1
|
Dokas S, Taylor DK, Good LL, Mohanaraj S, Maillard RA. Identifying Allosteric Hotspots in Mycobacterium tuberculosis cAMP Receptor Protein through Structural Homology. Biochemistry 2025; 64:801-811. [PMID: 39887300 PMCID: PMC11840924 DOI: 10.1021/acs.biochem.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Understanding the mechanisms of allosteric regulation in response to second messengers is crucial for advancing basic and applied research. This study focuses on the differential allosteric regulation by the ubiquitous signaling molecule, cAMP, in the cAMP receptor protein from Escherichia coli (CRPEcoli) and from Mycobacterium tuberculosis (CRPMTB). By introducing structurally homologous mutations from allosteric hotspots previously identified in CRPEcoli into CRPMTB and examining their effects on protein solution structure, stability and function, we aimed to determine the factors contributing to their differential allosteric regulation. Our results demonstrate that the mutations did not significantly alter the overall fold, assembly and thermodynamic stability of CRPMTB, but had varying effects on cAMP binding affinity and cooperativity. Interestingly, the mutations had minimal impact on the specific binding of CRPMTB to DNA promoter sites. However, we found that cAMP primarily reduces nonspecific CRPMTB-DNA complexes and that the mutants largely lose this ability. Furthermore, our experiments revealed that CRPMTB-DNA complexes serve as a nucleation point for additional binding of CRPMTB proteins to form high-order oligomers with the DNA. Overall, our findings highlight the importance of both cAMP and DNA interactions in modulating the allosteric regulation of CRPMTB and provide insights into the differential responses of CRPEcoli and CRPMTB to cAMP.
Collapse
Affiliation(s)
- Stephen
P. Dokas
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Daniel K. Taylor
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Lydia L. Good
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Sanuja Mohanaraj
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Rodrigo A. Maillard
- Department
of Chemistry, Georgetown University, Washington, District of
Columbia 20057, United States
- Institute
of Soft Matter Synthesis and Metrology, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
2
|
Kathayat D, VanderVen BC. Exploiting cAMP signaling in Mycobacterium tuberculosis for drug discovery. Trends Microbiol 2024; 32:874-883. [PMID: 38360432 PMCID: PMC11322422 DOI: 10.1016/j.tim.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Mycobacterium tuberculosis (Mtb) replicates within host macrophages by adapting to the stressful and nutritionally constrained environments in these cells. Exploiting these adaptations for drug discovery has revealed that perturbing cAMP signaling can restrict Mtb growth in macrophages. Specifically, compounds that agonize or stimulate the bacterial enzyme, Rv1625c/Cya, induce cAMP synthesis and this interferes with the ability of Mtb to metabolize cholesterol. In murine tuberculosis (TB) infection models, Rv1625c/Cya agonists contribute to reducing relapse and shortening combination treatments, highlighting the therapeutic potential for this class of compounds. More recently, cAMP signaling has been implicated in regulating fatty acid utilization by Mtb. Thus, a new model is beginning to emerge in which cAMP regulates the utilization of host lipids by Mtb during infection, and this could provide new targets for TB drug development. Here, we summarize the current understanding of cAMP signaling in Mtb with a focus on our understanding of how cAMP signaling impacts Mtb physiology during infection. We also discuss additional cAMP-related drug targets in Mtb and other bacterial pathogens that may have therapeutic potential.
Collapse
Affiliation(s)
- Dipak Kathayat
- Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Brian C VanderVen
- Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Khan H, Paul P, Goar H, Bamniya B, Baid N, Sarkar D. Mycobacterium tuberculosis PhoP integrates stress response to intracellular survival by regulating cAMP level. eLife 2024; 13:RP92136. [PMID: 38739431 PMCID: PMC11090507 DOI: 10.7554/elife.92136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.
Collapse
Affiliation(s)
- Hina Khan
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Partha Paul
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Harsh Goar
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Bhanwar Bamniya
- CSIR, Institute of Microbial TechnologyChandigarhIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| | - Navin Baid
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Dibyendu Sarkar
- CSIR, Institute of Microbial TechnologyChandigarhIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| |
Collapse
|
4
|
Pal P, Khan MY, Sharma S, Kumar Y, Mangla N, Kaushal PS, Agarwal N. ResR/McdR-regulated protein translation machinery contributes to drug resilience in Mycobacterium tuberculosis. Commun Biol 2023; 6:708. [PMID: 37433855 DOI: 10.1038/s42003-023-05059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Survival response of the human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb) to a diverse environmental cues is governed through its versatile transcription regulatory mechanisms with the help of a large pool of transcription regulators (TRs). Rv1830 is one such conserved TR, which remains uncharacterized in Mtb. It was named as McdR based on an effect on cell division upon its overexpression in Mycobacterium smegmatis. Recently, it has been implicated in antibiotic resilience in Mtb and reannotated as ResR. While Rv1830 affects cell division by modulating the expression of M. smegmatis whiB2, the underlying cause of its essentiality and regulation of drug resilience in Mtb is yet to be deciphered. Here we show that ResR/McdR, encoded by ERDMAN_2020 in virulent Mtb Erdman, is pivotal for bacterial proliferation and crucial metabolic activities. Importantly, ResR/McdR directly regulates ribosomal gene expression and protein synthesis, requiring distinct disordered N-terminal sequence. Compared to control, bacteria depleted with resR/mcdR exhibit delayed recovery post-antibiotic treatment. A similar effect upon knockdown of rplN operon genes further implicates ResR/McdR-regulated protein translation machinery in attributing drug resilience in Mtb. Overall, findings from this study suggest that chemical inhibitors of ResR/McdR may be proven effective as adjunctive therapy for shortening the duration of TB treatment.
Collapse
Affiliation(s)
- Pramila Pal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Mohd Younus Khan
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Shivani Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Nikita Mangla
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Prem S Kaushal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
5
|
Krol E, Werel L, Essen LO, Becker A. Structural and functional diversity of bacterial cyclic nucleotide perception by CRP proteins. MICROLIFE 2023; 4:uqad024. [PMID: 37223727 PMCID: PMC10187061 DOI: 10.1093/femsml/uqad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger synthesized by most living organisms. In bacteria, it plays highly diverse roles in metabolism, host colonization, motility, and many other processes important for optimal fitness. The main route of cAMP perception is through transcription factors from the diverse and versatile CRP-FNR protein superfamily. Since the discovery of the very first CRP protein CAP in Escherichia coli more than four decades ago, its homologs have been characterized in both closely related and distant bacterial species. The cAMP-mediated gene activation for carbon catabolism by a CRP protein in the absence of glucose seems to be restricted to E. coli and its close relatives. In other phyla, the regulatory targets are more diverse. In addition to cAMP, cGMP has recently been identified as a ligand of certain CRP proteins. In a CRP dimer, each of the two cyclic nucleotide molecules makes contacts with both protein subunits and effectuates a conformational change that favors DNA binding. Here, we summarize the current knowledge on structural and physiological aspects of E. coli CAP compared with other cAMP- and cGMP-activated transcription factors, and point to emerging trends in metabolic regulation related to lysine modification and membrane association of CRP proteins.
