1
|
Han Y, Ge H, Xu C, Zeng G, Li Z, Huang X, Zhang Y, Liu Z, Wang Y, Fang L. Glycosyltransferase Slr1064 regulates carbon metabolism by modulating the levels of UDP-GlcNAc in Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2024; 243:936-950. [PMID: 38831647 DOI: 10.1111/nph.19872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 06/05/2024]
Abstract
Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.
Collapse
Affiliation(s)
- Yuling Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Congzhuo Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Gang Zeng
- Zunyi Normal College, Zunyi, 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Ortega-Martínez P, Nikkanen L, Wey LT, Florencio FJ, Allahverdiyeva Y, Díaz-Troya S. Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2024; 243:162-179. [PMID: 38706429 DOI: 10.1111/nph.19793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.
Collapse
Affiliation(s)
- Pablo Ortega-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Sandra Díaz-Troya
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| |
Collapse
|
3
|
Huang C, Duan X, Ge H, Xiao Z, Zheng L, Wang G, Dong J, Wang Y, Zhang Y, Huang X, An H, Xu W, Wang Y. Parallel Proteomic Comparison of Mutants With Altered Carbon Metabolism Reveals Hik8 Regulation of P II Phosphorylation and Glycogen Accumulation in a Cyanobacterium. Mol Cell Proteomics 2023; 22:100582. [PMID: 37225018 PMCID: PMC10315926 DOI: 10.1016/j.mcpro.2023.100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators. A number of proteins showing differential expression in one or more mutants were identified, including four proteins that are unanimously upregulated or downregulated in all five mutants. These represent the important nodes of the intricate and elegant regulatory network for carbon metabolism. Moreover, serine phosphorylation of PII, a key signaling protein sensing and regulating in vivo carbon/nitrogen (C/N) homeostasis through reversible phosphorylation, is massively increased with a concomitant significant decrease in glycogen content only in the hik8-knockout mutant, which also displays impaired dark viability. An unphosphorylatable PII S49A substitution restored the glycogen content and rescued the dark viability of the mutant. Together, our study not only establishes the quantitative relationship between the targets and the corresponding regulators and elucidated their specificity and cross-talk but also unveils that Hik8 regulates glycogen accumulation through negative regulation of PII phosphorylation, providing the first line of evidence that links the two-component system with PII-mediated signal transduction and implicates them in the regulation of carbon metabolism.
Collapse
Affiliation(s)
- Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Moreno-Cabezuelo JÁ, Gómez-Baena G, Díez J, García-Fernández JM. Integrated Proteomic and Metabolomic Analyses Show Differential Effects of Glucose Availability in Marine Synechococcus and Prochlorococcus. Microbiol Spectr 2023; 11:e0327522. [PMID: 36722960 PMCID: PMC10100731 DOI: 10.1128/spectrum.03275-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/29/2022] [Indexed: 02/02/2023] Open
Abstract
We compared changes induced by the addition of 100 nM and 5 mM glucose on the proteome and metabolome complements in Synechococcus sp. strains WH8102, WH7803, and BL107 and Prochlorococcus sp. strains MED4, SS120, and MIT9313, grown either under standard light conditions or in darkness. Our results suggested that glucose is metabolized by these cyanobacteria, using primarily the oxidative pentoses and Calvin pathways, while no proof was found for the involvement of the Entner-Doudoroff pathway in this process. We observed differences in the effects of glucose availability, both between genera and between Prochlorococcus MED4 and SS120 strains, which might be related to their specific adaptations to the environment. We found evidence for fermentation in Prochlorococcus sp. strain SS120 and Synechococcus sp. strain WH8102 after 5 mM glucose addition. Our results additionally suggested that marine cyanobacteria can detect nanomolar glucose concentrations in the environment and that glucose might be used to sustain metabolism under darkness. Furthermore, the KaiB and KaiC proteins were also affected in Synechococcus sp. WH8102, pointing to a direct link between glucose assimilation and circadian rhythms in marine cyanobacteria. In conclusion, our study provides a wide overview on the metabolic effects induced by glucose availability in representative strains of the diverse marine picocyanobacteria, providing further evidence for the importance of mixotrophy in marine picocyanobacteria. IMPORTANCE Glucose uptake by marine picocyanobacteria has been previously described and strongly suggests they are mixotrophic organisms (capable of using energy from the sun to make organic matter, but also to directly use organic matter from the environment when available). However, a detailed analysis of the effects of glucose addition on the proteome and metabolome of these microorganisms had not been carried out. Here, we analyzed three Prochlorococcus sp. and three Synechococcus sp. strains which were representative of several marine picocyanobacterial clades. We observed differential features in the effects of glucose availability, depending on both the genus and strain; our study illuminated the strategies utilized by these organisms to metabolize glucose and showed unexpected links to other pathways, such as circadian regulation. Furthermore, we found glucose addition had profound effects in the microbiome, favoring the growth of coexisting heterotrophic bacteria.
Collapse
Affiliation(s)
- José Ángel Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular-Campus de Excelencia Agroalimentaria CEIA3, Universidad de Córdoba, Cordoba, Spain
| | - Guadalupe Gómez-Baena
- Departamento de Bioquímica y Biología Molecular-Campus de Excelencia Agroalimentaria CEIA3, Universidad de Córdoba, Cordoba, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular-Campus de Excelencia Agroalimentaria CEIA3, Universidad de Córdoba, Cordoba, Spain
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular-Campus de Excelencia Agroalimentaria CEIA3, Universidad de Córdoba, Cordoba, Spain
| |
Collapse
|
5
|
Tsuzuki Y, Tsukatani Y, Yamakawa H, Itoh S, Fujita Y, Yamamoto H. Effects of Light and Oxygen on Chlorophyll d Biosynthesis in a Marine Cyanobacterium Acaryochloris marina. PLANTS (BASEL, SWITZERLAND) 2022; 11:915. [PMID: 35406896 PMCID: PMC9003380 DOI: 10.3390/plants11070915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
A marine cyanobacterium Acaryochloris marina synthesizes chlorophyll (Chl) d as a major Chl. Chl d has a formyl group at its C3 position instead of a vinyl group in Chl a. This modification allows Chl d to absorb far-red light addition to visible light, yet the enzyme catalyzing the formation of the C3-formyl group has not been identified. In this study, we focused on light and oxygen, the most important external factors in Chl biosynthesis, to investigate their effects on Chl d biosynthesis in A. marina. The amount of Chl d in heterotrophic dark-grown cells was comparable to that in light-grown cells, indicating that A. marina has a light-independent pathway for Chl d biosynthesis. Under anoxic conditions, the amount of Chl d increased with growth in light conditions; however, no growth was observed in dark conditions, indicating that A. marina synthesizes Chl d normally even under such “micro-oxic” conditions caused by endogenous oxygen production. Although the oxygen requirement for Chl d biosynthesis could not be confirmed, interestingly, accumulation of pheophorbide d was observed in anoxic and dark conditions, suggesting that Chl d degradation is induced by anaerobicity and darkness.
Collapse
Affiliation(s)
- Yuki Tsuzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Yusuke Tsukatani
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan;
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Shigeru Itoh
- Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan;
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| |
Collapse
|
6
|
Universal Molecular Triggers of Stress Responses in Cyanobacterium Synechocystis. Life (Basel) 2019; 9:life9030067. [PMID: 31434306 PMCID: PMC6789579 DOI: 10.3390/life9030067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic analysis of stress-induced transcription in the cyanobacterium Synechocystis sp. strain PCC 6803 identifies a number of genes as being induced in response to most abiotic stressors (heat, osmotic, saline, acid stress, strong light, and ultraviolet radiation). Genes for heat-shock proteins (HSPs) are activated by all these stresses and form a group that universally responds to all environmental changes. The functions of universal triggers of stress responses in cyanobacteria can be performed by reactive oxygen species (ROS), in particular H2O2, as well as changes in the redox potential of the components of the photosynthetic electron transport chain. The double mutant of Synechocystis sp. PCC 6803 (katG/tpx, or sll1987/sll0755), which is defective in antioxidant enzymes catalase (KatG) and thioredoxin peroxidase (Tpx), cannot grow in the presence of exogenous hydrogen peroxide (H2O2); and it is extremely sensitive to low concentrations of H2O2, especially under conditions of cold stress. Experiments on this mutant demonstrate that H2O2 is involved in regulation of gene expression that responds to a decrease in ambient temperature, and affects both the perception and the signal transduction of cold stress. In addition, they suggest that formation of ROS largely depends on the physical state of the membranes such as fluidity or viscosity. In cyanobacteria, an increase in membrane turnover leads to a decrease in the formation of ROS and an increase in resistance to cold stress. Therefore: (1) H2O2 is the universal trigger of stress responses in cyanobacterial cells; (2) ROS formation (in particular, H2O2) depends on the physical properties of both cytoplasmic and thylakoid membranes; (3) The destructive effect of H2O2 is reduced by increasing of fluidity of biological membranes.
