1
|
Cohen JD. Evidence that glycopolymer transferases promote peptidoglycan hydrolysis in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640348. [PMID: 40060662 PMCID: PMC11888478 DOI: 10.1101/2025.02.26.640348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Most bacteria are encased in a rigid cell wall peptidoglycan (PG) meshwork. Cell growth requires the activities of both PG synthases and PG hydrolases that cleave bonds within the meshwork enabling its expansion. PG hydrolase activity must be carefully regulated to prevent excessive damage to this protective layer leading to catastrophic lysis. Here, I provide evidence for a novel type of regulation mediated by lipid-linked glycopolymer precursors. The Gram-positive bacterium Bacillus subtilis encodes two functionally redundant PG hydrolases, LytE and CwlO, that are required for growth. Here, I demonstrate that loss of LytR-CpsA-Psr (LCP) enzymes, which enzymatically transfer lipid-linked glycopolymers onto PG, leads to a requirement for lytE for growth. Genetic analysis suggests that this requirement is mediated by the accumulation of these membrane-anchored precursors, where they may interfere with PG hydrolase activity. These results are consistent with models in which polymer transfer influences the position or timing of PG hydrolysis.
Collapse
|
2
|
Ali DS, Vazifehmand R, Malik MA, Rukayadi Y, Radu S, Mirpour M, Nor-Khaizura MAR. Molecular profiling and bioinformatics approaches of biofilm formation in ionizing radiation-resistant Bacillus subtilis, isolated from geothermal spring in Ramsar, the North of Iran. World J Microbiol Biotechnol 2025; 41:97. [PMID: 40055277 DOI: 10.1007/s11274-025-04307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Biofilm formation and its molecular signaling in bacteria resistant to ionizing radiation is not fully understood. This study aimed to investigate the genetic variations and gene expression of biofilm in an ionizing radiation-resistant Bacillus subtilis in Ramsar. Direct sequencing and quantitative PCR were applied to determine nucleotide variations and gene expression profiles of tapA-sipW-tasA, sinR, sinI, ccpA, epsA-O, spoOB, spoOA, slrA, slrR, ymcA and abrB genes. RNAsnp-RNAfold and Phyre2 and the Swiss Model webserver were used to analyze the structural mRNA and protein respectively. At the molecular level, the tapA-sipW-tasA operon was significantly overexpressed and the expression of ccpA and slrR was significantly downregulated. The thermodynamic and ensemble diversity ratio of the tapA (G>C) gene showed the largest changes in RNA secondary structure. In addition, the largest protein pocket belonged to tapA (148.6 A03) compared to the normal structure (121.1 A03). A non-radiation Bacillus subtilis was served as a control group. These results support the hypothesis that the induction of robust biofilm formation is through the (tapA) operon signal in ionizing radiation-resistant B. subtilis and that genetic variation in tapA (G>C) was the major gene associated with diversity in robust biofilm formation.