Collapse
Affiliation(s)
- Elizaveta Krol
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Laura Werel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Lars Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anke Becker
- Corresponding author. Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg. E-mail:
| |
Collapse
|
6
|
McDowell JR, Bai G, Lasek-Nesselquist E, Eisele LE, Wu Y, Hurteau G, Johnson R, Bai Y, Chen Y, Chan J, McDonough KA. Mycobacterial phosphodiesterase Rv0805 is a virulence determinant and its cyclic nucleotide hydrolytic activity is required for propionate detoxification. Mol Microbiol 2023; 119:401-422. [PMID: 36760076 PMCID: PMC10315211 DOI: 10.1111/mmi.15030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
Cyclic AMP (cAMP) signaling is essential to Mycobacterium tuberculosis (Mtb) pathogenesis. However, the roles of phosphodiesterases (PDEs) Rv0805, and the recently identified Rv1339, in cAMP homeostasis and Mtb biology are unclear. We found that Rv0805 modulates Mtb growth within mice, macrophages and on host-associated carbon sources. Mycobacterium bovis BCG grown on a combination of propionate and glycerol as carbon sources showed high levels of cAMP and had a strict requirement for Rv0805 cNMP hydrolytic activity. Supplementation with vitamin B12 or spontaneous genetic mutations in the pta-ackA operon restored the growth of BCGΔRv0805 and eliminated propionate-associated cAMP increases. Surprisingly, reduction of total cAMP levels by ectopic expression of Rv1339 restored only 20% of growth, while Rv0805 complementation fully restored growth despite a smaller effect on total cAMP levels. Deletion of an Rv0805 localization domain also reduced BCG growth in the presence of propionate and glycerol. We propose that localized Rv0805 cAMP hydrolysis modulates activity of a specialized pathway associated with propionate metabolism, while Rv1339 has a broader role in cAMP homeostasis. Future studies will address the biological roles of Rv0805 and Rv1339, including their impacts on metabolism, cAMP signaling and Mtb pathogenesis.
Collapse
Affiliation(s)
- James R. McDowell
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Guangchun Bai
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Immunology and Microbial Disease, MC-151, Albany Medical College, Albany, NY 12208-3479
| | - Erica Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Leslie E. Eisele
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Yan Wu
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Gregory Hurteau
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Richard Johnson
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Yinlan Bai
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Yong Chen
- Albert Einstein College of Medicine, Bronx, NY
| | - John Chan
- Albert Einstein College of Medicine, Bronx, NY
| | - Kathleen A. McDonough
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| |
Collapse
|
7
|
Acetylation of Cyclic AMP Receptor Protein by Acetyl Phosphate Modulates Mycobacterial Virulence. Microbiol Spectr 2023; 11:e0400222. [PMID: 36700638 PMCID: PMC9927398 DOI: 10.1128/spectrum.04002-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The success of Mycobacterium tuberculosis (Mtb) as a pathogen is partly attributed to its ability to sense and respond to dynamic host microenvironments. The cyclic AMP (cAMP) receptor protein (CRP) is closely related to the pathogenicity of Mtb and plays an important role in this process. However, the molecular mechanisms guiding the autoregulation and downstream target genes of CRP while Mtb responds to its environment are not fully understood. Here, it is demonstrated that the acetylation of conserved lysine 193 (K193) within the C-terminal DNA-binding domain of CRP reduces its DNA-binding ability and inhibits transcriptional activity. The reversible acetylation status of CRP K193 was shown to significantly affect mycobacterial growth phenotype, alter the stress response, and regulate the expression of biologically relevant genes using a CRP K193 site-specific mutation. Notably, the acetylation level of K193 decreases under CRP-activating conditions, including the presence of cAMP, low pH, high temperature, and oxidative stress, suggesting that microenvironmental signals can directly regulate CRP K193 acetylation. Both cell- and murine-based infection assays confirmed that CRP K193 is critical to the regulation of Mtb virulence. Furthermore, the acetylation of CRP K193 was shown to be dependent on the intracellular metabolic intermediate acetyl phosphate (AcP), and deacetylation was mediated by NAD+-dependent deacetylases. These findings indicate that AcP-mediated acetylation of CRP K193 decreases CRP activity and negatively regulates the pathogenicity of Mtb. We believe that the underlying mechanisms of cross talk between transcription, posttranslational modifications, and metabolites are a common regulatory mechanism for pathogenic bacteria. IMPORTANCE Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, and the ability of Mtb to survive harsh host conditions has been the subject of intensive research. As a result, we explored the molecular mechanisms guiding downstream target genes of CRP when Mtb responds to its environment. Our study makes a contribution to the literature because we describe the role of acetylated K193 in regulating its binding affinity to target DNA and influencing the virulence of mycobacteria. We discovered that mycobacteria can regulate their pathogenicity through the reversible acetylation of CRP K193 and that this reversible acetylation is mediated by AcP and a NAD+-dependent deacetylase. The regulation of CRPMtb by posttranslational modifications, at the transcriptional level, and by metabolic intermediates contribute to a better understanding of its role in the survival and pathogenicity of mycobacteria.
Collapse
|
8
|
Khan H, Paul P, Sevalkar RR, Kachhap S, Singh B, Sarkar D. Convergence of two global regulators to coordinate expression of essential virulence determinants of Mycobacterium tuberculosis. eLife 2022; 11:80965. [PMID: 36350294 PMCID: PMC9645806 DOI: 10.7554/elife.80965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Cyclic AMP (cAMP) is known to function as a global regulator of Mycobacterium tuberculosis gene expression. Sequence-based transcriptomic profiling identified the mycobacterial regulon controlled by the cAMP receptor protein, CRP. In this study, we identified a new subset of CRP-associated genes including virulence determinants which are also under the control of a major regulator, PhoP. Our results suggest that PhoP as a DNA binding transcription factor, impacts expression of these genes, and phosphorylated PhoP promotes CRP recruitment at the target promoters. Further, we uncover a distinct regulatory mechanism showing that activation of these genes requires direct recruitment of both PhoP and CRP at their target promoters. The most fundamental biological insight is derived from the inhibition of CRP binding at the regulatory regions in a PhoP-deleted strain owing to CRP-PhoP protein-protein interactions. Based on these results, a model is proposed suggesting how CRP and PhoP function as co-activators of the essential pathogenic determinants. Taken together, these results uncover a novel mode of regulation where a complex of two interacting virulence factors impact expression of virulence determinants. These results have significant implications on TB pathogenesis.