Collapse
|
7
|
Chen Q, Arents J, Schuurmans JM, Ganapathy S, de Grip WJ, Cheregi O, Funk C, dos Santos FB, Hellingwerf KJ. Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a ∆PSI strain of Synechocystis sp. PCC6803. Metab Eng 2019; 52:68-76. [DOI: 10.1016/j.ymben.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 11/28/2022]
|
8
|
Xu W, Wang Y. Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803. Appl Biochem Biotechnol 2019; 188:1022-1065. [PMID: 30778824 DOI: 10.1007/s12010-019-02971-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a photoautotrophic prokaryote with plant-like photosynthetic machineries which significantly contribute to global carbon fixation and atmospheric oxygen production. Because of the relatively short cell doubling time, small size of the genome, and the ease for genetic manipulation, Synechocystis is a popular model organism for studies including photosynthesis and biofuel production. The cyanobacterium contains 12 eukaryotic type Ser/Thr kinases (SpkA-L) and 49 histidine kinases (Hik1-47 and Sll1334 and Sll5060 are named as Hik48 and Hik49, respectively, in this review) of the two-component system. All SpkA-L kinases have a eukaryotic kinase DFG signature in their A-loops. Based on the types of the kinase domains, the Spks can be separated into three groups: one group contains SpkA and SpkG which are related to human kinases, while SpkH-L are in another group that is distinct from human kinases. The third group contains SpkB-F which are between the first two groups. Four histidine kinases (Hiks17, 36, 45, and 48) lack a clear histidine kinase domain, and the conserved phosphorylatable histidine residue could not be identified for six histidine kinases (Hiks11, 18, 29, 37, 39, and 43) even though they have clear histidine kinase domains. Each of the remaining 39 has a histidine kinase domain with the conserved histidine residue. Eight hybrid histidine kinases contain one or two receiver domains, and they all, except Hik25 (Slr0222), have the conserved phosphorylatable aspartate. The disruptants of all kinases except hik13 and hik15 have been generated, and the majority of them have modest or no obvious phenotypes, indicating other kinases could functionally compensate the loss of a particular kinase. This review presents a comprehensive discussion including a spectrum of sequence, domain architecture, in vivo function, and proteomics investigations of Ser/Thr and histidine kinases. Understanding the sequences, domain architectures, and biology of the kinases will help to integrate "omic" data to clarify their exact biochemical functions.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing, 100101, China.
| |
Collapse
|
9
|
Moreno-Cabezuelo JÁ, López-Lozano A, Díez J, García-Fernández JM. Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria. PeerJ 2019; 6:e6248. [PMID: 30648008 PMCID: PMC6330958 DOI: 10.7717/peerj.6248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background Our team discovered that Prochlorococcus can take up glucose, in a process that changes the transcriptional pattern of several genes involved in glucose metabolization. We have also shown that glcH encodes a very high affinity glucose transporter, and that glucose is taken up by natural Prochlorococcus populations. We demonstrated that the kinetic parameters of glucose uptake show significant diversity in different Prochlorococcus and Synechococcus strains. Here, we tested whether the transcriptional response of glcH to several glucose concentrations and light conditions was also different depending on the studied strain. Methods Cultures were grown in the light, supplemented with five different glucose concentrations or subjected to darkness, and cells harvested after 24 h of treatment. qRT-PCR was used to determine glcH expression in four Prochlorococcus and two Synechococcus strains. Results In all studied strains glcH was expressed in the absence of glucose, and it increased upon glucose addition to cultures. The changes differed depending on the strain, both in the magnitude and in the way cells responded to the tested glucose concentrations. Unlike the other strains, Synechococcus BL107 showed the maximum glucose uptake at 5 nM glucose. Darkness induced a strong decrease in glcH expression, especially remarkable in Prochlorococcus MIT9313. Discussion Our results suggest that marine picocyanobacteria are actively monitoring the availability of glucose, to upregulate glcH expression in order to exploit the presence of sugars in the environment. The diverse responses observed in different strains suggest that the transcriptional regulation of glucose uptake has been adjusted by evolutive selection. Darkness promotes a strong decrease in glcH expression in all studied strains, which fits with previous results on glucose uptake in Prochlorococcus. Overall, this work reinforces the importance of mixotrophy for marine picocyanobacteria.
Collapse
Affiliation(s)
- José Ángel Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
10
|
Skotnicová P, Sobotka R, Shepherd M, Hájek J, Hrouzek P, Tichý M. The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J Biol Chem 2018; 293:12394-12404. [PMID: 29925590 DOI: 10.1074/jbc.ra118.003441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/14/2018] [Indexed: 12/27/2022] Open
Abstract
Protoporphyrinogen IX oxidase (PPO), the last enzyme that is common to both chlorophyll and heme biosynthesis pathways, catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX. PPO has several isoforms, including the oxygen-dependent HemY and an oxygen-independent enzyme, HemG. However, most cyanobacteria encode HemJ, the least characterized PPO form. We have characterized HemJ from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) as a bona fide PPO; HemJ down-regulation resulted in accumulation of tetrapyrrole precursors and in the depletion of chlorophyll precursors. The expression of FLAG-tagged Synechocystis 6803 HemJ protein (HemJ.f) and affinity isolation of HemJ.f under native conditions revealed that it binds heme b The most stable HemJ.f form was a dimer, and higher oligomeric forms were also observed. Using both oxygen and artificial electron acceptors, we detected no enzymatic activity with the purified HemJ.f, consistent with the hypothesis that the enzymatic mechanism for HemJ is distinct from those of other PPO isoforms. The heme absorption spectra and distant HemJ homology to several membrane oxidases indicated that the heme in HemJ is redox-active and involved in electron transfer. HemJ was conditionally complemented by another PPO, HemG from Escherichia coli. If grown photoautotrophically, the complemented strain accumulated tripropionic tetrapyrrole harderoporphyrin, suggesting a defect in enzymatic conversion of coproporphyrinogen III to protoporphyrinogen IX, catalyzed by coproporphyrinogen III oxidase (CPO). This observation supports the hypothesis that HemJ is functionally coupled with CPO and that this coupling is disrupted after replacement of HemJ by HemG.
Collapse
Affiliation(s)
- Petra Skotnicová
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Roman Sobotka
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Mark Shepherd
- the School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NZ,United Kingdom
| | - Jan Hájek
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Pavel Hrouzek
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Martin Tichý
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic, .,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| |
Collapse
|
11
|
Zavřel T, Očenášová P, Červený J. Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLoS One 2017; 12:e0189130. [PMID: 29216280 PMCID: PMC5720811 DOI: 10.1371/journal.pone.0189130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022] Open
Abstract
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium, whose substrains can vary on both genotype and phenotype levels. Previously described phenotypic variations include ability of mixotrophic growth, ability of movement on agar plates and variations in pigments composition or cell size. In this study, we report for the first time significant variation among Synechocystis substrains in complex cellular traits such as growth rate, photosynthesis efficiency, cellular dry weight and cellular composition (including protein or carbohydrates content). We also confirmed previously reported differences in cell size. Synechocystis cultures were cultivated in controlled environment of flat panel photobioreactors under red, blue and white light of intensities up to 790 μmol(photons) m-2 s-1, temperatures 23°C–60°C, input CO2 concentrations ranging from 400 to 15 000 ppm and in BG11 cultivation medium with and without addition of NaCl. Three Synechocystis substrains were used for the comparative experiments: GT-L, GT-B (Brno, CZ) and PCC-B (Brno, CZ). Growth rates of Synechocystis GT-B were inhibited under high intensities of red light (585–670 nm), and growth rates of both substrains GT-B and PCC-B were inhibited under photons of wavelengths 485–585 nm and 670–700 nm. Synechocystis GT-B was more sensitive to low temperatures than the other two tested substrains, and Synechocystis GT-L was sensitive to the presence of NaCl in the cultivation media. The results suggest that stress sensitivity of commonly used Synechocystis substrains can strongly vary, similarly as glucose tolerance or motility as reported previously. Our study further supports the previous statement that emphasizes importance of proper Synechocystis substrains selection and awareness of phenotypical differences among Synechocystis substrains which is crucial for comparative and reproducible research. This is highly relevant for studies related to stress physiology and development of sustainable biotechnological applications.
