of the known competence regulators comC, comED, or comX. In addition, irvR was found to be a potent negative regulator of dextran-dependent aggregation (DDAG) and gbpC expression. Each of these irvR mutant phenotypes could be rescued with a double mutation of irvA or complemented by introducing a wild-type copy of irvR on a shuttle vector. These data indicate that the repression of irvA is critically dependent upon irvR and that irvA repression is essential for the development of genetic competence and the proper control of DDAG in S. mutans.
Collapse
|
14
|
Abstract
Inactivation or selective modification is essential to elucidate the putative function of a gene. The present study describes an improved Cre-loxP-based method for markerless multiple gene deletion in Streptococcus mutans, the principal etiological agent of dental caries. This modified method uses two mutant loxP sites, which after recombination creates a double-mutant loxP site that is poorly recognized by Cre recombinase, facilitating multiple gene deletions in a single genetic background. The effectiveness of this modified strategy was demonstrated by the construction of both single and double gene deletions at the htrA and clpP loci on the chromosome of Streptococcus mutans. HtrA and ClpP play key roles in the processing and maturation of several important proteins, including many virulence factors. Deletion of these genes resulted in reducing the organism's ability to withstand exposure to low pH and oxidative agents. The method described here is simple and efficient and can be easily implemented for multiple gene deletions with S. mutans and other streptococci.
Collapse
|
15
|
Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 2007; 71:653-70. [PMID: 18063722 PMCID: PMC2168648 DOI: 10.1128/mmbr.00024-07] [Citation(s) in RCA: 386] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While reductionism has greatly advanced microbiology in the past 400 years, assembly of smaller pieces just could not explain the whole! Modern microbiologists are learning "system thinking" and "holism." Such an approach is changing our understanding of microbial physiology and our ability to diagnose/treat microbial infections. This review uses oral microbial communities as a focal point to describe this new trend. With the common name "dental plaque," oral microbial communities are some of the most complex microbial floras in the human body, consisting of more than 700 different bacterial species. For a very long time, oral microbiologists endeavored to use reductionism to identify the key genes or key pathogens responsible for oral microbial pathogenesis. The limitations of reductionism forced scientists to begin adopting new strategies using emerging concepts such as interspecies interaction, microbial community, biofilms, polymicrobial disease, etc. These new research directions indicate that the whole is much more than the simple sum of its parts, since the interactions between different parts resulted in many new physiological functions which cannot be observed with individual components. This review describes some of these interesting interspecies-interaction scenarios.
Collapse
Affiliation(s)
- Howard K Kuramitsu
- Department of Oral Boiology, School of Dental Medicine, State University of New York, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
16
|
Kreth J, Hung DCI, Merritt J, Perry J, Zhu L, Goodman SD, Cvitkovitch DG, Shi W, Qi F. The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. MICROBIOLOGY-SGM 2007; 153:1799-1807. [PMID: 17526837 PMCID: PMC2062498 DOI: 10.1099/mic.0.2007/005975-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Streptococcus pneumoniae, competence and bacteriocin genes are controlled by two two-component systems, ComED and BlpRH, respectively. In Streptococcus mutans, both functions are controlled by the ComED system. Recent studies in S. mutans revealed a potential ComE binding site characterized by two 11 bp direct repeats shared by each of the bacteriocin genes responsive to the competence-stimulating peptide (CSP). Interestingly, this sequence was not found in the upstream region of the CSP structural gene comC. Since comC is suggested to be part of a CSP-responsive and ComE-dependent autoregulatory loop, it was of interest to determine how it was possible that the ComED system could simultaneously regulate bacteriocin expression and natural competence. Using the intergenic region IGS1499, shared by the CSP-responsive bacteriocin nlmC and comC, it was demonstrated that both genes are likely to be regulated by a bifunctional ComE. In a comE null mutant, comC gene expression was increased similarly to a fully induced wild-type. In contrast, nlmC gene expression was nearly abolished. Deletion of ComD exerted a similar effect on both genes to that observed with the comE null mutation. Electrophoretic mobility shift assays (EMSAs) with purified ComE revealed specific shift patterns dependent on the presence of one or both direct repeats in the nlmC-comC promoter region. The two direct repeats were also required for the promoter activity of both nlmC and comC. These results suggest that gene regulation of comC in S. mutans is fundamentally different from that reported for S. pneumoniae, which implicates a unique regulatory mechanism that allows the coordination of bacteriocin production with competence development.