Collapse
Affiliation(s)
- Hina Khan
- CSIR-Institute of Microbial Technology
| | | | | | | | | | | |
Collapse
|
9
|
Dawson CC, Cummings JE, Starkey JM, Slayden RA. Discovery of a novel type IIb RelBE toxin-antitoxin system in Mycobacterium tuberculosis defined by co-regulation with an antisense RNA. Mol Microbiol 2022; 117:1419-1433. [PMID: 35526138 PMCID: PMC9325379 DOI: 10.1111/mmi.14917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Toxin‐antitoxin loci regulate adaptive responses to stresses associated with the host environment and drug exposure. Phylogenomic studies have shown that Mycobacterium tuberculosis encodes a naturally expanded type II toxin‐antitoxin system, including ParDE/RelBE superfamily members. Type II toxins are presumably regulated exclusively through protein–protein interactions with type II antitoxins. However, experimental observations in M. tuberculosis indicated that additional control mechanisms regulate RelBE2 type II loci under host‐associated stress conditions. Herein, we describe for the first time a novel antisense RNA, termed asRelE2, that co‐regulates RelE2 production via targeted processing by the Mtb RNase III, Rnc. We find that convergent expression of this coding‐antisense hybrid TA locus, relBE2‐asrelE2, is controlled in a cAMP‐dependent manner by the essential cAMP receptor protein transcription factor, Crp, in response to the host‐associated stresses of low pH and nutrient limitation. Ex vivo survival studies with relE2 and asrelE2 knockout strains showed that RelE2 contributes to Mtb survival in activated macrophages and low pH to nutrient limitation. To our knowledge, this is the first report of a novel tripartite type IIb TA loci and antisense post‐transcriptional regulation of a type II TA loci.
Collapse
Affiliation(s)
- Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins.,Endolytix Technology, Inc. Beverly, 01915
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Julie M Starkey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| |
Collapse
|
10
|
Liu Y, Rebollo-Ramirez S, Larrouy-Maumus G. Metabolomics reveals that the cAMP receptor protein regulates nitrogen and peptidoglycan synthesis in Mycobacterium tuberculosis. RSC Adv 2020; 10:26212-26219. [PMID: 33747441 PMCID: PMC7938724 DOI: 10.1039/d0ra05153e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis requires extensive sensing and response to environment for its successful survival and pathogenesis, and signalling by cyclic adenosine 3',5'-monophosphate (cAMP) is an important mechanism. cAMP regulates expression of target genes via interaction with downstream proteins, one of which is cAMP receptor protein (CRP), a global transcriptional regulator. Previous genomic works had identified regulon of CRP and investigated transcriptional changes in crp deletion mutant, however a link to downstream metabolomic events were lacking, which would help better understand roles of CRP. This work aims at investigating changes at metabolome level in M. tuberculosis crp deletion mutant combining untargeted LC-MS analysis and 13C isotope tracing analysis. The results were compared with previously published RNA sequencing data. We identified increasing abundances of metabolites related to nitrogen metabolism including ornithine, citrulline and glutamate derivatives, while 13C isotope labelling analysis further showed changes in turnover of these metabolites and amino acids, suggesting regulatory roles of CRP in nitrogen metabolism. Upregulation of diaminopimelic acid and its related genes also suggested role of CRP in regulation of peptidoglycan synthesis. This study provides insights on metabolomic aspects of cAMP-CRP regulatory pathway in M. tuberculosis and links to previously published transcriptomic data drawing a more complete map.
Collapse
Affiliation(s)
- Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| | - Sonia Rebollo-Ramirez
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
11
|
Ranganathan S, Cheung J, Cassidy M, Ginter C, Pata JD, McDonough KA. Novel structural features drive DNA binding properties of Cmr, a CRP family protein in TB complex mycobacteria. Nucleic Acids Res 2019; 46:403-420. [PMID: 29165665 PMCID: PMC5758884 DOI: 10.1093/nar/gkx1148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encodes two CRP/FNR family transcription factors (TF) that contribute to virulence, Cmr (Rv1675c) and CRPMt (Rv3676). Prior studies identified distinct chromosomal binding profiles for each TF despite their recognizing overlapping DNA motifs. The present study shows that Cmr binding specificity is determined by discriminator nucleotides at motif positions 4 and 13. X-ray crystallography and targeted mutational analyses identified an arginine-rich loop that expands Cmr’s DNA interactions beyond the classical helix-turn-helix contacts common to all CRP/FNR family members and facilitates binding to imperfect DNA sequences. Cmr binding to DNA results in a pronounced asymmetric bending of the DNA and its high level of cooperativity is consistent with DNA-facilitated dimerization. A unique N-terminal extension inserts between the DNA binding and dimerization domains, partially occluding the site where the canonical cAMP binding pocket is found. However, an unstructured region of this N-terminus may help modulate Cmr activity in response to cellular signals. Cmr’s multiple levels of DNA interaction likely enhance its ability to integrate diverse gene regulatory signals, while its novel structural features establish Cmr as an atypical CRP/FNR family member.
Collapse
Affiliation(s)
- Sridevi Ranganathan
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA
| | - Jonah Cheung
- New York Structural Biology Center, New York, NY 10027, USA
| | | | | | - Janice D Pata
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA.,Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA.,Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| |
Collapse
|
12
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
13
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
14
|
Structure of a Wbl protein and implications for NO sensing by M. tuberculosis. Nat Commun 2017; 8:2280. [PMID: 29273788 PMCID: PMC5741622 DOI: 10.1038/s41467-017-02418-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/29/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis causes pulmonary tuberculosis (TB) and claims ~1.8 million human lives per annum. Host nitric oxide (NO) is important in controlling TB infection. M. tuberculosis WhiB1 is a NO-responsive Wbl protein (actinobacterial iron–sulfur proteins first identified in the 1970s). Until now, the structure of a Wbl protein has not been available. Here a NMR structural model of WhiB1 reveals that Wbl proteins are four-helix bundles with a core of three α-helices held together by a [4Fe-4S] cluster. The iron–sulfur cluster is required for formation of a complex with the major sigma factor (σA) and reaction with NO disassembles this complex. The WhiB1 structure suggests that loss of the iron–sulfur cluster (by nitrosylation) permits positively charged residues in the C-terminal helix to engage in DNA binding, triggering a major reprogramming of gene expression that includes components of the virulence-critical ESX-1 secretion system. Mycobacterium tuberculosis WhiB1 is a DNA-binding protein with a NO sensitive [4Fe-4S] cluster. Here the authors present the NMR structure of WhiB1 and suggest how loss of the iron-sulfur cluster through nitrosylation affects WhiB1 DNA binding and leads to transcriptional reprogramming.