Collapse
Affiliation(s)
- Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
- * E-mail:
| | - Petra Očenášová
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
| |
Collapse
|
12
|
Miranda H, Immerzeel P, Gerber L, Hörnaeus K, Lind SB, Pattanaik B, Lindberg P, Mamedov F, Lindblad P. Sll1783, a monooxygenase associated with polysaccharide processing in the unicellular cyanobacterium Synechocystis PCC 6803. PHYSIOLOGIA PLANTARUM 2017; 161:182-195. [PMID: 28429526 DOI: 10.1111/ppl.12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/25/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria play a pivotal role as the primary producer in many aquatic ecosystems. The knowledge on the interacting processes of cyanobacteria with its environment - abiotic and biotic factors - is still very limited. Many potential exocytoplasmic proteins in the model unicellular cyanobacterium Synechocystis PCC 6803 have unknown functions and their study is essential to improve our understanding of this photosynthetic organism and its potential for biotechnology use. Here we characterize a deletion mutant of Synechocystis PCC 6803, Δsll1783, a strain that showed a remarkably high light resistance which is related with its lower thylakoid membrane formation. Our results suggests Sll1783 to be involved in a mechanism of polysaccharide degradation and uptake and we hypothesize it might function as a sensor for cell density in cyanobacterial cultures.
Collapse
Affiliation(s)
- Hélder Miranda
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| | - Peter Immerzeel
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Lorenz Gerber
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Katarina Hörnaeus
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, SE-751 24, Sweden
| | - Sara Bergström Lind
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, SE-751 24, Sweden
| | - Bagmi Pattanaik
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| | - Fikret Mamedov
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| | - Peter Lindblad
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| |
Collapse
|
13
|
Fang L, Ge H, Huang X, Liu Y, Lu M, Wang J, Chen W, Xu W, Wang Y. Trophic Mode-Dependent Proteomic Analysis Reveals Functional Significance of Light-Independent Chlorophyll Synthesis in Synechocystis sp. PCC 6803. MOLECULAR PLANT 2017; 10:73-85. [PMID: 27585879 DOI: 10.1016/j.molp.2016.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
The photosynthetic model organism Synechocystis sp. PCC 6803 can grow in different trophic modes, depending on the availability of light and exogenous organic carbon source. However, how the protein profile changes to facilitate the cells differentially propagate in different modes has not been comprehensively investigated. Using isobaric labeling-based quantitative proteomics, we simultaneously identified and quantified 45% Synechocystis proteome across four different trophic modes, i.e., autotrophic, heterotrophic, photoheterotrophic, and mixotrophic modes. Among the 155 proteins that are differentially expressed across four trophic modes, proteins involved in nitrogen assimilation and light-independent chlorophyll synthesis are dramatically upregulated in the mixotrophic mode, concomitant with a dramatic increase of PII phosphorylation that senses carbon and nitrogen assimilation status. Moreover, functional study using a mutant defective in light-independent chlorophyll synthesis revealed that this pathway is important for chlorophyll accumulation under a cycled light/dark illumination regime, a condition mimicking day/night cycles in certain natural habitats. Collectively, these results provide the most comprehensive information on trophic mode-dependent protein expression in cyanobacterium, and reveal the functional significance of light-independent chlorophyll synthesis in trophic growth.
Collapse
Affiliation(s)
- Longfa Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Ye Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Min Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Jinlong Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Weiyang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.
| |
Collapse
|
14
|
Transcriptome and proteome analysis of nitrogen starvation responses in Synechocystis 6803 ΔglgC, a mutant incapable of glycogen storage. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
de Porcellinis AJ, Klähn S, Rosgaard L, Kirsch R, Gutekunst K, Georg J, Hess WR, Sakuragi Y. The Non-Coding RNA Ncr0700/PmgR1 is Required for Photomixotrophic Growth and the Regulation of Glycogen Accumulation in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2091-2103. [PMID: 27440548 DOI: 10.1093/pcp/pcw128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Carbohydrate metabolism is a tightly regulated process in photosynthetic organisms. In the cyanobacterium Synechocystis sp. PCC 6803, the photomixotrophic growth protein A (PmgA) is involved in the regulation of glucose and storage carbohydrate (i.e. glycogen) metabolism, while its biochemical activity and possible factors acting downstream of PmgA are unknown. Here, a genome-wide microarray analysis of a ΔpmgA strain identified the expression of 36 protein-coding genes and 42 non-coding transcripts as significantly altered. From these, the non-coding RNA Ncr0700 was identified as the transcript most strongly reduced in abundance. Ncr0700 is widely conserved among cyanobacteria. In Synechocystis its expression is inversely correlated with light intensity. Similarly to a ΔpmgA mutant, a Δncr0700 deletion strain showed an approximately 2-fold increase in glycogen content under photoautotrophic conditions and wild-type-like growth. Moreover, its growth was arrested by 38 h after a shift to photomixotrophic conditions. Ectopic expression of Ncr0700 in Δncr0700 and ΔpmgA restored the glycogen content and photomixotrophic growth to wild-type levels. These results indicate that Ncr0700 is required for photomixotrophic growth and the regulation of glycogen accumulation, and acts downstream of PmgA. Hence Ncr0700 is renamed here as PmgR1 for photomixotrophic growth RNA 1.
Collapse
Affiliation(s)
- Alice J de Porcellinis
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
- These authors contributed equally to this work
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
- These authors contributed equally to this work
| | - Lisa Rosgaard
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
- Present address: R&D Renescience Thermal Power, DONG Energy, Skærbæk-7000 Fredericia, Denmark
| | - Rebekka Kirsch
- Botanical Institute, Christian-Albrechts-University, Am Botanischen Garten 5, Kiel, D-24118, Germany
| | - Kirstin Gutekunst
- Botanical Institute, Christian-Albrechts-University, Am Botanischen Garten 5, Kiel, D-24118, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yumiko Sakuragi
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| |
Collapse
|
16
|
Zhao S, Wang X, Niu G, Dong W, Wang J, Fang Y, Lin Y, Liu L. Structural basis for copper/silver binding by theSynechocystismetallochaperone CopM. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:997-1005. [DOI: 10.1107/s2059798316011943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/21/2016] [Indexed: 11/11/2022]
Abstract
Copper homeostasis integrates multiple processes from sensing to storage and efflux out of the cell. CopM is a cyanobacterial metallochaperone, the gene for which is located upstream of a two-component system for copper resistance, but the molecular basis for copper recognition by this four-helical bundle protein is unknown. Here, crystal structures of CopM in apo, copper-bound and silver-bound forms are reported. Monovalent copper/silver ions are buried within the bundle core; divalent copper ions are found on the surface of the bundle. The monovalent copper/silver-binding site is constituted by two consecutive histidines and is conserved in a previously functionally unknown protein family. The structural analyses show two conformational states and suggest that flexibility in the first α-helix is related to the metallochaperone function. These results also reveal functional diversity from a protein family with a simple four-helical fold.
