1
|
Salama LA, Saleh HH, Abdel-Rhman SH, Barwa R, Hassan R. Assessment of typing methods, virulence genes profile and antimicrobial susceptibility for clinical isolates of Proteus mirabilis. Ann Clin Microbiol Antimicrob 2025; 24:4. [PMID: 39815271 PMCID: PMC11734338 DOI: 10.1186/s12941-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated. Sixty P. mirabilis isolated undergo antibiotic susceptibility test by standard Kirby Bauer method. They showed high resistance to nitrofurantoin and trimethoprim/sulfamethoxazole that appear mainly in 3rd age group. The 2nd age group comprised most of the resistant isolates to the tested antibiotics. A total of 73.33% of isolates were classified as multi drug resistance (MDR) and 78.3% of isolates were distributed in several antibiotypes with MAR index over 0.2. Twenty-one isolates were strong biofilm-producers and they were significantly related to MDR. Different virulence factors as protease, urease and hemolysin production are detected. Detection of several virulence genes by PCR; zapA and ureC were harbored by all isolates, followed by rsbA (95%), ureA and flaA (93%), hpmA (91.7%) and mrpA (73.3%). Determination of genetic diversity between isolates was performed by different methods (RAPD, ISSR, ERIC, BOX-AIR and REP-PCR) by using several parameters as typeability and discriminatory power indicating that ERIC-PCR was the best method followed by REP-PCR 1R. Rand's & Wallace coefficients were used for calculating the congruence among typing methods. Conclusions: The results obtained from both conventional and molecular typing methods indicated that molecular methods are superior to conventional methods in the discrimination of isolates. ERIC-PCR and Rep-PCR provide high discrimination ability among P. mirabilis clinical isolates contributing to epidemiological studies.
Collapse
Affiliation(s)
- Lamiaa A Salama
- Microbiology and Immunology Department, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | | | - Shaymaa H Abdel-Rhman
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ramadan Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Wu R, Dong Z, Liu Y, Xin J, Duan Y, Zheng H, Yang Y, Fu H, Zhong Z, Liu H, Zhou Z, Huang Y, Peng G. Bacteriophage P2-71: a promising therapeutic against multidrug-resistant Proteus mirabilis in urinary tract infections. Front Vet Sci 2024; 11:1445264. [PMID: 39376913 PMCID: PMC11457703 DOI: 10.3389/fvets.2024.1445264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Background Proteus mirabilis is a Gram-negative, rod-shaped bacterium widely found in natural environments. It is known for causing a range of severe illnesses in mammals, particularly urinary tract infections (UTIs). This study evaluates the therapeutic efficacy of phage P2-71 against Proteus mirabilis in vivo and in vitro environments. Methods The in vitro therapeutic potential of bacteriophage P2-71 was assessed through the ability of phage to kill Proteus mirabilis by using a plate counting assay, and biofilm inhibition and biofilm lysis assays using a microtitre plate method. Additionally, an in vivo UTI model in C57BL/6Jmice was developed via urethral inoculation of the bacterium. Phage therapy was administered through urethral injection over a period of 5 days. Therapeutic outcomes were measured by analyzing bacterial load, phage titer, inflammatory markers, and histopathological changes in the urine, urogenital tissues, and spleen. Results In vitro, bacteriophage P2-71 achieved significant reductions in P. mirabilis concentrations, with log reductions of 1.537 and 0.7009 CFU/mL in laboratory and urine environments, respectively (p < 0.001). The phage also decreased biofilm formation by 34-49% and lysed 15-25% of mature biofilms at various multiplicities of infection (MOIs) (p < 0.001). In vivo, phage treatment significantly lowered bacterial concentrations in the urine on Days 1 and 3 (p < 0.0001), achieving a maximum reduction of 4.602 log₁₀ CFU/mL; however, its effectiveness diminished by Day 5 (p > 0.05). Concurrently, phage titers decreased over time. Importantly, phage treatment notably reduced bacterial load in the bladder, kidneys, and spleen (p < 0.001). Inflammatory markers such as IL-6, IL-1β, and TNF-α were significantly lower in the treatment group, especially in the bladder (p < 0.0001), indicating an effective reduction in inflammation. Histopathological analysis showed significant mitigation of tissue damage. Conclusion The results demonstrated that bacteriophage P2-71 is a promising alternative therapy for UTIs caused by MDR Proteus mirabilis. This bacteriophage therapy offers a viable strategy for managing infections where traditional antimicrobials fail, highlighting its potential in clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Kong N, Hu Y, Lan C, Bi S. A novel PCR-based genotyping method for Proteus mirabilis - Intergenic region polymorphism analysis. J Microbiol Methods 2024; 224:107008. [PMID: 39103095 DOI: 10.1016/j.mimet.