Collapse
|
15
|
Abstract
All cells must adapt to changing conditions, and many use cyclic AMP (cAMP) as a second messenger to sense and respond to fluctuations in their environment. cAMP is made by adenylyl cyclases (ACs), and mycobacteria have an unusually large number of biochemically distinct ACs. cAMP is important for gene regulation in mycobacteria, and the ability to secrete cAMP into host macrophages during infection contributes to Mycobacterium tuberculosis pathogenesis. This article discusses the many roles of cAMP in mycobacteria and reviews what is known about the factors that contribute to production, destruction, and utilization of this important signal molecule. Special emphasis is placed on cAMP signaling in M. tuberculosis complex bacteria and its importance to M. tuberculosis during host infection.
Collapse
|
16
|
Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence. Microbiol Spectr 2015; 2:MGM2-0007-2013. [PMID: 26082107 DOI: 10.1128/microbiolspec.mgm2-0007-2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid adaptation to changing environments is one of the keys to the success of microorganisms. Since infection is a dynamic process, it is possible to predict that Mycobacterium tuberculosis adaptation involves continuous modulation of its global transcriptional profile in response to the changing environment found in the human body. In the last 18 years several studies have stressed the role of sigma (σ) factors in this process. These are small interchangeable subunits of the RNA polymerase holoenzyme that are required for transcriptional initiation and that determine promoter specificity. The M. tuberculosis genome encodes 13 of these proteins, one of which--the principal σ factor σA--is essential. Of the other 12 σ factors, at least 6 are required for virulence. In this article we review our current knowledge of mycobacterial σ factors, their regulons, the complex mechanisms determining their regulation, and their roles in M. tuberculosis physiology and virulence.
Collapse
|
17
|
Ranganathan S, Bai G, Lyubetskaya A, Knapp GS, Peterson MW, Gazdik M, C Gomes AL, Galagan JE, McDonough KA. Characterization of a cAMP responsive transcription factor, Cmr (Rv1675c), in TB complex mycobacteria reveals overlap with the DosR (DevR) dormancy regulon. Nucleic Acids Res 2015; 44:134-51. [PMID: 26358810 PMCID: PMC4705688 DOI: 10.1093/nar/gkv889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) Cmr (Rv1675c) is a CRP/FNR family transcription factor known to be responsive to cAMP levels and during macrophage infections. However, Cmr's DNA binding properties, cellular targets and overall role in tuberculosis (TB) complex bacteria have not been characterized. In this study, we used experimental and computational approaches to characterize Cmr's DNA binding properties and identify a putative regulon. Cmr binds a 16-bp palindromic site that includes four highly conserved nucleotides that are required for DNA binding. A total of 368 binding sites, distributed in clusters among ∼200 binding regions throughout the Mycobacterium bovis BCG genome, were identified using ChIP-seq. One of the most enriched Cmr binding sites was located upstream of the cmr promoter, and we demonstrated that expression of cmr is autoregulated. cAMP affected Cmr binding at a subset of DNA loci in vivo and in vitro, including multiple sites adjacent to members of the DosR (DevR) dormancy regulon. Our findings of cooperative binding of Cmr to these DNA regions and the regulation by Cmr of the DosR-regulated virulence gene Rv2623 demonstrate the complexity of Cmr-mediated gene regulation and suggest a role for Cmr in the biology of persistent TB infection.
Collapse
Affiliation(s)
- Sridevi Ranganathan
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA
| | - Guangchun Bai
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - Anna Lyubetskaya
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Gwendowlyn S Knapp
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | | | - Michaela Gazdik
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA
| | | | - James E Galagan
- Bioinformatics Program, Boston University, Boston, MA 02215, USA Department of Microbiology, Boston University, Boston, MA 02215, USA Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| |
Collapse
|
18
|
Knapp GS, Lyubetskaya A, Peterson MW, Gomes ALC, Ma Z, Galagan JE, McDonough KA. Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c-Rv0247c in TB complex mycobacteria. Nucleic Acids Res 2015; 43:5377-93. [PMID: 25940627 PMCID: PMC4477654 DOI: 10.1093/nar/gkv420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/19/2015] [Indexed: 11/14/2022] Open
Abstract
Bacterial pathogens adapt to changing environments within their hosts, and the signaling molecule adenosine 3', 5'-cyclic monophosphate (cAMP) facilitates this process. In this study, we characterized in vivo DNA binding and gene regulation by the cAMP-responsive protein CRP in M. bovis BCG as a model for tuberculosis (TB)-complex bacteria. Chromatin immunoprecipitation followed by deep-sequencing (ChIP-seq) showed that CRP associates with ∼900 DNA binding regions, most of which occur within genes. The most highly enriched binding region was upstream of a putative copper transporter gene (ctpB), and crp-deleted bacteria showed increased sensitivity to copper toxicity. Detailed mutational analysis of four CRP binding sites upstream of the virulence-associated Rv0249c-Rv0247c succinate dehydrogenase genes demonstrated that CRP directly regulates Rv0249c-Rv0247c expression from two promoters, one of which requires sequences intragenic to Rv0250c for maximum expression. The high percentage of intragenic CRP binding sites and our demonstration that these intragenic DNA sequences significantly contribute to biologically relevant gene expression greatly expand the genome space that must be considered for gene regulatory analyses in mycobacteria. These findings also have practical implications for an important bacterial pathogen in which identification of mutations that affect expression of drug target-related genes is widely used for rapid drug resistance screening.