Collapse
Affiliation(s)
- Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Reza Vazifehmand
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Science, Islamic Azad University, Lahijan Branch, Lahijan, Gilan, Iran
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Dobrange E, Van den Ende W. Bacterial cell differentiation during plant root colonization: the putative role of fructans. PHYSIOLOGIA PLANTARUM 2025; 177:e70095. [PMID: 39887703 DOI: 10.1111/ppl.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Plant-growth-promoting microorganisms are extensively studied and employed as alternatives to toxic agrochemicals to enhance plant health. However, one of the main concerns regarding their use is their limited capacity to colonize plant tissues after initial application. Understanding the molecular mechanisms involved during plant colonization could help to develop strategies to improve the efficacy of beneficial microbes in the field. Polysaccharides, including fructans, may be of particular interest since they have been shown to promote cellular and morphological changes in bacteria from the genus Bacillus that are typically associated with improved root colonization, such as increased motility and biofilm reinforcement. The potential role of fructans as signalling molecules affecting plant-microbe interactions is discussed in the context of plant root colonization with a focus on the model organism Bacillus subtilis, a well-characterized rhizobacterium. First, the molecular processes underlying B. subtilis cell differentiation are explained and connected to plant root colonization. Secondly, we explore how fructans, in particular inulin and levan, may interfere during these processes. These views call for further research into the putative role of inulin and levan-type fructans as microbial signalling molecules, with the aim of developing beneficial microbial networks in the rhizosphere.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology and Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and Leuven Plant Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Hoang PH, Nguyen MT, Phan KS, Bui HG, Le TTH, Chu NH, Ho NA, Pham QH, Tran XK, Ha PT. Multilayer immobilizing of denitrifying Bacillus sp. and TiO 2-AgNPs on floating expanded clay carrier for co-treatment of nitrite and pathogens in aquaculture. RSC Adv 2024; 14:1984-1994. [PMID: 38196911 PMCID: PMC10774862 DOI: 10.1039/d3ra07361k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Nitrite contamination and the spread of pathogens can seriously degrade water quality. To simultaneously control these factors, an innovative approach of fabricating a remediation agent that contained denitrifying bacteria and TiO2-AgNPs co-immobilized on floating expanded clay (EC) was proposed in this study. The EC was fabricated from a mixture of clay and rice husk through pyrolysis at a high temperature of 1200 °C, followed by a rapid cooling step to create a porous structure for the material. TiO2NPs were modified with Ag to shift the absorbance threshold of TiO2-AgNPs into the visible region of 700-800 nm. The experimental results showed that the stirring speed of 250 rpm was suitable for immobilizing TiO2-AgNPs on EC and achieved the highest Ti and Ag content of 639.38 ± 3.04 and 200.51 ± 3.71 ppm, respectively. Coating TiO2-Ag/EC with chitosan (0.5%) significantly reduced the detachment level of immobilized TiO2-AgNPs compared to that of the material with no coating. In particular, this functionalized material inhibited 99.93 ± 0.1% of Vibrio parahaemolyticus pathogen but did not adversely affect the denitrifying bacteria after 2 h of visible light irradiation. Based on the electrostatic bond between oppositely charged polymers, the denitrifying bacteria, Bacillus sp., in alginate solution was successfully immobilized on the chitosan-coated TiO2-Ag/EC with a bacteria density of (76.67 ± 9.43) × 107 CFU g-1, retaining its nitrite removal efficiency at 99.0 ± 0.27% through six treatment cycles. These findings provide solid evidence for further investigating the combination of biodegradation and photodegradation in wastewater treatment.
Collapse
Affiliation(s)
- Phuong Ha Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Minh Thi Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Ke Son Phan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Huong Giang Bui
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Thi Thu Huong Le
- Vietnam National University of Agriculture Trau Quy, Gia Lam District Hanoi 100000 Vietnam
| | - Nhat Huy Chu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Ngoc Anh Ho
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Quang Huy Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Xuan Khoi Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| | - Phuong Thu Ha
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi 100000 Vietnam
| |
Collapse
|
5
|
Yu C, Qiao J, Ali Q, Jiang Q, Song Y, Zhu L, Gu Q, Borriss R, Dong S, Gao X, Wu H. degQ associated with the degS/degU two-component system regulates biofilm formation, antimicrobial metabolite production, and biocontrol activity in Bacillus velezensis DMW1. MOLECULAR PLANT PATHOLOGY 2023; 24:1510-1521. [PMID: 37731193 PMCID: PMC10632791 DOI: 10.1111/mpp.13389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The gram-positive bacterium Bacillus velezensis strain DMW1 produces a high level of antimicrobial metabolites that can suppress the growth of phytopathogens. We investigated the mechanism used by degQ and the degS/degU two-component system to regulate the biocontrol characteristics of DMW1. When degQ and degU were deleted, the biofilm formation, cell motility, colonization activities, and antifungal abilities of ΔdegQ and ΔdegU were significantly reduced compared to wild-type DMW1. The expression levels of biofilm-related genes (epsA, epsB, epsC, and tasA) and swarming-related genes (swrA and swrB) were all down-regulated. We also evaluated the impact on secondary metabolites of these two genes. The degQ and degU genes reduced surfactin and macrolactin production and up-regulated the production of fengycin, iturin, bacillaene, and difficidin metabolites. The reverse transcription-quantitative PCR results were consistent with these observations. Electrophoretic mobility shift assay and microscale thermophoresis revealed that DegU can bind to the promoter regions of these six antimicrobial metabolite genes and regulate their synthesis. In conclusion, we provided systematic evidence to demonstrate that the degQ and degU genes are important regulators of multicellular behaviour and antimicrobial metabolic processes in B. velezensis DMW1 and suggested novel amenable strains to be used for the industrial production of antimicrobial metabolites.