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Proteus mirabilis is a predominant species in cases of food poisoning associated with meat products and is also an opportunistic pathogen causing numerous infections in humans. This study aimed to differentiate P. mirabilis isolates using intergenic region polymorphism analysis (IRPA). The IRPA typing scheme was developed to amplify polymorphic fragments in intergenic regions (IGRs). The presence, absence, or size change of amplified products were identified and utilized as genetic markers for rapid differentiation of strains. A total of 75 P. mirabilis isolates were isolated from 63 fresh poultry and pork samples were subtyped using the IRPA and ERIC-PCR methods, and their antibiotic resistance profiles were tested. The majority of P. mirabilis isolates showed resistance to tetracycline (85.3%), doxycycline (93.3%), chloramphenicol (82.7%), streptomycin (92.0%), spectinomycin (80.0%), trimethoprim (97.3%); trimethoprim-sulfalleth (82.7%), and erythromycin (100.0%). In contrast, resistance rates to ceftriaxon, cefoxitin, cefepime, and cefotaxim were lower at only 17.3%, 5.3%, 6.7%, and 13.3%, respectively, among P. mirabilis isolates. Eleven loci were selected for analysis of the genetic diversity of 75 P. mirabilis isolates. A combination of 4 loci was determined as the optimal combination. The results compared to those obtained using ERIC-PCR for the same isolates. The Simpson's index of diversity was 0.999 for IRPA and 0.923 for ERIC-PCR, indicating that IRPA has a higher discriminatory power than ERIC-PCR. The concordance between IRPA and ERIC-PCR methods was low, primarily because IRPA classified isolates from the same ERIC cluster into separate clusters due to its high resolution. The IRPA method presented in this study offers a rapid, simple, reproducible, and economical approach for genotyping P. mirabilis.
Collapse
Affiliation(s)
- Nianqing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China; Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, Guangdong 510600, China
| | - Yilin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Chenglu Lan
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Shuilian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China.
| |
Collapse
|
4
|
Gmiter D, Pacak I, Nawrot S, Czerwonka G, Kaca W. Genomes comparison of two Proteus mirabilis clones showing varied swarming ability. Mol Biol Rep 2023; 50:5817-5826. [PMID: 37219671 PMCID: PMC10290045 DOI: 10.1007/s11033-023-08518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Proteus mirabilis is a Gram-negative bacteria most noted for its involvement with catheter-associated urinary tract infections. It is also known for its multicellular migration over solid surfaces, referred to as 'swarming motility'. Here we analyzed the genomic sequences of two P. mirabilis isolates, designated K38 and K39, which exhibit varied swarming ability. METHODS AND RESULTS The isolates genomes were sequenced using Illumina NextSeq sequencer, resulting in about 3.94 Mbp, with a GC content of 38.6%, genomes. Genomes were subjected for in silico comparative investigation. We revealed that, despite a difference in swarming motility, the isolates showed high genomic relatedness (up to 100% ANI similarity), suggesting that one of the isolates probably originated from the other. CONCLUSIONS The genomic sequences will allow us to investigate the mechanism driving this intriguing phenotypic heterogeneity between closely related P. mirabilis isolates. Phenotypic heterogeneity is an adaptive strategy of bacterial cells to several environmental pressures. It is also an important factor related to their pathogenesis. Therefore, the availability of these genomic sequences will facilitate studies that focus on the host-pathogen interactions during catheter-associated urinary tract infections.
Collapse
Affiliation(s)
- Dawid Gmiter
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland.
| | - Ilona Pacak
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Sylwia Nawrot
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grzegorz Czerwonka
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Wieslaw Kaca
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
5
|
Human and Companion Animal Proteus mirabilis Sharing. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Proteus mirabilis is an important pathogen that is associated with urinary tract infections. This study aims to determine the colonization and sharing of P. mirabilis between healthy companion animals and humans that are living together and to evaluate the clonal relatedness of the fecal and clinical stains. Eighteen households (24 humans, 18 dogs, 8 cats) with at least one human–animal pair were studied. Fecal samples were plated onto MacConkey and Hektoen agar and P. mirabilis PFGE analysis (NotI; Dice/UPGMA; 1.5% tolerance) was conducted for the households with multiple positive participants. Antimicrobial-resistance was tested according to CLSI. The fecal P. mirabilis pulse-types were compared with uropathogenic clinical strains (n = 183). Forty-nine P. mirabilis were isolated from eight households. The percentage of colonization in the dogs (44.4%, n = 8/18) was significantly higher (p = 0.0329) than in the humans (12.5%, n = 3/24). Three households had multiple colonized participants. One human–dog pair shared related P. mirabilis strains, which clustered with a clinical strain of animal origin (82.5%). One fecal P. mirabilis strain, from a dog, clustered with two human community-acquired clinical strains (80.9%, 88.9%). To our knowledge, this is the first report of dogs and humans living in close contact and sharing related P. mirabilis strains. The high frequency of colonization in the dogs underlines their possible role as P. mirabilis reservoirs for humans and other dogs.