Collapse
Affiliation(s)
- Gwendowlyn S Knapp
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - Anna Lyubetskaya
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | | | | | - Zhuo Ma
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - James E Galagan
- Bioinformatics Program, Boston University, Boston, MA 02215, USA Department of Biomedical Engineering, Boston, MA 02215, USA Department of Microbiology, Boston University, Boston, MA 02215, USA
| | - Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12201, USA
| |
Collapse
|
19
|
Sharma R, Zaveri A, Gopalakrishnapai J, Srinath T, Thiruneelakantan S, Varshney U, Visweswariah SS. Paralogous cAMP receptor proteins in Mycobacterium smegmatis show biochemical and functional divergence. Biochemistry 2014; 53:7765-76. [PMID: 25434596 DOI: 10.1021/bi500924v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic AMP receptor protein (CRP) family of transcription factors consists of global regulators of bacterial gene expression. Here, we identify two paralogous CRPs in the genome of Mycobacterium smegmatis that have 78% identical sequences and characterize them biochemically and functionally. The two proteins (MSMEG_0539 and MSMEG_6189) show differences in cAMP binding affinity, trypsin sensitivity, and binding to a CRP site that we have identified upstream of the msmeg_3781 gene. MSMEG_6189 binds to the CRP site readily in the absence of cAMP, while MSMEG_0539 binds in the presence of cAMP, albeit weakly. msmeg_6189 appears to be an essential gene, while the Δmsmeg_0539 strain was readily obtained. Using promoter-reporter constructs, we show that msmeg_3781 is regulated by CRP binding, and its transcription is repressed by MSMEG_6189. Our results are the first to characterize two paralogous and functional CRPs in a single bacterial genome. This gene duplication event has subsequently led to the evolution of two proteins whose biochemical differences translate to differential gene regulation, thus catering to the specific needs of the organism.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of Molecular Reproduction, Development and Genetics and ‡Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore 560012, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Kahramanoglou C, Cortes T, Matange N, Hunt DM, Visweswariah SS, Young DB, Buxton RS. Genomic mapping of cAMP receptor protein (CRP Mt) in Mycobacterium tuberculosis: relation to transcriptional start sites and the role of CRPMt as a transcription factor. Nucleic Acids Res 2014; 42:8320-9. [PMID: 24957601 PMCID: PMC4117774 DOI: 10.1093/nar/gku548] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chromatin immunoprecipitation identified 191 binding sites of Mycobacterium tuberculosis cAMP receptor protein (CRPMt) at endogenous expression levels using a specific α-CRPMt antibody. Under these native conditions an equal distribution between intragenic and intergenic locations was observed. CRPMt binding overlapped a palindromic consensus sequence. Analysis by RNA sequencing revealed widespread changes in transcriptional profile in a mutant strain lacking CRPMt during exponential growth, and in response to nutrient starvation. Differential expression of genes with a CRPMt-binding site represented only a minor portion of this transcriptional reprogramming with ∼19% of those representing transcriptional regulators potentially controlled by CRPMt. The subset of genes that are differentially expressed in the deletion mutant under both culture conditions conformed to a pattern resembling canonical CRP regulation in Escherichia coli, with binding close to the transcriptional start site associated with repression and upstream binding with activation. CRPMt can function as a classical transcription factor in M. tuberculosis, though this occurs at only a subset of CRPMt-binding sites.
Collapse
Affiliation(s)
- Christina Kahramanoglou
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Teresa Cortes
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Nishad Matange
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Debbie M Hunt
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Douglas B Young
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK
| | - Roger S Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
21
|
Expression of a subset of heat stress induced genes of mycobacterium tuberculosis is regulated by 3',5'-cyclic AMP. PLoS One 2014; 9:e89759. [PMID: 24587015 PMCID: PMC3938503 DOI: 10.1371/journal.pone.0089759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) secretes excess of a second messenger molecule, 3',5'-cyclic AMP (cAMP), which plays a critical role in the survival of Mtb in host macrophages. Although Mtb produces cAMP in abundance, its exact role in the physiology of mycobacteria is elusive. In this study we have analyzed the expression of 16 adenylate cyclases (ACs) and kinetics of intracellular cAMP levels in Mtb during in vitro growth under the regular culture conditions, and after exposure to different stress agents. We observed a distinct expression pattern of these ACs which is correlated with intracellular cAMP levels. Interestingly cAMP levels are significantly elevated in Mtb following heat stress, whereas other stress conditions such as oxidative, nitrosative or low pH do not affect intracellular cAMP pool in vitro. A significant increase in expression by >2-fold of five ACs namely Rv1647, Rv2212, Rv1625c, Rv2488c and Rv0386 after heat stress further suggested that cAMP plays an important role in controlling Mtb response to heat stress. In the light of these observations, effect of exogenous cAMP on global gene expression profile was examined by using microarrays. The microarray gene expression analysis demonstrated that cAMP regulates expression of a subset of heat stress-induced genes comprising of dnaK, grpE, dnaJ, and Rv2025c. Further we performed electrophoretic mobility shift assay by using cAMP-receptor protein of Mtb (CRP(M)), which demonstrated that CRP(M) specifically recognizes a sequence -301AGCGACCGTCAGCACG-286 in 5'-untranslated region of dnaK.
Collapse
|
22
|
DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis. PLoS Pathog 2013; 9:e1003419. [PMID: 23853579 PMCID: PMC3701705 DOI: 10.1371/journal.ppat.1003419] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 04/30/2013] [Indexed: 01/07/2023] Open
Abstract
DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N6-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss of MamA reduces the expression of a number of genes. Each has a MamA site located at a conserved position relative to the sigma factor −10 binding site and transcriptional start site, suggesting that MamA modulates their expression through a shared, not locus-specific, mechanism. While strains lacking MamA grow normally in vitro, they are attenuated in hypoxic conditions, suggesting that methylation promotes survival in discrete host microenvironments. Interestingly, we demonstrate strikingly different patterns of DNA methyltransferase activity in different lineages of M. tuberculosis, which have been associated with preferences for distinct host environments and different disease courses in humans. Thus, MamA is the major functional adenine methyltransferase in M. tuberculosis strains of the Euro-American lineage while strains of the Beijing lineage harbor a point mutation that largely inactivates MamA but possess a second functional DNA methyltransferase. Our results indicate that MamA influences gene expression in M. tuberculosis and plays an important but strain-specific role in fitness during hypoxia. Tuberculosis is a disease with a devastating impact on public health, killing over 1.5 million people each year around the globe. Tuberculosis is caused by the bacterium Mycobacterium tuberculosis, which over millennia has evolved the ability to survive and persist for decades in the harsh environment inside its human host. Regulation of gene expression is critical for adaptation to stressful conditions. To successfully tackle M. tuberculosis, we therefore need to understand how it regulates its genes and responds to environmental stressors. In this work, we report the first investigation of the role of DNA methylation in gene regulation and stress response in M. tuberculosis. We have found that DNA methylation is important for survival of hypoxia, a stress condition present in human infections, and furthermore that DNA methylation affects the expression of several genes. In contrast to methylation-regulation systems reported in other bacteria, in which the effects of methylation vary from one gene to the next, M. tuberculosis appears to use a concerted mechanism to influence multiple genes. Our findings identify a novel mechanism by which M. tuberculosis modulates gene expression in response to stress.
Collapse
|
23
|
Lew JM, Mao C, Shukla M, Warren A, Will R, Kuznetsov D, Xenarios I, Robertson BD, Gordon SV, Schnappinger D, Cole ST, Sobral B. Database resources for the tuberculosis community. Tuberculosis (Edinb) 2013; 93:12-7. [PMID: 23332401 DOI: 10.1016/j.tube.2012.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
Access to online repositories for genomic and associated "-omics" datasets is now an essential part of everyday research activity. It is important therefore that the Tuberculosis community is aware of the databases and tools available to them online, as well as for the database hosts to know what the needs of the research community are. One of the goals of the Tuberculosis Annotation Jamboree, held in Washington DC on March 7th-8th 2012, was therefore to provide an overview of the current status of three key Tuberculosis resources, TubercuList (tuberculist.epfl.ch), TB Database (www.tbdb.org), and Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org). Here we summarize some key updates and upcoming features in TubercuList, and provide an overview of the PATRIC site and its online tools for pathogen RNA-Seq analysis.