Collapse
Affiliation(s)
- Chenjie Yu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Junqing Qiao
- Jiangsu Academy of Agricultural SciencesInstitute of Plant ProtectionNanjingChina
| | - Qurban Ali
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Qifan Jiang
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Yan Song
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Linli Zhu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Qin Gu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Rainer Borriss
- Institut für BiologieHumboldt University BerlinBerlinGermany
| | - Suomeng Dong
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Xuewen Gao
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Huijun Wu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
6
|
Farrokhi Y, Neshati Z, Saniee P, Makhdoumi A. The potential of Bacillus and Enterococcus probiotic strains to combat helicobacter pylori attachment to the biotic and abiotic surfaces. Int Microbiol 2023; 26:907-915. [PMID: 36943595 DOI: 10.1007/s10123-023-00347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/04/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The prevention of biofilm formation plays a pivotal role in managing Helicobacter pylori inside the body and the environment. This study showed in vitro potentials of two recently isolated probiotic strains, Bacillus sp. 1630F and Enterococcus sp. 7C37, to form biofilm and combat H. pylori attachment to the abiotic and biotic surfaces. Lactobacillus casei and Bifidobacterium bifidum were used as the reference probiotics. The biofilm rates were the highest in the solid-liquid interface for Lactobacillus and Bifidobacterium and the air-liquid interface for Bacillus and Enterococcus. The highest tolerances to the environmental conditions were observed during the biofilm formations of Enterococcus and Bifidobacterium (pH), Enterococcus and Bacillus (bile), and Bifidobacterium and Lactobacillus (NaCl) on the polystyrene and glass substratum, respectively. Biofilms occurred more quickly by Bacillus and Enterococcus strains than reference strains on the polystyrene and glass substratum, respectively. Enterococcus (competition) and Bacillus (exclusion) achieved the most inhibition of H. pylori biofilm formations on the polystyrene and AGS cells, respectively. Expression of luxS was promoted by Bacillus (exclusion, 3.2 fold) and Enterococcus (competition, 2.0 fold). Expression of ropD was decreased when H. pylori biofilm was excluded by Bacillus (0.4 fold) and Enterococcus (0.2 fold) cells. This study demonstrated the ability of Bacillus and Enterococcus probiotic bacteria to form biofilm and combat H. pylori biofilm formation.
Collapse
Affiliation(s)
- Yeganeh Farrokhi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University G. C, Tehran, Iran
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
Sharipova M, Rudakova N, Mardanova A, Evtugyn V, Akosah Y, Danilova I, Suleimanova A. Biofilm Formation by Mutant Strains of Bacilli under Different Stress Conditions. Microorganisms 2023; 11:1486. [PMID: 37374988 PMCID: PMC10302059 DOI: 10.3390/microorganisms11061486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Bacillus subtilis is traditionally classified as a PGPR that colonizes plant roots through biofilm formation. The current study focused on investigating the influence of various factors on bacilli biofilm formation. In the course of the study, the levels of biofilm formation by the model strain B. subtilis WT 168 and on its basis created regulatory mutants, as well as strains of bacilli with deleted extracellular proteases under conditions of changes in temperature, pH, salt and oxidative stress and presence of divalent metals ions. B. subtilis 168 forms halotolerant and oxidative stress-resistant biofilms at a temperature range of 22 °C-45 °C and a pH range of 6-8.5. The presence of Ca2+, Mn2+ and Mg2+ upsurges the biofilm development while an inhibition with Zn2+. Biofilm formation level was higher in protease-deficient strains. Relative to the wild-type strain, degU mutants showed a decrease in biofilm formation, abrB mutants formed biofilms more efficiently. spo0A mutants showed a plummeted film formation for the first 36 h, followed by a surge after. The effect of metal ions and NaCl on the mutant biofilms formation is described. Confocal microscopy indicated that B. subtilis mutants and protease-deficient strains differ in matrix structure. The highest content of amyloid-like proteins in mutant biofilms was registered for degU-mutants and protease-deficient strains.