Collapse
|
6
|
Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-acquired urinary tract infection (CA-UTI) in Brazil. Microb Pathog 2020; 152:104642. [PMID: 33246088 PMCID: PMC7938216 DOI: 10.1016/j.micpath.2020.104642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are among the most common human infections, both in hospitals and in communities. Proteus mirabilis is known to cause community-acquired urinary tract infection (CA-UTI) and is an important causative agent of nosocomial UTIs. The pathogenesis of this species is related to its ability to manifest virulence factors, such as biofilms, adhesion molecules, urease, proteases, siderophores, and toxins. In this study, we investigated the virulence, sensitivity to antimicrobials, and clonal relationship of 183 strains isolated from the urine of CA-UTI patients in Londrina, Paraná State, Brazil. A total of 100% of the strains were positive for hpmA, ptA, zapA, mrpA, pmfA, ireA, and atfA virulence genes. The ucaA gene was positive in 81.4% of the cases. The strains showed high rates of sensitivity to the evaluated antimicrobials, and only one was ESBL-positive. All the tested bacteria showed the capacity to form biofilms: 73.2% had a very strong intensity, while 25.7% had a strong intensity, and 1.1% had a moderate intensity. Regarding clonality, 40 clonal clusters were found among the microorganisms tested. Our results showed that strains of P. mirabilis isolated from CA-UTI patients have several virulence factors. Although the urinary clinical isolates studied showed high sensitivity to antimicrobials, the strains showed a strong capacity to form biofilms, making antibiotic therapy difficult. In addition, it was observed that there were clones of P. mirabilis circulating in the city of Londrina. All strains presented a variety of virulence genes. It was observed that there were clones of P. mirabilis circulating. 98.1% of strains produced strong or very strong biofilm.
Collapse
|
7
|
Filipiak A, Chrapek M, Literacka E, Wawszczak M, Głuszek S, Majchrzak M, Wróbel G, Łysek-Gładysińska M, Gniadkowski M, Adamus-Białek W. Pathogenic Factors Correlate With Antimicrobial Resistance Among Clinical Proteus mirabilis Strains. Front Microbiol 2020; 11:579389. [PMID: 33324365 PMCID: PMC7723865 DOI: 10.3389/fmicb.2020.579389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022] Open
Abstract
Proteus mirabilis is the third most common etiological factor of urinary tract infection. It produces urease, which contributes to the formation of a crystalline biofilm, considered to be one of the most important virulence factors of P. mirabilis strains, along with their ability to swarm on a solid surface. The aim of this study was to analyze the pathogenic properties of two selected groups of clinical P. mirabilis isolates, antimicrobial susceptible and multidrug resistant (MDR), collected from hospitals in different regions in Poland. The strains were examined based on virulence gene profiles, urease and hemolysin production, biofilm formation, and swarming properties. Additionally, the strains were characterized based on the Dienes test and antibiotic susceptibility patterns. It turned out that the MDR strains exhibited kinship more often than the susceptible ones. The strains which were able to form a stronger biofilm had broader antimicrobial resistance profiles. It was also found that the strongest swarming motility correlated with susceptibility to most antibiotics. The correlations described in this work encourage further investigation of the mechanisms of pathogenicity of P. mirabilis.
Collapse
Affiliation(s)
- Aneta Filipiak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Magdalena Chrapek
- Department of Mathematics, Jan Kochanowski University, Kielce, Poland
| | | | - Monika Wawszczak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Michał Majchrzak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Grzegorz Wróbel
- Department of Anatomy, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | | | | | - Wioletta Adamus-Białek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
8
|
Adegoke AA, Fatunla OK, Okoh AI. Critical threat associated with carbapenem-resistant gram-negative bacteria: prioritizing water matrices in addressing total antibiotic resistance. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01579-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
9
|
Sun Y, Wen S, Zhao L, Xia Q, Pan Y, Liu H, Wei C, Chen H, Ge J, Wang H. Association among biofilm formation, virulence gene expression, and antibiotic resistance in Proteus mirabilis isolates from diarrhetic animals in Northeast China. BMC Vet Res 2020; 16:176. [PMID: 32503535 PMCID: PMC7275385 DOI: 10.1186/s12917-020-02372-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background The aim of this study was to investigate the association among biofilm formation, virulence gene expression, and antibiotic resistance in P. mirabilis isolates collected from diarrhetic animals (n = 176) in northeast China between September 2014 and October 2016. Results Approximately 92.05% of the isolates were biofilm producers, whereas 7.95% of the isolates were non-producers. The prevalence of virulence genes in the biofilm producer group was significantly higher than that in the non-producer group. Biofilm production was significantly associated with the expression of ureC, zapA, rsmA, hmpA, mrpA, atfA, and pmfA (P < 0.05). The results of drug susceptibility tests revealed that approximately 76.7% of the isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR). Biofilm production was significantly associated with resistance to doxycycline, tetracycline, sulfamethoxazole, kanamycin, and cephalothin (P < 0.05). Although the pathogenicity of the biofilm producers was stronger than that of the non-producers, the biofilm-forming ability of the isolates was not significantly associated with morbidity and mortality in mice (P > 0.05). Conclusion Our findings suggested that a high level of multidrug resistance in P. mirabilis isolates obtained from diarrhetic animals in northeast China. The results of this study indicated that the positive rates of the genes expressed by biofilm-producing P. mirabilis isolates were significantly higher than those expressed by non-producing isolates.