Collapse
Affiliation(s)
- Jocelyne M Lew
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Newton-Foot M, Gey van Pittius NC. The complex architecture of mycobacterial promoters. Tuberculosis (Edinb) 2012; 93:60-74. [PMID: 23017770 DOI: 10.1016/j.tube.2012.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023]
Abstract
The genus Mycobacterium includes a variety of species with differing phenotypic properties, including growth rate, pathogenicity and environment- and host-specificity. Although many mycobacterial species have been extensively studied and their genomes sequenced, the reasons for phenotypic variation between closely related species remain unclear. Variation in gene expression may contribute to these characteristics and enable the bacteria to respond to changing environmental conditions. Gene expression is controlled primarily at the level of transcription, where the main element of regulation is the promoter. Transcriptional regulation and associated promoter sequences have been studied extensively in E. coli. This review describes the complex structure and characteristics of mycobacterial promoters, in comparison to the classical E. coli prokaryotic promoter structure. Some components of mycobacterial promoters are similar to those of E. coli. These include the predominant guanine residue at the transcriptional start point, conserved -10 hexamer, similar interhexameric distances, the use of ATG as a start codon, the guanine- and adenine-rich ribosome binding site and the presence of extended -10 (TGn) motifs in strong promoters. However, these components are much more variable in sequence in mycobacterial promoters and no conserved -35 hexamer sequence (clearly defined in E. coli) can be identified. This may be a result of the high G+C content of mycobacterial genomes, as well as the large number of sigma factors present in mycobacteria, which may recognise different promoter sequences. Mycobacteria possess a complex transcriptional regulatory network. Numerous regulatory motifs have been identified in mycobacterial promoters, predominantly in the interhexameric region. These are bound by specific transcriptional regulators in response to environmental changes. The combination of specific promoter sequences, transcriptional regulators and a variety of sigma factors enables rapid and specific responses to diverse conditions and different stages of infection. This review aims to provide an overview of the complex architecture of mycobacterial transcriptional regulation.
Collapse
Affiliation(s)
- Mae Newton-Foot
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | |
Collapse
|
25
|
Larsson C, Luna B, Ammerman NC, Maiga M, Agarwal N, Bishai WR. Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS One 2012; 7:e37516. [PMID: 22829866 PMCID: PMC3400605 DOI: 10.1371/journal.pone.0037516] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/20/2012] [Indexed: 12/20/2022] Open
Abstract
The seven WhiB proteins of Mycobacterium tuberculosis (M.tb) are widely believed to be redox-sensing transcription factors due to their binding of iron-sulfur clusters and similarities to DNA binding proteins. Here, we explored the nature of this hypothesized relationship. We exposed M.tb to physiologic conditions such as gradual hypoxia, nitric oxide (NO), cyclic AMP and in vivo conditions, and measured transcription of the whiB genes. We found whiB3 to be induced both by hypoxia and NO, whiB7 to be induced in macrophage-like cells, and whiB4 to be induced in mouse lung. Cyclic AMP induced whiB1,−2, −4, −6 and −7. Our data indicate that the M.tb whiB genes are induced independently by various stimuli which may add versatility to their suggested redox-sensing properties.
Collapse
Affiliation(s)
- Christer Larsson
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brian Luna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nicole C. Ammerman
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mamoudou Maiga
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nisheeth Agarwal
- Vaccine and Infectious Disease Research Center Translational Health Science and Technology Institute, Gurgaon (Haryana), India
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Iron sulfur cluster proteins and microbial regulation: implications for understanding tuberculosis. Curr Opin Chem Biol 2012; 16:45-53. [PMID: 22483328 DOI: 10.1016/j.cbpa.2012.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/22/2022]
Abstract
All pathogenic and nonpathogenic microbes are continuously exposed to environmental or endogenous reactive oxygen and nitrogen species, which can critically effect survival and disease. Iron-sulfur [Fe-S] cluster containing prosthetic groups provide the microbial cell with a unique capacity to sense and transcriptionally respond to diatomic gases (e.g. NO and O2) and redox-cycling agents. Recent advances in our understanding of the mechanisms for how the FNR and SoxR [Fe-S] cluster proteins respond to NO and O2 have provided new insights into the biochemical mechanism of action of the Mycobacterium tuberculosis (Mtb) family of WhiB [Fe-S] cluster proteins. These insights have provided the basis for establishing a unifying paradigm for the Mtb WhiB family of proteins. Mtb is the etiological agent for tuberculosis (TB), a disease that affects nearly one-third of the world's population.
Collapse
|
27
|
Schuessler DL, Parish T. The promoter of Rv0560c is induced by salicylate and structurally-related compounds in Mycobacterium tuberculosis. PLoS One 2012; 7:e34471. [PMID: 22485172 PMCID: PMC3317779 DOI: 10.1371/journal.pone.0034471] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/02/2012] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. PRv0560c activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of PRv0560c were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The −10 and −35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the −35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter.
Collapse
Affiliation(s)
| | - Tanya Parish
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Saini V, Farhana A, Steyn AJC. Mycobacterium tuberculosis WhiB3: a novel iron-sulfur cluster protein that regulates redox homeostasis and virulence. Antioxid Redox Signal 2012; 16:687-97. [PMID: 22010944 PMCID: PMC3277930 DOI: 10.1089/ars.2011.4341] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), can persist in a latent state for decades without causing overt disease. Since latent Mtb is refractory to current antimycobacterial drugs, the discovery and characterization of the biological mechanisms controlling the entry, maintenance, and emergence from latent infection is critical to the development of novel clinical therapies. RECENT ADVANCES Recently, Mtb WhiB3, a member of the family of intracellular iron-sulfur (Fe-S) cluster proteins has emerged as a redox sensor and effector molecule controlling several aspects of Mtb virulence. WhiB3 was shown to contain a 4Fe-4S cluster that specifically reacts with important host gases (O(2) and NO), and exogenous and endogenous metabolic signals to maintain redox balance. Notably, the concept of reductive stress emerged from studies on WhiB3. CRITICAL ISSUES The detailed mechanism of how WhiB3 functions as an intracellular redox sensor is unknown. Sustaining Mtb redox balance is particularly important since the bacilli encounter a large number of redox stressors during infection, and because several antimycobacterial prodrugs are effective only upon bioreductive activation in the mycobacterial cytoplasm. FUTURE DIRECTIONS How Mtb WhiB3 monitors its internal and external surroundings and modulates endogenous oxido-reductive pathways which in turn alter Mtb signal transduction, nucleic acid and protein synthesis, and enzymatic activation, is mostly unexplored. Modern expression, metabolomic and proteomic technologies should provide fresh insights into these yet unanswered questions.