Collapse
|
17
|
Sinetova MA, Los DA. New insights in cyanobacterial cold stress responses: Genes, sensors, and molecular triggers. Biochim Biophys Acta Gen Subj 2016; 1860:2391-2403. [PMID: 27422804 DOI: 10.1016/j.bbagen.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/16/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cold stress strongly induces the expression of ~100 genes in cyanobacteria. Some of these genes are necessary to protect cellular functions by adjustment of membranes, as well as transcriptional and translational machineries. About a half of cold-induced genes are not functionally characterized. A part of cold-induced genes is under control of a two-component regulatory system, consisting of histidine kinase Hik33 and response regulator Rre26. The mechanism(s) that control another part of cold-inducible genes are still unknown. SCOPE OF REVIEW The aim of this review is to summarise the latest findings in cyanobacterial cold-stress responses including transcriptomics, cold sensing, and molecular triggers. MAJOR CONCLUSIONS A feedback loop between the membrane fluidity and transcription of genes for fatty acid desaturases operates via the transmembrane red-light-activated cold sensor Hik33, which perceives cold-induced membrane rigidification as a change in its thickness. The cold-induced kinase activity of Hik33 is facilitated by interaction with a small protein, Ssl3451 - the third contributor to a canonical two-component regulatory system, which may explain the ability of some cyanobacterial histidine kinases to interact with different response regulators under different stress conditions. Other regulatory systems that control cold-stress responses operate via Ser/Thr protein kinase, SpkE, and via temperature-dependent changes in DNA supercoiling. Transcriptomic analysis shows that universal triggers of stress responses are reactive oxygen species and changes in redox status of plastoquinone pool. GENERAL SIGNIFICANCE Deeper understanding of molecular mechanisms of temperature sensing and regulation of cold-stress responses in photosynthetic cells provide a background for generation of cold-resistant crops.
Collapse
Affiliation(s)
- Maria A Sinetova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russian Federation
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russian Federation.
| |
Collapse
|
18
|
A novel periplasmic protein (Slr0280) tunes photomixotrophic growth of the cyanobacterium, Synechocystis sp. PCC 6803. Gene 2016; 575:313-20. [DOI: 10.1016/j.gene.2015.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022]
|
19
|
Sinetova MA, Los DA. Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers. MOLECULAR BIOSYSTEMS 2016; 12:3254-3258. [DOI: 10.1039/c6mb00551a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic analysis of stress transcriptomics reveals that ROS and redox changes may universally trigger stress responses in Synechocystis (cyanobacteria).
Collapse
Affiliation(s)
- M. A. Sinetova
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow
- Russia
| | - D. A. Los
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
20
|
Osanai T, Iijima H, Hirai MY. Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production. Subcell Biochem 2016; 86:511-523. [PMID: 27023248 DOI: 10.1007/978-3-319-25979-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Synechocystis sp. PCC 6803 is a model species of the cyanobacteria that undergo oxygenic photosynthesis, and has garnered much attention for its potential biotechnological applications. The regulatory mechanism of sugar metabolism in this cyanobacterium has been intensively studied and recent omics approaches have revealed the changes in transcripts, proteins, and metabolites of sugar catabolism under different light and nutrient conditions. Several transcriptional regulators that control the gene expression of enzymes related to sugar catabolism have been identified in the past 10 years, including a sigma factor, transcription factors, and histidine kinases. The modification of these genes can lead to alterations in the primary metabolism as well as the levels of high-value products such as bioplastics and hydrogen. This review summarizes recent studies on sugar catabolism in Synechocystis sp. PCC 6803, emphasizing the importance of elucidating the molecular mechanisms of cyanobacterial metabolism for biotechnological applications.
Collapse
Affiliation(s)
- Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Hiroko Iijima
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
21
|
Iijima H, Shirai T, Okamoto M, Kondo A, Hirai MY, Osanai T. Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2015; 6:888. [PMID: 26379657 PMCID: PMC4549654 DOI: 10.3389/fmicb.2015.00888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/14/2015] [Indexed: 11/23/2022] Open
Abstract
The study of the primary metabolism of cyanobacteria in response to light conditions is important for environmental biology because cyanobacteria are widely distributed among various ecological niches. Cyanobacteria uniquely possess circadian rhythms, with central oscillators consisting from three proteins, KaiA, KaiB, and KaiC. The two-component histidine kinase SasA/Hik8 and response regulator RpaA transduce the circadian signal from KaiABC to control gene expression. Here, we generated a strain overexpressing rpaA in a unicellular cyanobacterium Synechocystis sp. PCC 6803. The rpaA-overexpressing strain showed pleiotropic phenotypes, including slower growth, aberrant degradation of an RNA polymerase sigma factor SigE after the light-to-dark transition, and higher accumulation of sugar catabolic enzyme transcripts under dark conditions. Metabolome analysis revealed delayed glycogen degradation, decreased sugar phosphates and organic acids in the tricarboxylic acid cycle, and increased amino acids under dark conditions. The current results demonstrate that in this cyanobacterium, RpaA is a regulator of primary metabolism and involved in adaptation to changes in light conditions.
Collapse
Affiliation(s)
- Hiroko Iijima
- School of Agriculture, Meiji University, Kawasaki Japan
| | - Tomokazu Shirai
- RIKEN, Center for Sustainable Resource Science, Yokohama Japan
| | - Mami Okamoto
- RIKEN, Center for Sustainable Resource Science, Yokohama Japan
| | - Akihiko Kondo
- RIKEN, Center for Sustainable Resource Science, Yokohama Japan ; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe Japan
| | | | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki Japan ; RIKEN, Center for Sustainable Resource Science, Yokohama Japan
| |
Collapse
|
22
|
Okada K, Horii E, Nagashima Y, Mitsui M, Matsuura H, Fujiwara S, Tsuzuki M. Genes for a series of proteins that are involved in glucose catabolism are upregulated by the Hik8-cascade in Synechocystis sp. PCC 6803. PLANTA 2015; 241:1453-1462. [PMID: 25732003 DOI: 10.1007/s00425-015-2270-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
In summary, we could show the involvement of a Hik8-cascade in the expression of genes involved in the glycolytic and OPP pathways induced by GPL, and another signal pathway under photosynthetic conditions in Synechocystis . The Hik8-cascade under GPL conditions may regulate glucose degradation to produce some energy and carbon compounds. This cascade might be important for the supply of organic materials such as amino acids and nucleotides through enhancement of the rates of the glycolysis and OPP pathways. Histidine kinase Hik8 upregulates the expression of one of the important glycolytic genes, fbaA, via sll1330 under heterotrophic growth conditions (i.e., in the presence of glucose with an indispensable short period of light) in Synechocystis sp. PCC 6803. In this study, expression of the genes for the glycolytic and OPP pathways was investigated using the wild type, and disruption mutants of Hik8 and sll1330, to determine whether or not the Hik8-involving signal transduction system generally regulates glucose catabolism. In the wild type, all the genes for the glycolytic and OPP pathways were upregulated under the same conditions as for fbaA. Analyses of the disruption mutants suggested that the signal transduction system involving Hik8 and Sll1330 plays a key role in the upregulation of genes such as pfkA, pgmB, and glk, and also that Hik8 induces genes including gap1 and pgk independently of Sll1330. This complicated signal transduction cascade, designated as the Hik8-cascade, occurs under heterotrophic growth with light pulses. In addition, a disruption mutant of a putative histidine kinase, sll1334, exhibited growth and gene expression patterns that suggested it to be a negative regulator in the cascade. Possible histidine kinases and response regulators as candidates for other components in the cascade are discussed.
Collapse
Affiliation(s)
- Katsuhiko Okada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan,
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. MOLECULAR BIOSYSTEMS 2014; 11:770-82. [PMID: 25502571 DOI: 10.1039/c4mb00651h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low ethanol tolerance is a crucial factor that restricts the feasibility of bioethanol production in renewable cyanobacterial systems. Our previous studies showed that several transcriptional regulators were differentially regulated by exogenous ethanol in Synechocystis. In this study, by constructing knockout mutants of 34 Synechocystis putative transcriptional regulator-encoding genes and analyzing their phenotypes under ethanol stress, we found that three mutants of regulatory gene sll1392, sll1712 and slr1860 grew poorly in the BG11 medium supplemented with ethanol when compared with the wild type in the same medium, suggesting that the genes may be involved in the regulation of ethanol tolerance. To decipher the regulatory mechanism, targeted LC-MS and untargeted GC-MS approaches were employed to determine metabolic profiles of the three mutants and the wild type under both normal and ethanol stress conditions. The results were then subjected to PCA and WGCNA analyses to determine the responsive metabolites and metabolic modules related to ethanol tolerance. Interestingly, the results showed that there was a significant overlapping of the responsive metabolites and metabolic modules between three regulatory proteins, suggesting that a possible crosstalk between various regulatory proteins may be involved in combating against ethanol toxicity in Synechocystis. The study provided new insights into ethanol-tolerance regulation and knowledge important to rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Ye Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Giner-Lamia J, López-Maury L, Florencio FJ. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 2014; 9:e108912. [PMID: 25268225 PMCID: PMC4182526 DOI: 10.1371/journal.pone.0108912] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/27/2014] [Indexed: 12/22/2022] Open
Abstract
Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper.