Collapse
Affiliation(s)
- Yadong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.,Liaoning Vocational College of Ecological Engineering, Shenyang, 110122, P.R. China
| | - Shanshan Wen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, P.R. China
| | - Qiqi Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yue Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hanghang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Chengwei Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, P.R. China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, P.R. China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.
| |
Collapse
|
10
|
|
11
|
Hussein EI, Al-Batayneh K, Masadeh MM, Dahadhah FW, Al Zoubi MS, Aljabali AA, Alzoubi KH. Assessment of Pathogenic Potential, Virulent Genes Profile, and Antibiotic Susceptibility of Proteus mirabilis from Urinary Tract Infection. Int J Microbiol 2020; 2020:1231807. [PMID: 32089693 PMCID: PMC7029293 DOI: 10.1155/2020/1231807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Proteus mirabilis is the third most common bacterium that can cause complicated UTI, especially in catheterized patients. Urovirulence genes of P. mirabilis strains are poorly identified among UTI patients. The aims of the present study were to determine the prevalence of the uropathogenic P. mirabilis strains isolated from UTI patients by the detection of several P. mirabilis virulence genes and to characterize the antibiotic susceptibility profile of P. mirabilis isolates. P. mirabilis isolates were collected from urine specimens of patients suffering from UTI. Virulence genes in P. mirabilis, namely, hpmA, hpmB, rsbA, luxS, ureC1, hlyA, rpoA, atfA, atfC, mrpA, and pm1 were detected in the isolates via PCR detection method. All P. mirabilis virulence genes were detected in more than 90% of the isolates except hlyA gene, which was detected in only 23.8% of the isolates. The rate of susceptibility for ceftriaxone was 96.8%, followed by norfloxacin (82.5%), gentamicin (71.4%), ciprofloxacin (69.8%), cephalexin (52.4%), nalidixic acid (42.9%), sulfamethoxazole (39.7%), ampicillin (36.5%), and nitrofurantoin (3.2%). Significant associations (P < 0.05) were detected between antimicrobial susceptibility of each of the following antibiotics and the presence virulence genes. Cephalexin antimicrobial susceptibility was significantly associated with the presence each of ureC1 and atfC. Sulfamethoxazole antimicrobial susceptibility was significantly associated with the presence atfA. Ceftriaxone antimicrobial susceptibility was significantly associated with the presence each of hpmA, ureC1, rpoA, atfC, mrpA, and pm1. Nitrofurantoin antimicrobial susceptibility was significantly associated with the presence each of hpmA, ureC1, rpoA, atfA, atfC, mrpA, and pm1. In conclusion, an association between the presence of urovirulence genes of P. mirabilis and increasing P. mirabilis resistance to antimicrobials has been demonstrated.