Collapse
Affiliation(s)
- Margarita Sharipova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Natalia Rudakova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Ayslu Mardanova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, Paris Commune St. 9, 420008 Kazan, Russia
| | - Yaw Akosah
- Department of Molecular Pathology, NYU College of Dentistry, 345 E. 24th Street, New York, NY 10010, USA
| | - Iuliia Danilova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Aliya Suleimanova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| |
Collapse
|
8
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
9
|
Sato S, Ichiyanagi N, Sugiyama K, Aburai N, Fujii K. Production of polyglutamic acid-like mucilage protein by Peribacillus simplex strain 8h. Folia Microbiol (Praha) 2023; 68:101-113. [PMID: 35947243 DOI: 10.1007/s12223-022-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
Polyglutamic acid (PGA), a protein in the mucilage of PGA-producing Bacillus spp., has expected applications in medical and biotechnological industries. Although the Bacillaceae family contains over 100 genera, research on bacterial PGA has exclusively focused on the genus Bacillus, especially B. subtilis var. natto and B. licheniformis. In the present study, indigenous Bacillaceae family strains were isolated from withered leaves and soil samples and screened for PGA production. As a result of the screening, the strain 8h was found to produce a mucilage possessing greater viscosity than PGA of B. subtilis var. natto (natto PGA). Biochemical analyses revealed that the 8h mucilage contains 63% protein and 37% polysaccharide, while mucilage of B. subtilis var. natto is composed of 61% protein and 39% polysaccharide. The most plentiful amino acid in 8h mucilage protein was glutamate (43%, mol/mol), which is similar to that of natto PGA, suggesting that it possesses characteristics of PGA. Although natto mucilage contains fructan, glucan was found as the polysaccharide of 8h mucilage. While phylogenetic studies indicated that the strain 8h belongs to Peribacillus simplex, the yield of the viscous mucilage by strain 8h was significantly higher than P. simplex type strain, suggesting that 8h is a mucilage-overproducing strain of P. simplex. Interestingly, 8h mucilage protein was found to contain more hydrophobic amino acid residues than natto PGA, suggesting that its amphiphilicity is suitable as a drug carrier and adjuvant. The present study is the first report of viscous mucilage and PGA-like protein produced by the genus Peribacillus.
Collapse
Affiliation(s)
- Suzuka Sato
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 1920015, Japan
| | - Natsuki Ichiyanagi
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 1920015, Japan
| | - Kenjiro Sugiyama
- Department of Applied Chemistry, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 1920015, Japan
| | - Nobuhiro Aburai
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 1920015, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 1920015, Japan.