Collapse
Affiliation(s)
- Joaquin Giner-Lamia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
- * E-mail: (LLM); (FJF)
| | - Francisco J. Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
- * E-mail: (LLM); (FJF)
| |
Collapse
|
25
|
You L, Berla B, He L, Pakrasi HB, Tang YJ. 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnol J 2014; 9:684-92. [PMID: 24659531 DOI: 10.1002/biot.201300477] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/08/2014] [Accepted: 03/19/2014] [Indexed: 11/07/2022]
Abstract
The central carbon metabolism of cyanobacteria is under debate. For over 50 years, the lack of α-ketoglutarate dehydrogenase has led to the belief that cyanobacteria have an incomplete TCA cycle. Recent in vitro enzymatic experiments suggest that this cycle may in fact be closed. The current study employed (13) C isotopomers to delineate pathways in the cyanobacterium Synechocystis sp. PCC 6803. By tracing the incorporation of supplemented glutamate into the downstream metabolites in the TCA cycle, we observed a direct in vivo transformation of α-ketoglutarate to succinate. Additionally, isotopic tracing of glyoxylate did not show a functional glyoxylate shunt and glyoxylate was used for glycine synthesis. The photomixotrophic carbon metabolism was then profiled with (13) C-MFA under light and carbon-sufficient conditions. We observed that: (i) the in vivo flux through the TCA cycle reactions (α-ketoglutarate → succinate) was minimal (<2%); (ii) the flux ratio of CO2 fixation was six times higher than that of glucose utilization; (iii) the relative flux through the oxidative pentose phosphate pathway was low (<2%); (iv) high flux through malic enzyme served as a main route for pyruvate synthesis. Our results improve the understanding of the versatile metabolism in cyanobacteria and shed light on their application for photo-biorefineries.
Collapse
Affiliation(s)
- Le You
- Department of Energy, Enviromental and Chemical Engineering, Washington University, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
26
|
Osanai T, Oikawa A, Numata K, Kuwahara A, Iijima H, Doi Y, Saito K, Hirai MY. Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803. PLANT PHYSIOLOGY 2014; 164:1831-41. [PMID: 24521880 PMCID: PMC3982746 DOI: 10.1104/pp.113.232025] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/10/2014] [Indexed: 05/04/2023]
Abstract
Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (T.O., A.O., K.N., A.K., H.I., Y.D., K.S., M.Y.H.)
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan (T.O.)
- Yamagata University, Faculty of Agriculture, Wakaba-machi, Tsuruoka-shi, Yamagata 997–8555, Japan (A.O.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260–8522, Japan (K.S.)
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (T.O., A.O., K.N., A.K., H.I., Y.D., K.S., M.Y.H.)
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan (T.O.)
- Yamagata University, Faculty of Agriculture, Wakaba-machi, Tsuruoka-shi, Yamagata 997–8555, Japan (A.O.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260–8522, Japan (K.S.)
| | - Keiji Numata
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (T.O., A.O., K.N., A.K., H.I., Y.D., K.S., M.Y.H.)
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan (T.O.)
- Yamagata University, Faculty of Agriculture, Wakaba-machi, Tsuruoka-shi, Yamagata 997–8555, Japan (A.O.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260–8522, Japan (K.S.)
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (T.O., A.O., K.N., A.K., H.I., Y.D., K.S., M.Y.H.)
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan (T.O.)
- Yamagata University, Faculty of Agriculture, Wakaba-machi, Tsuruoka-shi, Yamagata 997–8555, Japan (A.O.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260–8522, Japan (K.S.)
| | - Hiroko Iijima
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (T.O., A.O., K.N., A.K., H.I., Y.D., K.S., M.Y.H.)
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan (T.O.)
- Yamagata University, Faculty of Agriculture, Wakaba-machi, Tsuruoka-shi, Yamagata 997–8555, Japan (A.O.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260–8522, Japan (K.S.)
| | - Yoshiharu Doi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (T.O., A.O., K.N., A.K., H.I., Y.D., K.S., M.Y.H.)
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan (T.O.)
- Yamagata University, Faculty of Agriculture, Wakaba-machi, Tsuruoka-shi, Yamagata 997–8555, Japan (A.O.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260–8522, Japan (K.S.)
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (T.O., A.O., K.N., A.K., H.I., Y.D., K.S., M.Y.H.)
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan (T.O.)
- Yamagata University, Faculty of Agriculture, Wakaba-machi, Tsuruoka-shi, Yamagata 997–8555, Japan (A.O.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260–8522, Japan (K.S.)
| | | |
Collapse
|
27
|
Nagarajan S, Srivastava S, Sherman LA. Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803. Mol Microbiol 2013; 91:79-97. [PMID: 24237382 DOI: 10.1111/mmi.12442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
The plasmid hik31 operon (P3, slr6039-slr6041) is located on the pSYSX plasmid in Synechocystis sp. PCC 6803. A P3 mutant (ΔP3) had a growth defect in the dark and a pigment defect that was worsened by the addition of glucose. The glucose defect was from incomplete metabolism of the substrate, was pH dependent, and completely overcome by the addition of bicarbonate. Addition of organic carbon and nitrogen sources partly alleviated the defects of the mutant in the dark. Electron micrographs of the mutant revealed larger cells with division defects, glycogen limitation, lack of carboxysomes, deteriorated thylakoids and accumulation of polyhydroxybutyrate and cyanophycin. A microarray experiment over two days of growth in light-dark plus glucose revealed downregulation of several photosynthesis, amino acid biosynthesis, energy metabolism genes; and an upregulation of cell envelope and transport and binding genes in the mutant. ΔP3 had an imbalance in carbon and nitrogen levels and many sugar catabolic and cell division genes were negatively affected after the first dark period. The mutant suffered from oxidative and osmotic stress, macronutrient limitation, and an energy deficit. Therefore, the P3 operon is an important regulator of central metabolism and cell division in the dark.
Collapse
Affiliation(s)
- Sowmya Nagarajan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | | |
Collapse
|
28
|
Gao L, Shen C, Liao L, Huang X, Liu K, Wang W, Guo L, Jin W, Huang F, Xu W, Wang Y. Functional proteomic discovery of Slr0110 as a central regulator of carbohydrate metabolism in Synechocystis species PCC6803. Mol Cell Proteomics 2013; 13:204-19. [PMID: 24169622 DOI: 10.1074/mcp.m113.033803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The unicellular photosynthetic model-organism cyanobacterium Synechocystis sp. PCC6803 can grow photoautotrophically using CO2 or heterotrophically using glucose as the sole carbon source. Several pathways are involved in carbon metabolism in Synechocystis, and the concerted regulation of these pathways by numerous known and unknown genes is critical for the survival and growth of the organism. Here, we report that a hypothetical protein encoded by the open reading frame slr0110 is necessary for heterotrophic growth of Synechocystis. The slr0110-deletion mutant is defective in glucose uptake, heterotrophic growth, and dark viability without detectable defects in autotrophic growth, whereas the level of photosystem II and the rate of oxygen evolution are increased in the mutant. Quantitative proteomic analysis revealed that several proteins in glycolysis and the oxidative pentose phosphate pathway are down-regulated, whereas proteins in photosystem II and phycobilisome are significantly up-regulated, in the mutant. Among the down-regulated proteins are glucose transporter, glucokinase, glucose-6-phosphate isomerase, and glucose-6-phosphate dehydrogenase and its assembly protein OpcA, suggesting that glycolysis, oxidative pentose phosphate, and glycogen synthesis pathways are significantly inhibited in the mutant, which was further confirmed by enzymatic assays and quantification of glycogen content. These findings establish Slr0110 as a novel central regulator of carbon metabolism in Synechocystis, and shed light on an intricate mechanism whereby photosynthesis and carbon metabolism are well concerted to survive the crisis when one or more pathways of the system are impaired.