Collapse
Affiliation(s)
- Emad I. Hussein
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
- Department of Food Science and Human Nutrition, A'Sharqiyah University, Ibra, Oman
| | - Khalid Al-Batayneh
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Majed M. Masadeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Fatina W. Dahadhah
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Alaa A. Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
12
|
Mirzaei A, Habibi M, Bouzari S, Asadi Karam MR. Characterization of Antibiotic-Susceptibility Patterns, Virulence Factor Profiles and Clonal Relatedness in Proteus mirabilis Isolates from Patients with Urinary Tract Infection in Iran. Infect Drug Resist 2019; 12:3967-3979. [PMID: 31920349 PMCID: PMC6938180 DOI: 10.2147/idr.s230303] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose Proteus mirabilis is one of the most important agents of urinary tract infection (UTI). As there are limited data abou the pathogenicity P. mirabilis isolated from Iran, we investigated the virulence characteristics and antibiotic resistance in the isolates. Finally, the genotypic patterns were evaluated by Pulse field gel electrophoresis (PFGE). Methods A total of 110 isolates of P. mirabilis causing UTIs were isolated from patients in Tehran, Iran. The virulence characteristics and antimicrobial susceptibility were assayed using phenotypic methods. Extended-spectrum β-lactamases (ESBLs) production was assayed by the combination disk diffusion test (CDDT). Presence of virulence genes and antimicrobial-resistant genes was detected by Polymerase chain reaction (PCR). Finally, thirty-three isolates were selected for PFGE. Results All isolates showed the ability of biofilm and hemolysin formation. Antibiotic resistance ranged from 59.1% about cotrimoxazole to 2.7% about amoxicillin-clavulanic acid. Sixteen (14.5%) of the isolates were classified as multi-drug resistant (MDR). All isolates amplified mrpH, mrpA, pmfA, ureG and hpmA genes. Furthermore, the prevalence of zapA, fliC, ptaA, and ucaA genes was 98.2%, 98.2%, 95.5%, and 95.5%, respectively. The prevalence of plasmid-mediated quinolone resistance (PMQR) genes was 4.5% and 0.9% for aac(6')-Ib-cr and qnrA, respectively. Twenty-eight pulsotypes were detected among the 33 isolates by PFGE that pulsotypes 1, 2 and 4 with two isolates and pulsotype 3 with three isolates were the most prevalent ones. Conclusion It was found that the P. mirabilis isolates had high frequency of virulence factors. In addition, antibiotic resistance to some antibiotics and also production of ESBLs is alarming and shows the need for hygienic procedures to prevent the dissemination of antibiotic resistance. Although PFGE showed genetic diversity among the isolates, finding of several pulsotypes among the isolates should be considered an alarm to prevent these infections in hospital environments.
Collapse
Affiliation(s)
- Arezoo Mirzaei
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 13164, Iran
| | | |
Collapse
|
13
|
Melendez-Avalos A, Sainz-Espuñes T, Castrillón-Rivera LE, Mendoza-Pérez F, Palma-Ramos A, Castañeda-Sánchez JI, Drago-Serrano EM. Analysis of inflammatory cytokine expression in the urinary tract of BALB/c mice infected with Proteus (P.) mirabilis and enteroaggregative Escherichia (E.) coli (EAEC) strains. Folia Microbiol (Praha) 2019; 65:133-142. [PMID: 31104302 DOI: 10.1007/s12223-019-00714-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
This study aimed to analyze the proinflammatory cytokine mRNA expression in the urinary tract of BALB/c mice infected with bacterial strains with uropathogenic potential. Groups of four 6-week-old female BALB/c mice were intraurethrally inoculated with 5 × 107 colony-forming units (CFU) of P. mirabilis ATCC29906, EAEC O42, P. mirabilis RTX339, or sterile saline (control group) and then sacrificed at 0, 2, 4, 7, or 10 days post-infection (p.i.). Samples were cultured to determine the CFU/mL in urine or CFU/g in the bladders and kidneys. Cytokine expression (tumor necrosis factor (TNF)-α and interleukin (IL)-1β, -6, and -8) was evaluated in the target organs using real-time PCR and immunohistochemistry; histology was examined with hematoxylin and eosin staining. The results are presented as the means and standard deviations and were compared using one-way ANOVA, with p < 0.05 indicating significant differences. Bacteriuria was not detected in the infected groups; bacterial colonization occurred in the target organs at all time points, but was higher in mice infected with EAEC O42 or P. mirabilis RTX339 at 7 days p.i. The expression of all cytokine mRNAs was seen, but only the levels of the IL-8 protein increased in situ at 7 days p.i. in the P. mirabilis RTX339 and EAEC O42 groups in both organs. Morphological alterations, observed in all of the infected groups, were more prominent in the EAEC O42 and P. mirabilis RTX339 groups. The findings provide insights into the uropathogenicity and inflammatory cytokine expression in the urinary tract of mice infected with three previously untested bacterial strains.
