1
|
Batarilo I, Maravic-Vlahovicek G, Bedenic B, Kazazic S, Bingulac Popovic J, Slade Vitkovic M, Katic S, Jukic I. Oxacillinases and antimicrobial susceptibility of Ralstonia pickettii from pharmaceutical water systems in Croatia. Lett Appl Microbiol 2022; 75:103-113. [PMID: 35352370 DOI: 10.1111/lam.13711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
This study evaluated antibiotic susceptibility and presence of blaOXA22 and blaOXA60 genes in 81 isolates of Ralstonia pickettii obtained from different purified and ultra-pure water systems in two different geographical areas of Croatia. E-test and disk diffusion test were performed to determine antibiotic susceptibility. Polymerase Chain Reaction was applied to detect genes encoding OXA-22 and OXA-60, oxacillinases previously identified in R. pickettii. The isolates were genotyped by pulsed-field gel electrophoresis. The results revealed variable susceptibility/resistance profiles. Our isolates exhibited high susceptibility rates to ceftriaxone, cefotaxime, piperacillin-tazobactam, ciprofloxacin, imipenem, cefepime and in lesser extent to ceftazidime. High rates of susceptibility were also observed for sulfamethoxazole-trimethoprim and piperacillin. High resistance rates were noticed for ticarcillin-clavulanate, aztreonam and meropenem, as well as for all aminoglycosides tested. Modified Hodge test was positive in 51,9% strains, indicating production of carbapenemases. blaOXA22 and blaOXA60 genes were detected in 37.0% and 80.3% strains, respectively. Pulsed-field gel electrophoresis identified three major clusters containing subclusters. R. pickettii should be taken seriously as a possible cause of nosocomial infections to ensure adequate therapy, to prevent the development of resistant strains and to try to reduce the possibility of R. pickettii surviving in clean and ultra clean water systems.
Collapse
Affiliation(s)
- I Batarilo
- Croatian Institute for Transfusion Medicine, Zagreb, Croatia
| | | | - B Bedenic
- School of Medicine, University of Zagreb, Croatia.,University Hospital Center Zagreb, Croatia
| | - S Kazazic
- Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | - S Katic
- School of Medicine, University of Zagreb, Croatia
| | - I Jukic
- Croatian Institute for Transfusion Medicine, Zagreb, Croatia.,Josip Juraj Strossmayer University of Osijek, Croatia
| |
Collapse
|
2
|
Ferro P, Vaz-Moreira I, Manaia CM. Evolution of gentamicin and arsenite resistance acquisition in Ralstonia pickettii water isolates. Res Microbiol 2020; 172:103790. [PMID: 33197514 DOI: 10.1016/j.resmic.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Ralstonia pickettii are ubiquitous in water environments. Members of this species are frequently, but not always, resistant to both gentamicin and arsenite. Gentamicin and arsenite co-resistance and the putative molecular mechanisms were investigated. A group of 37 R. pickettii strains isolated from drinking water and hospital wastewater were characterized for gentamicin and arsenite resistance phenotypes, the number and size of plasmids, and screened for genetic elements associated with arsenite tolerance, Integrative and Conjugative Elements (ICEs), among other. The genomes of three representative strains were compared. Most gentamicin resistant (GR) isolates (32/33) were resistant to arsenite, and harbored ICE- and ars operon-related genes. These genetic elements were not detected in any of the five arsenite susceptible strains, regardless of the GR (n = 1) or gentamicin susceptibility (GS) (n = 4) phenotype. The comparison of the genomes of two GR (one resistant and one susceptible to arsenite) and one GS strains suggested that these phenotypes correspond to three phylogroups, distinguished by presence of some genes only in GR isolates, in addition to point mutations in functional genes. The presence of ICEs and ars operon-related genes suggest that arsenite resistance might have been acquired by GR lineages.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
3
|
Manenzhe RI, Dube FS, Wright M, Lennard K, Zar HJ, Mounaud S, Nierman WC, Nicol MP, Moodley C. Longitudinal changes in the nasopharyngeal resistome of South African infants using shotgun metagenomic sequencing. PLoS One 2020; 15:e0231887. [PMID: 32320455 PMCID: PMC7176138 DOI: 10.1371/journal.pone.0231887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/02/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Nasopharyngeal (NP) colonization with antimicrobial-resistant bacteria is a global public health concern. Antimicrobial-resistance (AMR) genes carried by the resident NP microbiota may serve as a reservoir for transfer of resistance elements to opportunistic pathogens. Little is known about the NP antibiotic resistome. This study longitudinally investigated the composition of the NP antibiotic resistome in Streptococcus-enriched samples in a South African birth cohort. Methods As a proof of concept study, 196 longitudinal NP samples were retrieved from a subset of 23 infants enrolled as part of broader birth cohort study. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of streptococcal and non-streptococcal bacterial reads. Contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. Results AMR genes were detected in 64% (125/196) of the samples. A total of 329 AMR genes were detected, including 36 non-redundant genes, ranging from 1 to 14 genes per sample. The predominant AMR genes detected encoded resistance mechanisms to beta-lactam (52%, 172/329), macrolide-lincosamide-streptogramin (17%, 56/329), and tetracycline antibiotics (12%, 38/329). MsrD, ermB, and mefA genes were only detected from streptococcal reads. The predominant genes detected from non- streptococcal reads included blaOXA-60, blaOXA-22, and blaBRO-1. Different patterns of carriage of AMR genes were observed, with only one infant having a stable carriage of mefA, msrD and tetM over a long period. Conclusion This study demonstrates that WMGS can provide a broad snapshot of the NP resistome and has the potential to provide a comprehensive assessment of resistance elements present in this niche.