Collapse
Affiliation(s)
- Liyan Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Rd., Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Mar Drugs 2013; 11:2894-916. [PMID: 23945601 PMCID: PMC3766872 DOI: 10.3390/md11082894] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 06/14/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023] Open
Abstract
Cyanobacteria (blue-green algae) play profound roles in ecology and biogeochemistry. One model cyanobacterial species is the unicellular cyanobacterium Synechocystis sp. PCC 6803. This species is highly amenable to genetic modification. Its genome has been sequenced and many systems biology and molecular biology tools are available to study this bacterium. Recently, researchers have put significant efforts into understanding and engineering this bacterium to produce chemicals and biofuels from sunlight and CO2. To demonstrate our perspective on the application of this cyanobacterium as a photosynthesis-based chassis, we summarize the recent research on Synechocystis 6803 by focusing on five topics: rate-limiting factors for cell cultivation; molecular tools for genetic modifications; high-throughput system biology for genome wide analysis; metabolic modeling for physiological prediction and rational metabolic engineering; and applications in producing diverse chemicals. We also discuss the particular challenges for systems analysis and engineering applications of this microorganism, including precise characterization of versatile cell metabolism, improvement of product rates and titers, bioprocess scale-up, and product recovery. Although much progress has been achieved in the development of Synechocystis 6803 as a phototrophic cell factory, the biotechnology for “Compounds from Synechocystis” is still significantly lagging behind those for heterotrophic microbes (e.g., Escherichia coli).
Collapse
|
30
|
Summerfield TC, Crawford TS, Young RD, Chua JPS, Macdonald RL, Sherman LA, Eaton-Rye JJ. Environmental pH affects photoautotrophic growth of Synechocystis sp. PCC 6803 strains carrying mutations in the lumenal proteins of PSII. PLANT & CELL PHYSIOLOGY 2013; 54:859-74. [PMID: 23444302 DOI: 10.1093/pcp/pct036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synechocystis sp. strain PCC 6803 grows photoautotrophically across a broad pH range, but wild-type cultures reach a higher density at elevated pH; however, photoheterotrophic growth is similar at high and neutral pH. A number of PSII mutants each lacking at least one lumenal extrinsic protein, and carrying a second PSII lumenal mutation, are able to grow photoautotrophically in BG-11 medium at pH 10.0, but not pH 7.5. We investigated the basis of this pH effect and observed no pH-specific change in variable fluorescence yield from PSII centers of the wild type or the pH-dependent ΔPsbO:ΔPsbU and ΔPsbV:ΔCyanoQ strains; however, 77 K fluorescence emission spectra indicated increased coupling of the phycobilisome (PBS) antenna at pH 10.0 in all mutants. DNA microarray data showed a cell-wide response to transfer from pH 10.0 to pH 7.5, including decreased mRNA levels of a number of oxidative stress-responsive transcripts. We hypothesize that this transcriptional response led to increased tolerance against reactive oxygen species and in particular singlet oxygen. This response enabled photoautotrophic growth of the PSII mutants at pH 10.0. This hypothesis was supported by increased resistance of all strains to rose bengal at pH 10.0 compared with pH 7.5.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
31
|
Schwarz D, Orf I, Kopka J, Hagemann M. Recent applications of metabolomics toward cyanobacteria. Metabolites 2013; 3:72-100. [PMID: 24957891 PMCID: PMC3901253 DOI: 10.3390/metabo3010072] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/16/2022] Open
Abstract
Our knowledge on cyanobacterial molecular biology increased tremendously by the application of the "omics" techniques. Only recently, metabolomics was applied systematically to model cyanobacteria. Metabolomics, the quantitative estimation of ideally the complete set of cellular metabolites, is particularly well suited to mirror cellular metabolism and its flexibility under diverse conditions. Traditionally, small sets of metabolites are quantified in targeted metabolome approaches. The development of separation technologies coupled to mass-spectroscopy- or nuclear-magnetic-resonance-based identification of low molecular mass molecules presently allows the profiling of hundreds of metabolites of diverse chemical nature. Metabolome analysis was applied to characterize changes in the cyanobacterial primary metabolism under diverse environmental conditions or in defined mutants. The resulting lists of metabolites and their steady state concentrations in combination with transcriptomics can be used in system biology approaches. The application of stable isotopes in fluxomics, i.e. the quantitative estimation of carbon and nitrogen fluxes through the biochemical network, has only rarely been applied to cyanobacteria, but particularly this technique will allow the making of kinetic models of cyanobacterial systems. The further application of metabolomics in the concert of other "omics" technologies will not only broaden our knowledge, but will also certainly strengthen the base for the biotechnological application of cyanobacteria.
Collapse
Affiliation(s)
- Doreen Schwarz
- Institut Biowissenschaften, Pflanzenphysiologie, Universität Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| | - Isabel Orf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany.
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany.
| | - Martin Hagemann
- Institut Biowissenschaften, Pflanzenphysiologie, Universität Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| |
Collapse
|
32
|
Ludwig M, Bryant DA. Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions. Front Microbiol 2012; 3:354. [PMID: 23087677 PMCID: PMC3468840 DOI: 10.3389/fmicb.2012.00354] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/15/2012] [Indexed: 12/29/2022] Open
Abstract
Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.
Collapse
Affiliation(s)
- Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
| | | |
Collapse
|
33
|
Stebegg R, Wurzinger B, Mikulic M, Schmetterer G. Chemoheterotrophic growth of the Cyanobacterium Anabaena sp. strain PCC 7120 dependent on a functional cytochrome c oxidase. J Bacteriol 2012; 194:4601-7. [PMID: 22730128 PMCID: PMC3415483 DOI: 10.1128/jb.00687-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022] Open
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.
Collapse
Affiliation(s)
- Ronald Stebegg
- Institute of Physical Chemistry, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
34
|
Giner-Lamia J, López-Maury L, Reyes JC, Florencio FJ. The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2012; 159:1806-18. [PMID: 22715108 PMCID: PMC3425214 DOI: 10.1104/pp.112.200659] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/18/2012] [Indexed: 05/24/2023]
Abstract
Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the P(I)-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.
Collapse
|
35
|
Upregulation of plasmid genes during stationary phase in Synechocystis sp. strain PCC 6803, a cyanobacterium. Appl Environ Microbiol 2012; 78:5448-51. [PMID: 22636001 DOI: 10.1128/aem.01174-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed DNA microarrays to identify highly expressed genes during stationary-phase growth of Synechocystis sp. PCC 6803. Many identified genes are on endogenous plasmids, with copy numbers between 0.4 and 7 per chromosome. The promoters of such genes will be useful for synthetic biology applications with this phototrophic host.
Collapse
|
36
|
Wang QJ, Singh A, Li H, Nedbal L, Sherman LA, Govindjee, Whitmarsh J. Net light-induced oxygen evolution in photosystem I deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:792-801. [DOI: 10.1016/j.bbabio.2012.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
37
|
Functions of the duplicated hik31 operons in central metabolism and responses to light, dark, and carbon sources in Synechocystis sp. strain PCC 6803. J Bacteriol 2011; 194:448-59. [PMID: 22081400 DOI: 10.1128/jb.06207-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are two closely related hik31 operons involved in signal transduction on the chromosome and the pSYSX plasmid in the cyanobacterium Synechocystis sp. strain PCC 6803. We studied the growth, cell morphology, and gene expression in operon and hik mutants for both copies, under different growth conditions, to examine whether the duplicated copies have the same or different functions and gene targets and whether they are similarly regulated. Phenotype analysis suggested that both operons regulated common and separate targets in the light and the dark. The chromosomal operon was involved in the negative control of autotrophic events, whereas the plasmid operon was involved in the positive control of heterotrophic events. Both the plasmid and double operon mutant cells were larger and had division defects. The growth data also showed a regulatory role for the chromosomal hik gene under high-CO(2) conditions and the plasmid operon under low-O(2) conditions. Metal stress experiments indicated a role for the chromosomal hik gene and operon in mediating Zn and Cd tolerance, the plasmid operon in Co tolerance, and the chromosomal operon and plasmid hik gene in Ni tolerance. We conclude that both operons are differentially and temporally regulated. We suggest that the chromosomal operon is the primarily expressed copy and the plasmid operon acts as a backup to maintain appropriate gene dosages. Both operons share an integrated regulatory relationship and are induced in high light, in glucose, and in active cell growth. Additionally, the plasmid operon is induced in the dark with or without glucose.