| |
Collapse
|
10
|
Auto- and Hetero-Catalytic Processing of the N-Terminal Propeptide Promotes the C-Terminal Fibronectin Type III Domain-Mediated Dimerization of a Thermostable Vpr-like Protease. Appl Environ Microbiol 2022; 88:e0150322. [PMID: 36250702 PMCID: PMC9642013 DOI: 10.1128/aem.01503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial Vpr-like proteases are extracellular multidomain subtilases with diverse functions and can form oligomers, but their maturation and oligomerization mechanisms remain to be elucidated. Here, we report a novel Vpr-like protease (BTV) from thermophilic bacterium Brevibacillus sp. WF146. The BTV precursor comprises a signal peptide, an N-terminal propeptide, a subtilisin-like catalytic domain with an inserted protease-associated (PA) domain, two tandem fibronectin type III domains (Fn1 and Fn2), and a C-terminal propeptide. The BTV proform (pro-BTV) could be autoprocessed into the mature form (mBTV) via two intermediates lacking the N- or C-terminal propeptide, respectively, and the C-terminal propeptide delays the autocatalytic maturation of the enzyme. By comparison, pro-BTV is more efficiently processed into mBTV by protease TSS from strain WF146. Purified mBTV is a Ca2+-dependent thermostable protease, showing optimal activity at 60°C and retaining more than 60% of activity after incubation at 60°C for 8 h. The PA domain is important for enzyme stability and contributes to the substrate specificity of BTV by restricting the access of protein substrates to the active site. The proform and mature form of BTV exist as a monomer and a homodimer, respectively, and the dimerization is mediated by the Fn1 and Fn2 domains. The N-terminal propeptide of BTV not only acts as intramolecular chaperone and enzymatic inhibitor but also inhibits the homodimerization of the enzyme. The removal of the N-terminal propeptide leads to a structural adjustment of the enzyme and thus promotes enzyme dimerization. IMPORTANCE Vpr-like proteases are widely distributed in bacteria and fungi and are involved in processing lantibiotics, degrading collagen, keratin, and fibrin, and pathogenesis of microbes. The dissection of the roles of individual domains in enzyme maturation and oligomerization is crucial for understanding the action mechanisms of these multidomain proteases. Our results demonstrate that hetero-catalytic maturation of the extracellular Vpr-like protease BTV of Brevibacillus sp. WF146 is more efficient than autocatalytic maturation of the enzyme. Moreover, we found that the C-terminal tandem fibronectin type III domains rather than the PA domain mediate the dimerization of mature BTV, while the N-terminal propeptide inhibits the dimerization of the BTV proform. This study provides new insight into the activation and oligomerization mechanisms of Vpr-like proteases.
Collapse
|
11
|
Yang W, Yan H, Dong G, Li Z, Jiang C, Gu D, Niu D, Zhou D, Luo Y. Comparative transcriptomics reveal different genetic adaptations of biofilm formation in Bacillus subtilis isolate 1JN2 in response to Cd2+ treatment. Front Microbiol 2022; 13:1002482. [PMID: 36267191 PMCID: PMC9577173 DOI: 10.3389/fmicb.2022.1002482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
Biofilm plays important roles in the life cycle of Bacillus species, such as promoting host and object surface colonization and resisting heavy metal stress. This study utilized transcriptomics to evaluate the impacts of cadmium on the components, morphology, and function of biofilms of Bacillus subtilis strain 1JN2. Under cadmium ion stress, the morphology of the B. subtilis 1JN2 biofilm was flattened, and its mobility increased. Moreover, differential gene expression analysis showed that the main regulator of biofilm formation, Spo0A, decreased in expression under cadmium ion stress, thereby inhibiting extracellular polysaccharide synthesis through the SinI/SinR two-component regulatory system and the AbrB pathway. Cadmium ion treatment also increased the SigD content significantly, thereby increasing the expression of the flagella encoding and assembly genes in the strain. This promoted poly-γ-glutamic acid production via the DegS/DegU two-component regulatory system and the conversion of biofilm extracellular polysaccharide to poly-γ-glutamic acid. This conferred cadmium stress tolerance in the strain. Additionally, the cadmium ion-mediated changes in the biofilm composition affected the colonization of the strain on the host plant root surface. Cadmium ions also induced surfactin synthesis. These findings illustrate the potential of Bacillus species as biocontrol strains that can mitigate plant pathogenic infections and heavy metal stress. The results also provide a basis for the screening of multifunctional biocontrol strains.