Collapse
Affiliation(s)
- Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
29
|
Zheng F, Long Q, Xie J. The Function and Regulatory Network of WhiB and WhiB-Like Protein from Comparative Genomics and Systems Biology Perspectives. Cell Biochem Biophys 2012; 63:103-8. [DOI: 10.1007/s12013-012-9348-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|
31
|
Bai G, Schaak DD, Smith EA, McDonough KA. Dysregulation of serine biosynthesis contributes to the growth defect of a Mycobacterium tuberculosis crp mutant. Mol Microbiol 2011; 82:180-98. [PMID: 21902733 DOI: 10.1111/j.1365-2958.2011.07806.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis CRP(Mt), encoded by Rv3676 (crp), is a CRP-like transcription factor that binds with the serC-Rv0885 intergenic region. In the present study, we evaluated CRP(Mt) 's regulation of serC and Rv0885 in M. tuberculosis and M. bovis BCG, using site-specific mutagenesis, promoter fusions and reverse-transcriptase PCR (RT-PCR). The CRP(Mt) binding site was required for full expression of serC and Rv0885, and expression of both genes was reduced in M. tuberculosis and M. bovis BCG crp mutants. These data show that CRP(Mt) binding directly activates both serC and Rv0885 expression. M. tuberculosis serC restored the ability of an Escherichia coli serC mutant to grow in serine-dropout medium, demonstrating that M. tuberculosis serC encodes a phosphoserine aminotransferase. Serine supplementation, or overexpression of serC, accelerated the growth of M. tuberculosis and M. bovis BCG crp mutants in mycomedium, but not within macrophages. These results establish a role for CRP(Mt) in the regulation of amino acid biosynthesis, and show that reduced serine production contributes to the slow-growth phenotype of M. tuberculosis and M. bovis BCG crp mutants in vitro. Restoration of serine biosynthesis by serC expression will facilitate identification of additional CRP(Mt)-regulated factors required by M. tuberculosis during macrophage and host infection.
Collapse
Affiliation(s)
- Guangchun Bai
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | | | | | | |
Collapse
|
32
|
Bai G, Knapp GS, McDonough KA. Cyclic AMP signalling in mycobacteria: redirecting the conversation with a common currency. Cell Microbiol 2010; 13:349-58. [PMID: 21199259 DOI: 10.1111/j.1462-5822.2010.01562.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
cAMP is an ancient second messenger, and is used by many organisms to regulate a wide range of cellular functions. Mycobacterium tuberculosis complex bacteria are exceptional in that they have genes for at least 15 biochemically distinct adenylyl cyclases, the enzymes that generate cAMP. cAMP-associated gene regulation within tubercle bacilli is required for their virulence, and secretion of cAMP produced by M. tuberculosis bacteria into host macrophages disrupts the host's immune response to infection. In this review, we discuss recent advances in our understanding of the means by which cAMP levels are controlled within mycobacteria, the importance of cAMP to M. tuberculosis during host infection, and the role of cAMP in mycobacterial gene regulation. Understanding the myriad aspects of cAMP signalling in tubercle bacilli will establish new paradigms for cAMP signalling, and may contribute to new approaches for prevention and/or treatment of tuberculosis disease.
Collapse
Affiliation(s)
- Guangchun Bai
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
33
|
Smith LJ, Stapleton MR, Fullstone GJM, Crack JC, Thomson AJ, Le Brun NE, Hunt DM, Harvey E, Adinolfi S, Buxton RS, Green J. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem J 2010; 432:417-27. [PMID: 20929442 PMCID: PMC2992795 DOI: 10.1042/bj20101440] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. In the present study it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however, in the presence of apo-WhiB1, transcription was severely inhibited, irrespective of the presence or absence of the CRP (cAMP receptor protein) Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections.
Collapse
Affiliation(s)
- Laura J. Smith
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melanie R. Stapleton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Gavin J. M. Fullstone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew J. Thomson
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Debbie M. Hunt
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Evelyn Harvey
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Salvatore Adinolfi
- Division of Molecular Structure, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Roger S. Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
34
|
Stapleton M, Haq I, Hunt DM, Arnvig KB, Artymiuk PJ, Buxton RS, Green J. Mycobacterium tuberculosis cAMP receptor protein (Rv3676) differs from the Escherichia coli paradigm in its cAMP binding and DNA binding properties and transcription activation properties. J Biol Chem 2010; 285:7016-27. [PMID: 20028978 PMCID: PMC2844151 DOI: 10.1074/jbc.m109.047720] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/18/2009] [Indexed: 11/06/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRP(Mt)) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRP(Mt) homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRP(Mt) was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRP(Mt)-binding sites (CRP1 at -58.5 and CRP2 at -37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRP(Mt) concentrations in the absence of cAMP, is a repressing site. Binding of CRP(Mt) to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRP(Mt) to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP.
Collapse
Affiliation(s)
- Melanie Stapleton
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN
| | - Ihtshamul Haq
- the Department of Chemistry, University of Sheffield, Sheffield S3 7HF, and
| | - Debbie M. Hunt
- the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Kristine B. Arnvig
- the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Peter J. Artymiuk
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN
| | - Roger S. Buxton
- the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Jeffrey Green
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN
| |
Collapse
|
35
|
Krawczyk J, Kohl TA, Goesmann A, Kalinowski J, Baumbach J. From Corynebacterium glutamicum to Mycobacterium tuberculosis--towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet. Nucleic Acids Res 2009; 37:e97. [PMID: 19494184 PMCID: PMC2724278 DOI: 10.1093/nar/gkp453] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Year by year, approximately two million people die from tuberculosis, a disease caused by the bacterium Mycobacterium tuberculosis. There is a tremendous need for new anti-tuberculosis therapies (antituberculotica) and drugs to cope with the spread of tuberculosis. Despite many efforts to obtain a better understanding of M. tuberculosis' pathogenicity and its survival strategy in humans, many questions are still unresolved. Among other cellular processes in bacteria, pathogenicity is controlled by transcriptional regulation. Thus, various studies on M. tuberculosis concentrate on the analysis of transcriptional regulation in order to gain new insights on pathogenicity and other essential processes ensuring mycobacterial survival. We designed a bioinformatics pipeline for the reliable transfer of gene regulations between taxonomically closely related organisms that incorporates (i) a prediction of orthologous genes and (ii) the prediction of transcription factor binding sites. In total, 460 regulatory interactions were identified for M. tuberculosis using our comparative approach. Based on that, we designed a publicly available platform that aims to data integration, analysis, visualization and finally the reconstruction of mycobacterial transcriptional gene regulatory networks: MycoRegNet. It is a comprehensive database system and analysis platform that offers several methods for data exploration and the generation of novel hypotheses. MycoRegNet is publicly available at http://mycoregnet.cebitec.uni-bielefeld.de.