Collapse
Affiliation(s)
- Araceli Melendez-Avalos
- Maestria en Ciencias Farmaceuticas, Universidad Autonoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico
| | - Teresita Sainz-Espuñes
- Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico
| | - Laura Estela Castrillón-Rivera
- Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico
| | - Felipe Mendoza-Pérez
- Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico
| | - Alejandro Palma-Ramos
- Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico
| | - Jorge Ismael Castañeda-Sánchez
- Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico
| | - Elisa Maria Drago-Serrano
- Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico.
| |
Collapse
|
14
|
The Sequencing of hpmB Gene in Proteus mirabilis Among UTIs Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Marques C, Belas A, Aboim C, Trigueiro G, Cavaco-Silva P, Gama LT, Pomba C. Clonal relatedness of Proteus mirabilis strains causing urinary tract infections in companion animals and humans. Vet Microbiol 2019; 228:77-82. [DOI: 10.1016/j.vetmic.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/07/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
|
16
|
Pathirana HNKS, Shin GW, Wimalasena SHMP, De Silva BCJ, Hossain S, Heo GJ. PREVALENCE AND CHARACTERIZATION OF QUINOLONE RESISTANCE GENES IN PROTEUS SPECIES ISOLATED FROM PET TURTLES. J Exot Pet Med 2018. [DOI: 10.1053/j.jepm.2017.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0009-2017. [PMID: 29424333 PMCID: PMC5880328 DOI: 10.1128/ecosalplus.esp-0009-2017] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/10/2023]
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14263
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Melanie M Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
18
|
Soliman AM, Ahmed AM, Shimamoto T, El-Domany RA, Nariya H, Shimamoto T. First report in Africa of two clinical isolates of Proteus mirabilis carrying Salmonella genomic island (SGI1) variants, SGI1-PmABB and SGI1-W. INFECTION GENETICS AND EVOLUTION 2017; 51:132-137. [PMID: 28359833 DOI: 10.1016/j.meegid.2017.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 01/20/2023]
Abstract
Two Proteus mirabilis strains, designated PmTAN59 and PmKAF126, were isolated from two different Egyptian cities in 2014 and 2015, respectively. PmTAN59 was isolated from a sputum swab from a pneumonia patient in Tanta University Teaching Hospital. PmKAF126 was isolated from a patient with a diabetic foot infection in a hospital in the city of Kafr El-Sheikh. The two isolates were identified with bacterial small ribosomal RNA (16S rRNA) gene amplification and sequencing and tested for antimicrobial sensitivity with a Kirby-Bauer disk diffusion assay. The two strains were resistant to amoxicillin/clavulante, ampicillin, cefotaxime, cefoxitin, ceftriaxone, chloramphenicol, ciprofloxacin, colistin, gentamicin, kanamycin, nalidixic acid, spectinomycin, streptomycin, sulfamethoxazole/trimethoprime, and tetracycline, but sensitive to aztreonam, imipenem, and meropenem. Molecular characterization was used to map the entire backbone, including the multiple antibiotic resistance (MDR) region, of Salmonella genomic island 1 (SGI1). Both isolates carried a structure similar to SGI1, with two different MDR regions corresponding to SGI1-PmABB in PmTAN59 and SGI1-W in PmKAF126. SGI1-PmABB carried an integron of ~1.5kb with a two-gene cassette, aacCA5-aadA7, which confers resistance to gentamicin, streptomycin, and spectinomycin, whereas SGI1-W carried an integron of ~1.9kb containing aadA2-lnuF, which confers resistance to spectinomycin, streptomycin, and lincosamides. PmKAF126 carried the entire SGI1 sequence, however PmTAN59 carried a SGI1 structure with a deletion in the region from ORF S005 to ORF S009 and accompanied by insertion of IS1359 (1258bp). Furthermore, PmTAN59 carried class 2 integron of ~2.2kb containing dfrA1-sat2-aadA1. An ERIC-PCR analysis detected no clonal relationship between the two strains. Molecular screening for other antimicrobial resistance genes and a plasmid analysis indicated that PmTAN59 carried an IncFIB plasmid type. This strain also carried blaTEM-1 and the plasmid-mediated quinolone-resistance gene qnrA1. However, PmKAF126 carried no plasmids and no resistance gene other than that contained in the MDR region of SGI1 and floR gene conferring resistance to florfenicol. To the best of our knowledge, this is the first report of an SGI1-positive P. mirabilis strain in Egypt or on the entire African continent.
Collapse
Affiliation(s)
- Ahmed M Soliman
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Department of Microbiology and Immunology, Faculty of Pharmacy and Drug Industries, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ashraf M Ahmed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy and Drug Industries, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
19
|
Zarnowiec P, Mizera A, Chrapek M, Urbaniak M, Kaca W. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS. Innate Immun 2016; 22:325-35. [PMID: 27189426 DOI: 10.1177/1753425916647470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/30/2016] [Indexed: 02/05/2023] Open
Abstract
Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research.