Collapse
Affiliation(s)
- Rendani I. Manenzhe
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Felix S. Dube
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Meredith Wright
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Katie Lennard
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and MRC unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Mark P. Nicol
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Division of Infection and Immunity, University of Western Australia, Perth, Australia
| | - Clinton Moodley
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
4
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
5
|
Zeng X, Lin J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol 2013; 4:128. [PMID: 23734147 PMCID: PMC3660660 DOI: 10.3389/fmicb.2013.00128] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG-AmpR-AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted.
Collapse
Affiliation(s)
| | - Jun Lin
- Department of Animal Science, The University of TennesseeKnoxville, TN, USA
| |
Collapse
|
6
|
Girlich D, Kolb A, Naas T, Nordmann P. Characterization of regulatory element Rp3 of regulation of beta-lactamases from Ralstonia pickettii. FEMS Microbiol Lett 2009; 301:50-6. [PMID: 19817868 DOI: 10.1111/j.1574-6968.2009.01796.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The two chromosomally encoded beta-lactamases, OXA-22 and OXA-60, from Ralstonia pickettii are inducible by beta-lactam molecules. Disruption of RP3 abolished induction of both beta-lactamases and the resistance to pH, osmolarity and survival in the stationary phase, suggesting that RP3 might be a global regulator. Interactions between RP3, OXA-22 and OXA-60 were investigated at a transcript and protein level using 5'-rapid amplification of cDNA ends experiments, real-time reverse transcription (RT)-PCR and footprinting assays. The rp3 gene was actively transcribed and the promoter sequences corresponded to a nontypical sigma(70)-type promoter. RT-PCR analysis showed that rp3 expression as well as that of the bla(OXA) genes was positively regulated: the level of transcripts of rp3, bla(OXA-22) and bla(OXA-60) genes were, respectively, increased 20-, 100- and 2000-fold upon imipenem induction. DNAse I footprinting showed that RP3 specifically bound to tandem repeats centered at positions -55.5 and -73.5 upstream from the bla(OXA-22) and bla(OXA-60) transcriptional start sites. Interestingly, the binding site at bla(OXA-60) overlapped the -35 region of the rp3 promoter, although the region essential for induction lies at the beginning of the orf-rp3. This result indicates that RP3 is most probably only one component of a novel regulatory system involved in the expression of beta-lactamases in R. pickettii.
Collapse
Affiliation(s)
- Delphine Girlich
- Service de Bactériologie-Virologie, INSERM U914, Emerging Resistance to Antibiotics, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris and Université Paris XI, Bicêtre, France.
| | | | | | | |
Collapse
|
7
|
Abstract
Class D beta-lactamase-mediated resistance to beta-lactams has been increasingly reported during the last decade. Those enzymes also known as oxacillinases or OXAs are widely distributed among Gram negatives. Genes encoding class D beta-lactamases are known to be intrinsic in many Gram-negative rods, including Acinetobacter baumannii and Pseudomonas aeruginosa, but play a minor role in natural resistance phenotypes. The OXAs (ca. 150 variants reported so far) are characterized by an important genetic diversity and a great heterogeneity in terms of beta-lactam hydrolysis spectrum. The acquired OXAs possess either a narrow spectrum or an expanded spectrum of hydrolysis, including carbapenems in several instances. Acquired class D beta-lactamase genes are mostly associated to class 1 integron or to insertion sequences.
Collapse
|