Collapse
Affiliation(s)
- Jens Kreth
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - David C. I. Hung
- Division of Diagnostic Science, University of Southern California School of Dentistry, Los Angeles, CA
| | | | - Julie Perry
- Dental Research Institute, University of Toronto, ON, Canada
| | - Lin Zhu
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Steven D. Goodman
- Division of Diagnostic Science, University of Southern California School of Dentistry, Los Angeles, CA
| | | | - Wenyuan Shi
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Fengxia Qi
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans. J Bacteriol 2007; 190:68-77. [PMID: 17965153 DOI: 10.1128/jb.00990-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The gram-positive bacterium Streptococcus mutans is the primary causative agent in the formation of dental caries in humans. The ability of S. mutans to adapt and to thrive in the hostile environment of the oral cavity suggests that this cariogenic pathogen is capable of sensing and responding to different environmental stimuli. This prompted us to investigate the role of two-component signal transduction systems (TCS), particularly the sensor kinases, in response to environmental stresses. Analysis of the annotated genome sequence of S. mutans indicates the presence of 13 putative TCS. Further bioinformatics analysis in our laboratory has identified an additional TCS in the genome of S. mutans. We verified the presence of the 14 sensor kinases by using PCR and Southern hybridization in 13 different S. mutans strains and found that not all of the sensor kinases are encoded by each strain. To determine the potential role of each TCS in the stress tolerance of S. mutans UA159, insertion mutations were introduced into the genes encoding the individual sensor kinases. We were successful in inactivating all of the sensor kinases, indicating that none of the TCS are essential for the viability of S. mutans. The mutant S. mutans strains were assessed for their ability to withstand various stresses, including osmotic, thermal, oxidative, and antibiotic stress, as well as the capacity to produce mutacin. We identified three sensor kinases, Smu486, Smu1128, and Smu1516, which play significant roles in stress tolerance of S. mutans strain UA159.
Collapse
|
18
|
Merritt J, Tsang P, Zheng L, Shi W, Qi F. Construction of a counterselection-based in-frame deletion system for genetic studies of Streptococcus mutans. ACTA ACUST UNITED AC 2007; 22:95-102. [PMID: 17311632 DOI: 10.1111/j.1399-302x.2007.00329.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic studies of Streptococcus mutans have benefited greatly from the numerous techniques that have been successfully adapted for use in this organism. One notable exception is the lack of a negative selection system that can be employed for the easy isolation of markerless in-frame deletions. In this study, we report the development of a galK/galactose-based negative selection system in S. mutans for this purpose. This system consists of a recipient strain (IFD140) that contains a deletion in the galKTE operon and a suicide vector (pIFD-Sm) that carries the S. mutans galK open reading frame fused to the constitutive lactate dehydrogenase (ldh) promoter. Using this system we created a markerless in-frame deletion in the beta-galactosidase (lacG) gene within the S. mutans lactose operon. After vector integration, plasmid excision after counterselection appeared to have occurred in 100% of the galactose-resistant colonies and resulted in in-frame deletions in 50% of the screened isolates. Based on the ratio of galactose-resistant cells to total cells, we determined that plasmid excision occurred at a frequency of approximately 1/3000 cells. Furthermore, the simplicity of this system should make it adaptable for use in numerous other gram-positive and gram-negative organisms.
Collapse
Affiliation(s)
- J Merritt
- Department of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.
| | | | | | | | | |
Collapse
|
19
|
Kreth J, Merritt J, Zhu L, Shi W, Qi F. Cell density- and ComE-dependent expression of a group of mutacin and mutacin-like genes in Streptococcus mutans. FEMS Microbiol Lett 2006; 265:11-7. [PMID: 16981904 DOI: 10.1111/j.1574-6968.2006.00459.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Streptococcus mutans is a major cariogenic inhabitant of the high cell density oral biofilm (dental plaque). In previous studies, we showed that production of one of its virulence factors, the bacteriocin mutacin IV, was regulated by high cell density as well as the competence regulatory system ComED. In this study, we utilized luciferase fusions and real-time reverse transcriptase polymerase chain reaction (RT-PCR), to demonstrate that high cell density and ComED also regulate an uncharacterized group of mutacin and mutacin-like genes. Under high cell density or in the presence of externally added competence-stimulating peptide (CSP), gene expression increased 10- to 30-fold. Interestingly, high cell density was able to bypass the requirement for CSP addition. However, both cell density and CSP-dependent gene expression had a strict requirement for the ComE response regulator.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Oral Biology and Medicine, UCLA School of Dentistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
20
|
Tsang P, Merritt J, Shi W, Qi F. IrvA-dependent and IrvA-independent pathways for mutacin gene regulation in Streptococcus mutans. FEMS Microbiol Lett 2006; 261:231-4. [PMID: 16907725 DOI: 10.1111/j.1574-6968.2006.00351.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Streptococcus mutans is a primary pathogen associated with dental caries. Its bacteriocin (mutacin) production ability is thought to play an important role in maintaining competitiveness in the multispecies oral biofilm. Previous studies have demonstrated that the production of the lantibiotic, mutacin I, is responsive to multiple input signals and that a putative inducible repressor, irvA, seems to be involved in the luxS-mediated mutacin I gene regulation pathway. In this study, we demonstrate that these multiple inputs can be divided into two pathways: irvA-dependent and irvA-independent. Similar to luxS, signals mediated through vicK, pttB and hk03 exert their effect possibly through modulating irvA transcription, whereas signals mediated through ciaH, hrcA, adhE, and Smu1281 exert their effect through an unknown mechanism independent of irvA.
Collapse
Affiliation(s)
- Phoebe Tsang
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|