Collapse
|
38
|
Akai M, Onai K, Kusano M, Sato M, Redestig H, Toyooka K, Morishita M, Miyake H, Hazama A, Checchetto V, Szabò I, Matsuoka K, Saito K, Yasui M, Ishiura M, Uozumi N. Plasma membrane aquaporin AqpZ protein is essential for glucose metabolism during photomixotrophic growth of Synechocystis sp. PCC 6803. J Biol Chem 2011; 286:25224-35. [PMID: 21558269 DOI: 10.1074/jbc.m111.236380] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of Synechocystis PCC 6803 contains a single gene encoding an aquaporin, aqpZ. The AqpZ protein functioned as a water-permeable channel in the plasma membrane. However, the physiological importance of AqpZ in Synechocystis remains unclear. We found that growth in glucose-containing medium inhibited proper division of ΔaqpZ cells and led to cell death. Deletion of a gene encoding a glucose transporter in the ΔaqpZ background alleviated the glucose-mediated growth inhibition of the ΔaqpZ cells. The ΔaqpZ cells swelled more than the wild type after the addition of glucose, suggesting an increase in cytosolic osmolarity. This was accompanied by a down-regulation of the pentose phosphate pathway and concurrent glycogen accumulation. Metabolite profiling by GC/TOF-MS of wild-type and ΔaqpZ cells revealed a relative decrease of intermediates of the tricarboxylic acid cycle and certain amino acids in the mutant. The changed levels of metabolites may have been the cause for the observed decrease in growth rate of the ΔaqpZ cells along with decreased PSII activity at pH values ranging from 7.5 to 8.5. A mutant in sll1961, encoding a putative transcription factor, and a Δhik31 mutant, lacking a putative glucose-sensing kinase, both exhibited higher glucose sensitivity than the ΔaqpZ cells. Examination of protein expression indicated that sll1961 functioned as a positive regulator of aqpZ gene expression but not as the only regulator. Overall, the ΔaqpZ cells showed defects in macronutrient metabolism, pH homeostasis, and cell division under photomixotrophic conditions, consistent with an essential role of AqpZ in glucose metabolism.
Collapse
Affiliation(s)
- Masaro Akai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University Aobayama 6-6-07, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Haimovich-Dayan M, Kahlon S, Hihara Y, Hagemann M, Ogawa T, Ohad I, Lieman-Hurwitz J, Kaplan A. Cross-talk between photomixotrophic growth and CO2-concentrating mechanism in Synechocystis sp. strain PCC 6803. Environ Microbiol 2011; 13:1767-77. [DOI: 10.1111/j.1462-2920.2011.02481.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Summerfield TC, Nagarajan S, Sherman LA. Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses. MICROBIOLOGY-SGM 2010; 157:301-312. [PMID: 20929957 DOI: 10.1099/mic.0.041053-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have investigated the response of the cyanobacterium Synechocystis sp. PCC 6803 during growth at very low O2 concentration (bubbled with 99.9 % N(2)/0.1 % CO2). Significant transcriptional changes upon low-O2 incubation included upregulation of a cluster of genes that contained psbA1 and an operon that includes a gene encoding the two-component regulatory histidine kinase, Hik31. This regulatory cluster is of particular interest, since there are virtually identical copies on both the chromosome and plasmid pSYSX. We used a knockout mutant lacking the chromosomal copy of hik31 and studied differential transcription during the aerobic-low-O2 transition in this ΔHik31 strain and the wild-type. We observed two distinct responses to this transition, one Hik31 dependent, the other Hik31 independent. The Hik31-independent responses included the psbA1 induction and genes involved in chlorophyll biosynthesis. In addition, there were changes in a number of genes that may be involved in assembling or stabilizing photosystem (PS)II, and the hox operon and the LexA-like protein (Sll1626) were upregulated during low-O2 growth. This family of responses mostly focused on PSII and overall redox control. There was also a large set of genes that responded differently in the absence of the chromosomal Hik31. In the vast majority of these cases, Hik31 functioned as a repressor and transcription was enhanced when Hik31 was deleted. Genes in this category encoded both core and peripheral proteins for PSI and PSII, the main phycobilisome proteins, chaperones, the ATP synthase cluster and virtually all of the ribosomal proteins. These findings, coupled with the fact that ΔHik31 grew better than the wild-type under low-O2 conditions, suggested that Hik31 helps to regulate growth and overall cellular homeostasis. We detected changes in the transcription of other regulatory genes that may compensate for the loss of Hik31. We conclude that Hik31 regulates an important series of genes that relate to energy production and growth and that help to determine how Synechocystis responds to changes in O2 conditions.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Sowmya Nagarajan
- Purdue University, Department of Biological Sciences, 201 S. University St, Hansen Hall, West Lafayette, IN 47907, USA
| | - Louis A Sherman
- Purdue University, Department of Biological Sciences, 201 S. University St, Hansen Hall, West Lafayette, IN 47907, USA
| |
Collapse
|
41
|
Sakayori T, Shiraiwa Y, Suzuki I. A Synechocystis homolog of SipA protein, Ssl3451, enhances the activity of the histidine kinase Hik33. PLANT & CELL PHYSIOLOGY 2009; 50:1439-1448. [PMID: 19542180 DOI: 10.1093/pcp/pcp089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the cyanobacterium Synechocystis sp. PCC 6803, the histidine kinase Hik33 regulates the expression of several stress-inducible genes. Recently, a yeast two-hybrid screen revealed a specific interaction between Hik33 and a small protein, Ssl3451. To investigate the function of Ssl3451, we developed an assay to monitor the autophosphorylation of Hik33 in vitro. Addition of Ssl3451 to the reaction mixture dramatically enhanced the autophosphorylation activity of Hik33. Pulse-chase experiments revealed that Ssl3451 stimulated the autophosphorylation of Hik33 but did not affect its dephosphorylation. These findings indicated that Ssl3451 might be an activator of Hik33. When the amount of Hik33 was kept constant and the amount of Ssl3451 was increased in the reaction mixture, the extent of autophosphorylation of Hik33 reached a plateau when equimolar concentrations were present, suggesting that Ssl3451 enhances the activity of Hik33 by associating with it with a 1 : 1 stoichiometry. Disruption of the gene for Ssl3451 resulted in increased expression of the hliB gene, which is induced by Hik33 under standard growth conditions, but it did not affect the levels of the hliB mRNA at low temperature. Together, these results suggest that Ssl3451 might enhance the activity of Hik33 both in vitro and in vivo.
Collapse
Affiliation(s)
- Tasuku Sakayori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
42
|
Lieman-Hurwitz J, Haimovich M, Shalev-Malul G, Ishii A, Hihara Y, Gaathon A, Lebendiker M, Kaplan A. A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2by modulating low-CO2-induced gene expression. Environ Microbiol 2009; 11:927-36. [DOI: 10.1111/j.1462-2920.2008.01818.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Takahashi H, Uchimiya H, Hihara Y. Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3009-18. [PMID: 18611912 PMCID: PMC2504344 DOI: 10.1093/jxb/ern157] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/03/2008] [Accepted: 05/07/2008] [Indexed: 05/19/2023]
Abstract
Capillary electrophoresis mass spectrometry (CE/MS) was applied for the comprehensive survey of changes in the amounts of metabolites upon the shift from photoautotrophic to photomixotrophic conditions in Synechocystis sp. PCC 6803. When glucose was added to the photoautotrophically grown culture, the increase in the metabolites for the oxidative pentose phosphate (OPP) pathway and glycolysis, together with the decrease in those for the Calvin cycle, was observed. Concomitantly, the increase in respiratory activity and the decrease in photosynthetic activity took place in the wild-type cells. In the pmgA-disrupted mutant that shows growth inhibition under photomixotrophic conditions, lower enzymatic activities of the OPP pathway and higher photosynthetic activity were observed, irrespective of trophic conditions. These defects brought about metabolic disorders such as a decrease in ATP and NADPH contents, a failure in the activation of respiratory activity, and the aberrant accumulation of isocitrate under photomixotrophic but not under photoautotrophic conditions. A delicate balancing of the carbon flow between the Calvin cycle and the OPP pathway seems indispensable for growth specifically under photomixotrophic conditions and PmgA is likely to be involved in the regulation.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Hirofumi Uchimiya
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 333-8570, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Lee S, Ryu JY, Kim SY, Jeon JH, Song JY, Cho HT, Choi SB, Choi D, de Marsac NT, Park YI. Transcriptional regulation of the respiratory genes in the cyanobacterium Synechocystis sp. PCC 6803 during the early response to glucose feeding. PLANT PHYSIOLOGY 2007; 145:1018-30. [PMID: 17827271 PMCID: PMC2048796 DOI: 10.1104/pp.107.105023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The coordinated expression of the genes involved in respiration in the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 during the early period of glucose (Glc) treatment is poorly understood. When photoautotrophically grown cells were supplemented with 10 mm Glc in the light or after a dark adaptation period of 14 h, significant increases in the respiratory activity, as determined by NAD(P)H turnover, respiratory O(2) uptake rate, and cytosolic alkalization, were observed. At the same time, the transcript levels of 18 genes coding for enzymes associated with respiration increased with differential induction kinetics; these genes were classified into three groups based on their half-rising times. Transcript levels of the four genes gpi, zwf, pdhB, and atpB started to increase along with a net increase in NAD(P)H, while the onset of net NAD(P)H consumption coincided with an increase in those of the genes tktA, ppc, pdhD, icd, ndhD2, ndbA, ctaD1, cydA, and atpE. In contrast, the expression of the atpI/G/D/A/C genes coding for ATP synthase subunits was the slowest among respiratory genes and their expression started to accumulate only after the establishment of cytosolic alkalization. These differential effects of Glc on the transcript levels of respiratory genes were not observed by inactivation of the genes encoding the Glc transporter or glucokinase. In addition, several Glc analogs could not mimic the effects of Glc. Our findings suggest that genes encoding some enzymes involved in central carbon metabolism and oxidative phosphorylation are coordinately regulated at the transcriptional level during the switch of nutritional mode.