Collapse
Affiliation(s)
- Paulina Zarnowiec
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Andrzej Mizera
- Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg
| | - Magdalena Chrapek
- Institute of Mathematics, Jan Kochanowski University, Kielce, Poland
| | - Mariusz Urbaniak
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| | - Wieslaw Kaca
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
20
|
High Prevalence of SXT/R391-Related Integrative and Conjugative Elements Carrying blaCMY-2 in Proteus mirabilis Isolates from Gulls in the South of France. Antimicrob Agents Chemother 2015; 60:1148-52. [PMID: 26643344 DOI: 10.1128/aac.01654-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/17/2015] [Indexed: 11/20/2022] Open
Abstract
The genetic structures involved in the dissemination of blaCMY-2 carried by Proteus mirabilis isolates recovered from different gull species in the South of France were characterized and compared to clinical isolates. blaCMY-2 was identified in P. mirabilis isolates from 27/93 yellow-legged gulls and from 37/65 slender-billed gulls. It was carried by a conjugative SXT/R391-like integrative and conjugative element (ICE) in all avian strains and in 3/7 human strains. Two clinical isolates had the same genetic background as six avian isolates.
Collapse
|
21
|
Bonkat G, Braissant O, Rieken M, Solokhina A, Widmer AF, Frei R, van der Merwe A, Wyler S, Gasser TC, Bachmann A. Standardization of isothermal microcalorimetry in urinary tract infection detection by using artificial urine. World J Urol 2012; 31:553-7. [DOI: 10.1007/s00345-012-0913-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022] Open
|
22
|
Bonkat G, Braissant O, Widmer AF, Frei R, Rieken M, Wyler S, Gasser TC, Wirz D, Daniels AU, Bachmann A. Rapid detection of urinary tract pathogens using microcalorimetry: principle, technique and first results. BJU Int 2012; 110:892-7. [DOI: 10.1111/j.1464-410x.2011.10902.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol 2012; 3:18. [PMID: 22303296 PMCID: PMC3266646 DOI: 10.3389/fmicb.2012.00018] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/10/2012] [Indexed: 11/25/2022] Open
Abstract
The environment, and especially freshwater, constitutes a reactor where the evolution and the rise of new resistances occur. In water bodies such as waste water effluents, lakes, and rivers or streams, bacteria from different sources, e.g., urban, industrial, and agricultural waste, probably selected by intensive antibiotic usage, are collected and mixed with environmental species. This may cause two effects on the development of antibiotic resistances: first, the contamination of water by antibiotics or other pollutants lead to the rise of resistances due to selection processes, for instance, of strains over-expressing broad range defensive mechanisms, such as efflux pumps. Second, since environmental species are provided with intrinsic antibiotic resistance mechanisms, the mixture with allochthonous species is likely to cause genetic exchange. In this context, the role of phages and integrons for the spread of resistance mechanisms appears significant. Allochthonous species could acquire new resistances from environmental donors and introduce the newly acquired resistance mechanisms into the clinics. This is illustrated by clinically relevant resistance mechanisms, such as the fluoroquinolones resistance genes qnr. Freshwater appears to play an important role in the emergence and in the spread of antibiotic resistances, highlighting the necessity for strategies of water quality improvement. We assume that further knowledge is needed to better understand the role of the environment as reservoir of antibiotic resistances and to elucidate the link between environmental pollution by anthropogenic pressures and emergence of antibiotic resistances. Only an integrated vision of these two aspects can provide elements to assess the risk of spread of antibiotic resistances via water bodies and suggest, in this context, solutions for this urgent health issue.
Collapse
Affiliation(s)
- Agnese Lupo
- Institute of Hydrobiology, Department of Hydrosciences, Technical University Dresden Dresden, Germany
| | | | | |
Collapse
|
24
|
Abstract
The urinary tract is a common site of bacterial infections; nearly half of all women experience at least one urinary tract infection (UTI) during their lifetime. These infections are classified based on the condition of the host. Uncomplicated infections affect otherwise healthy individuals and are most commonly caused by uropathogenic Escherichia coli, whereas complicated infections affect patients with underlying difficulties, such as a urinary tract abnormality or catheterization, and are commonly caused by species such as Proteus mirabilis. Virulence and fitness factors produced by both pathogens include fimbriae, toxins, flagella, iron acquisition systems, and proteins that function in immune evasion. Additional factors that contribute to infection include the formation of intracellular bacterial communities by E. coli and the production of urease by P. mirabilis, which can result in urinary stone formation. Innate immune responses are induced or mediated by pattern recognition receptors, antimicrobial peptides, and neutrophils. The adaptive immune response to UTI is less well understood. Host factors TLR4 and CXCR1 are implicated in disease outcome and susceptibility, respectively. Low levels of TLR4 are associated with asymptomatic bacteriuria while low levels of CXCR1 are associated with increased incidence of acute pyelonephritis. Current research is focused on the identification of additional virulence factors and therapeutic or prophylactic targets that might be used in the generation of vaccines against both uropathogens.