Collapse
Affiliation(s)
- Justina Krawczyk
- Computational Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany and International Computer Science Institute, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Gazdik MA, Bai G, Wu Y, McDonough KA. Rv1675c (cmr) regulates intramacrophage and cyclic AMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Mol Microbiol 2008; 71:434-48. [PMID: 19040643 DOI: 10.1111/j.1365-2958.2008.06541.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic AMP (cAMP) has recently been shown to be a global regulator of gene expression in Mycobacterium tuberculosis (Mtb). In this study we identified a new cAMP-associated regulon in Mtb and Mycobacterium bovis BCG, which is distinct from the previously described CRP(Mt) regulon. Proteomic comparison of wild-type M. bovis BCG with a Rv1675c (cmr) knockout strain showed dysregulated expression of four previously identified proteins encoded by the cAMP-induced genes (cAIGs) mdh, groEL2, Rv1265 and PE_PGRS6a. Regulated expression of these four cAIGs also occurred during macrophage infection, and this regulation required cmr in both Mtb and M. bovis BCG. Purified His-Cmr bound to the DNA sequences upstream of three cAIGs (mdh, groEL2, Rv1265) in electrophoretic mobility shift assays, suggesting direct regulation of these genes by Cmr. We also found that low pH stimulated cAMP production in both Mtb and M. bovis BCG, but broadly affected cAIG regulation only in M. bovis BCG. These studies identify Cmr as a transcription factor that regulates cAIGs within macrophages, and suggest that multiple factors affect cAMP-associated gene regulation in tuberculosis-complex mycobacteria. cAMP signalling and Cmr-mediated gene regulation during Mtb infection of macrophages may have implications for TB pathogenesis.
Collapse
Affiliation(s)
- Michaela A Gazdik
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA
| | | | | | | |
Collapse
|
37
|
Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: In silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 2008; 135:340-50. [DOI: 10.1016/j.jbiotec.2008.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/20/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
|
38
|
Single nucleotide polymorphisms that cause structural changes in the cyclic AMP receptor protein transcriptional regulator of the tuberculosis vaccine strain Mycobacterium bovis BCG alter global gene expression without attenuating growth. Infect Immun 2008; 76:2227-34. [PMID: 18332206 DOI: 10.1128/iai.01410-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are present in the global transcriptional regulator cyclic AMP (cAMP) receptor protein (CRP) of the attenuated vaccine strain Mycobacterium bovis, bacillus Calmette-Guérin (BCG). We have found that these SNPs resulted in small but significant changes in the expression of a number of genes in M. tuberculosis when a deletion of the Rv3676 CRP was complemented by the BCG allele, compared to complementation by the M. tuberculosis allele. We can explain these changes in gene expression by modeling the structure of the mycobacterial protein on the known structure of CRP from Escherichia coli. Thus, the SNP change in the DNA-binding domain, Lys178, is predicted to form a hydrogen bond with the phosphate backbone of the DNA, as does the equivalent residue in E. coli, whereas Glu178 in M. tuberculosis/M. bovis does not, thus explaining the stronger binding reported for CRP of BCG to CRP-binding sites in mycobacterial DNA. In contrast, the SNP change in the nucleotide binding domain (Leu47Pro) is predicted to result in the loss of one hydrogen bond, which is accommodated by the structure, and would not therefore be expected to cause any change in function relating to cAMP binding. The BCG allele fully complemented the growth defect caused by the deletion of the Rv3676 protein in M. tuberculosis, both in vitro and in macrophage and mouse infections, suggesting that these SNPs do not play any role in the attenuation of BCG. However, they may have allowed BCG to grow better under the in vitro-selective conditions used in its derivation from the M. bovis wild type.
Collapse
|
39
|
Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, Redding KE, Giles GI, Lancaster JR, Steyn AJC. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci U S A 2007; 104:11562-7. [PMID: 17609386 PMCID: PMC1906726 DOI: 10.1073/pnas.0700490104] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental challenge in the redox biology of Mycobacterium tuberculosis (Mtb) is to understand the mechanisms involved in sensing redox signals such as oxygen (O2), nitric oxide (NO), and nutrient depletion, which are thought to play a crucial role in persistence. Here we show that Mtb WhiB3 responds to the dormancy signals NO and O2 through its iron-sulfur (Fe-S) cluster. To functionally assemble the WhiB3 Fe-S cluster, we identified and characterized the Mtb cysteine desulfurase (IscS; Rv3025c) and developed a native enzymatic reconstitution system for assembling Fe-S clusters in Mtb. EPR and UV-visible spectroscopy analysis of reduced WhiB3 is consistent with a one-electron reduction of EPR silent [4Fe-4S]2+ to EPR visible [4Fe-4S]+. Atmospheric O2 gradually degrades the WhiB3 [4Fe-4S]2+ cluster to generate a [3Fe-4S]+ intermediate. Furthermore, EPR analysis demonstrates that NO forms a protein-bound dinitrosyl-iron-dithiol complex with the Fe-S cluster, indicating that NO specifically targets the WhiB3 Fe-S cluster. Our data suggest that the mechanism of WhiB3 4Fe-4S cluster degradation is similar to that of fumarate nitrate regulator. Importantly, Mtb DeltawhiB3 shows enhanced growth on acetate medium, but a growth defect on media containing glucose, pyruvate, succinate, or fumarate as the sole carbon source. Our results implicate WhiB3 in metabolic switching and in sensing the physiologically relevant host signaling molecules NO and O2 through its [4Fe-4S] cluster. Taken together, our results suggest that WhiB3 is an intracellular redox sensor that integrates environmental redox signals with core intermediary metabolism.
Collapse
Affiliation(s)
- Amit Singh
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Loni Guidry
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - K. V. Narasimhulu
- Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487; and
| | - Deborah Mai
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John Trombley
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kevin E. Redding
- Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487; and
| | - Gregory I. Giles
- Departments of Anesthesiology, Physiology, Biophysics, and Environmental Health Sciences, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jack R. Lancaster
- Departments of Anesthesiology, Physiology, Biophysics, and Environmental Health Sciences, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Adrie J. C. Steyn
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- To whom correspondence should be addressed at:
Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, 308 BBRB, Birmingham, AL 35294. E-mail:
| |
Collapse
|