Collapse
Affiliation(s)
- Sanghyeob Lee
- Laboratory of Plant Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Summerfield TC, Sherman LA. Role of sigma factors in controlling global gene expression in light/dark transitions in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2007; 189:7829-40. [PMID: 17720783 PMCID: PMC2168720 DOI: 10.1128/jb.01036-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on differential gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803 after light-dark transitions in wild-type, DeltasigB, and DeltasigD strains. We also studied the effect of day length in the presence of glucose on a DeltasigB DeltasigE mutant. Our results indicated that the absence of SigB or SigD predominately altered gene expression in the dark or in the light, respectively. In the light, approximately 350 genes displayed transcript levels in the DeltasigD strain that were different from those of the wild type, with over 200 of these up-regulated in the mutant. In the dark, removal of SigB altered more than 150 genes, and the levels of 136 of these were increased in the mutant compared to those in the wild type. The removal of both SigB and SigE had a major impact on gene expression under mixotrophic growth conditions and resulted in the inability of cells to grow in the presence of glucose with 8-h light and 16-h dark cycles. Our results indicated the importance of group II sigma factors in the global regulation of transcription in this organism and are best explained by using the sigma cycle paradigm with the stochastic release model described previously (R. A. Mooney, S. A. Darst, and R. Landick, Mol. Cell 20:335-345, 2005). We combined our results with the total protein levels of the sigma factors in the light and dark as calculated previously (S. Imamura, S. Yoshihara, S. Nakano, N. Shiozaki, A. Yamada, K. Tanaka, H. Takahashi, M. Asayama, and M. Shirai, J. Mol. Biol. 325:857-872, 2003; S. Imamura, M. Asayama, H. Takahashi, K. Tanaka, H. Takahashi, and M. Shirai, FEBS Lett. 554:357-362, 2003). Thus, we concluded that the control of global transcription is based on the amount of the various sigma factors present and able to bind RNA polymerase.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Biological Sciences, Purdue University, 201 S. University St., Hansen Hall, West Lafayette, IN 47907, USA
| | | |
Collapse
|
46
|
Ashby M, Houmard J. Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiol Mol Biol Rev 2006; 70:472-509. [PMID: 16760311 PMCID: PMC1489541 DOI: 10.1128/mmbr.00046-05] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A survey of the already characterized and potential two-component protein sequences that exist in the nine complete and seven partially annotated cyanobacterial genome sequences available (as of May 2005) showed that the cyanobacteria possess a much larger repertoire of such proteins than most other bacteria. By analysis of the domain structure of the 1,171 potential histidine kinases, response regulators, and hybrid kinases, many various arrangements of about thirty different modules could be distinguished. The number of two-component proteins is related in part to genome size but also to the variety of physiological properties and ecophysiologies of the different strains. Groups of orthologues were defined, only a few of which have representatives with known physiological functions. Based on comparisons with the proposed phylogenetic relationships between the strains, the orthology groups show that (i) a few genes, some of them clustered on the genome, have been conserved by all species, suggesting their very ancient origin and an essential role for the corresponding proteins, and (ii) duplications, fusions, gene losses, insertions, and deletions, as well as domain shuffling, occurred during evolution, leading to the extant repertoire. These mechanisms are put in perspective with the different genetic properties that cyanobacteria have to achieve genome plasticity. This review is designed to serve as a basis for orienting further research aimed at defining the most ancient regulatory mechanisms and understanding how evolution worked to select and keep the most appropriate systems for cyanobacteria to develop in the quite different environments that they have successfully colonized.
Collapse
Affiliation(s)
- Mark
K. Ashby
- Department
of Basic Medical Sciences, Biochemistry Section, University of the West
Indies, Mona Campus, Kingston 7,
Jamaica, Ecole Normale
Supérieure, CNRS UMR 8541, Génétique
Moléculaire, 46 rue d'Ulm, 75230 Paris Cedex 05,
France
| | - Jean Houmard
- Department
of Basic Medical Sciences, Biochemistry Section, University of the West
Indies, Mona Campus, Kingston 7,
Jamaica, Ecole Normale
Supérieure, CNRS UMR 8541, Génétique
Moléculaire, 46 rue d'Ulm, 75230 Paris Cedex 05,
France
- Corresponding
author. Mailing address: Ecole Normale Supérieure, CNRS UMR 8541,
Génétique Moléculaire, 46 rue d'Ulm, 75230 Paris
Cedex 05, France. Phone: 33 1 44 32 35 19. Fax: 33 1 44 96 53 60.
E-mail:
| |
Collapse
|
47
|
Sakuragi Y, Maeda H, Dellapenna D, Bryant DA. alpha-Tocopherol plays a role in photosynthesis and macronutrient homeostasis of the cyanobacterium Synechocystis sp. PCC 6803 that is independent of its antioxidant function. PLANT PHYSIOLOGY 2006; 141:508-21. [PMID: 16565298 PMCID: PMC1475434 DOI: 10.1104/pp.105.074765] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
alpha-Tocopherol is synthesized exclusively in oxygenic phototrophs and is known to function as a lipid-soluble antioxidant. Here, we report that alpha-tocopherol also has a novel function independent of its antioxidant properties in the cyanobacterium Synechocystis sp. PCC 6803. The photoautotrophic growth rates of wild type and mutants impaired in alpha-tocopherol biosynthesis are identical, but the mutants exhibit elevated photosynthetic activities and glycogen levels. When grown photomixotrophically with glucose (Glc), however, these mutants cease growth within 24 h and exhibit a global macronutrient starvation response associated with nitrogen, sulfur, and carbon, as shown by decreased phycobiliprotein content (35% of the wild-type level) and accumulation of the nblA1-nblA2, sbpA, sigB, sigE, and sigH transcripts. Photosystem II activity and carboxysome synthesis are lost in the tocopherol mutants within 24 h of photomixotrophic growth, and the abundance of carboxysome gene (rbcL, ccmK1, ccmL) and ndhF4 transcripts decreases to undetectable levels. These results suggest that alpha-tocopherol plays an important role in optimizing photosynthetic activity and macronutrient homeostasis in Synechocystis sp. PCC 6803. Several lines of evidence indicate that increased oxidative stress in the tocopherol mutants is unlikely to be the underlying cause of photosystem II inactivation and Glc-induced lethality. Interestingly, insertional inactivation of the pmgA gene, which encodes a putative serine-threonine kinase similar to RsbW and RsbT in Bacillus subtilis, results in a similar increase in glycogen and Glc-induced lethality. Based on these results, we propose that alpha-tocopherol plays a nonantioxidant regulatory role in photosynthesis and macronutrient homeostasis through a signal transduction pathway that also involves PmgA.
Collapse
Affiliation(s)
- Yumiko Sakuragi
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, USA
| | | | | | | |
Collapse
|