Collapse
|
25
|
Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect Immun 2010; 78:2823-33. [PMID: 20385754 DOI: 10.1128/iai.01220-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis, a Gram-negative bacterium, represents a common cause of complicated urinary tract infections in catheterized patients or those with functional or anatomical abnormalities of the urinary tract. ZnuB, the membrane component of the high-affinity zinc (Zn(2+)) transport system ZnuACB, was previously shown to be recognized by sera from infected mice. Since this system has been shown to contribute to virulence in other pathogens, its role in Proteus mirabilis was investigated by constructing a strain with an insertionally interrupted copy of znuC. The znuC::Kan mutant was more sensitive to zinc limitation than the wild type, was outcompeted by the wild type in minimal medium, displayed reduced swimming and swarming motility, and produced less flaA transcript and flagellin protein. The production of flagellin and swarming motility were restored by complementation with znuCB in trans. Swarming motility was also restored by the addition of Zn(2+) to the agar prior to inoculation; the addition of Fe(2+) to the agar also partially restored the swarming motility of the znuC::Kan strain, but the addition of Co(2+), Cu(2+), or Ni(2+) did not. ZnuC contributes to but is not required for virulence in the urinary tract; the znuC::Kan strain was outcompeted by the wild type during a cochallenge experiment but was able to colonize mice to levels similar to the wild-type level during independent challenge. Since we demonstrated a role for ZnuC in zinc transport, we hypothesize that there is limited zinc present in the urinary tract and P. mirabilis must scavenge this ion to colonize and persist in the host.
Collapse
|
26
|
Fernández-Delgado M, Contreras M, García-Amado MA, Gueneau P, Suárez P. Occurrence of Proteus mirabilis associated with two species of venezuelan oysters. Rev Inst Med Trop Sao Paulo 2008; 49:355-9. [PMID: 18157401 DOI: 10.1590/s0036-46652007000600004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/11/2007] [Indexed: 11/22/2022] Open
Abstract
The fecal contamination of raw seafood by indicators and opportunistic pathogenic microorganisms represents a public health concern. The objective of this study was to investigate the presence of enteric bacteria colonizing oysters collected from a Venezuelan touristic area. Oyster samples were collected at the northwestern coast of Venezuela and local salinity, pH, temperature, and dissolved oxygen of seawater were recorded. Total and fecal coliforms were measured for the assessment of the microbiological quality of water and oysters, using the Multiple Tube Fermentation technique. Analyses were made using cultures and 16S rRNA gene sequencing. Diverse enrichment and selective culture methods were used to isolate enteric bacteria. We obtained pure cultures of Gram-negative straight rods with fimbriae from Isognomon alatus and Crassostrea rhizophorae. Our results show that P. mirabilis was predominant under our culture conditions. We confirmed the identity of the cultures by biochemical tests, 16S rRNA gene sequencing, and data analysis. Other enterobacteria such as Escherichia coli, Morganella morganii and Klebsiella pneumoniae were also isolated from seawater and oysters. The presence of pathogenic bacteria in oysters could have serious epidemiological implications and a potential human health risk associated with consumption of raw seafood.
Collapse
|
27
|
Zunino P, Sosa V, Schlapp G, Allen AG, Preston A, Maskell DJ. Mannose-resistant Proteus-like and P. mirabilis fimbriae have specific and additive roles in P. mirabilis urinary tract infections. ACTA ACUST UNITED AC 2007; 51:125-33. [PMID: 17854474 DOI: 10.1111/j.1574-695x.2007.00285.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteus mirabilis is an important uropathogen that can cause complicated urinary tract infections (UTI). It produces several types of fimbriae, including mannose-resistant Proteus-like (MR/P) fimbriae and P. mirabilis fimbriae (PMF). Previously, we determined that these fimbriae affect the ability of P. mirabilis to colonize the urinary tract. The objective of this study was to analyse the effect of the simultaneous lack of P. mirabilis MR/P and PMF fimbriae in UTI pathogenesis. A double mutant lacking both fimbriae was generated by allelic replacement mutagenesis. This mutant was characterized genetically and phenotypically, and tested using an in vitro uroepithelial cell adhesion assay and the ascending UTI murine model. In vitro adhesion to uroepithelial cells by the P. mirabilis pmfA/mrpA-D mutant was reduced when compared with the wild-type, although no significant differences were observed when it was compared with the single mrpA-D and pmfA mutants. However, in vivo assays showed that colonization of kidneys and bladders by the P. mirabilis pmfA/mrpA-D mutant was significantly reduced when compared with the wild-type and both single mutants. These results indicate that, although redundancy can occur, MR/P and PMF fimbriae have specific and additive roles in P. mirabilis UTI.
Collapse
Affiliation(s)
- Pablo Zunino
- Laboratorio de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|