Collapse
Affiliation(s)
- Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai’an, China
| | - Haixia Yan
- Agro-Tech Extension and Service Center, Huai’an, China
| | - Guanghui Dong
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai’an, China
| | - Chunhao Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dalu Gu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian Academy of Agricultural Sciences, Huai’an, China
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Danni Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai’an, China
- *Correspondence: Yuming Luo,
| |
Collapse
|
12
|
Ivo Ganchev. Role of Multispecies Biofilms with a Dominance of Bacillus subtilis in the Rhizosphere. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021150061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Hayta EN, Rickert CA, Lieleg O. Topography quantifications allow for identifying the contribution of parental strains to physical properties of co-cultured biofilms. Biofilm 2021; 3:100044. [PMID: 33665611 PMCID: PMC7902895 DOI: 10.1016/j.bioflm.2021.100044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Most biofilm research has so far focused on investigating biofilms generated by single bacterial strains. However, such single-species biofilms are rare in nature where bacteria typically coexist with other microorganisms. Although, from a biological view, the possible interactions occurring between different bacteria are well studied, little is known about what determines the material properties of a multi-species biofilm. Here, we ask how the co-cultivation of two B. subtilis strains affects certain important biofilm properties such as surface topography and wetting behavior. We find that, even though each daughter colony typically resembles one of the parent colonies in terms of morphology and wetting, it nevertheless exhibits a significantly different surface topography. Yet, this difference is only detectable via a quantitative metrological analysis of the biofilm surface. Furthermore, we show that this difference is due to the presence of bacteria belonging to the 'other' parent strain, which does not dominate the biofilm features. The findings presented here may pinpoint new strategies for how biofilms with hybrid properties could be generated from two different bacterial strains. In such engineered biofilms, it might be possible to combine desired properties from two strains by co-cultivation.
Collapse
Affiliation(s)
- Elif N. Hayta
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748, Garching, Germany
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Carolin A. Rickert
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748, Garching, Germany
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Oliver Lieleg
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748, Garching, Germany
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| |
Collapse
|
14
|
Zhang Y, Qi J, Wang Y, Wen J, Zhao X, Qi G. Comparative study of the role of surfactin-triggered signalling in biofilm formation among different Bacillus species. Microbiol Res 2021; 254:126920. [PMID: 34800863 DOI: 10.1016/j.micres.2021.126920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023]
Abstract
The signal molecule surfactin in biofilm formation has been extensively studied in B. subtilis, but there is rare reports in other Bacillus species. In this study, we compared the surfactin-Spo0A-SinI-SinR/SlrR signalling in regulating biofilm formation amongst four Bacillus species including B. subtilis, B. amyloliquefaciens, B. velezensis, and B. licheniformis. The role of surfactin in biofilm formation was dependent on Bacillus species and strains, and the importance of surfactin was as following: B. velezensis R9 = B. amyloliquefaciens WH1 > B. licheniformis 285-3 > B. subtilis CYY. The global regulator Spo0A was essential and very conservative for biofilm formation in all four Bacillus species. The regulators SinI and SinR played different roles to regulate biofilm formation in different Bacillus species. SinI had no obvious roles in B. velezensis, B. amyloliquefaciens and B. subtilis but had a positive role in B. licheniformis. SinR had no obvious roles in B. subtilis, but played a positive role in B. velezensis, B. amyloliquefaciens and B. licheniformis. The regulator SlrR played a positive role in the biofilm formation of all four Bacillus species. Collectively, surfactin, Spo0A and SlrR are essential for the biofilm formation in all four Bacillus species, and SinR and SinI plays different roles in different Bacillus species.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jishuai Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahong Wen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Kalamara M, Abbott JC, MacPhee CE, Stanley-Wall NR. Biofilm hydrophobicity in environmental isolates of Bacillus subtilis. MICROBIOLOGY-SGM 2021; 167. [PMID: 34486975 DOI: 10.1099/mic.0.001082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biofilms are communities of bacteria that are attached to a surface and surrounded by an extracellular matrix. The extracellular matrix protects the community from stressors in the environment, making biofilms robust. The Gram-positive soil bacterium Bacillus subtilis, particularly the isolate NCIB 3610, is widely used as a model for studying biofilm formation. B. subtilis NCIB 3610 forms colony biofilms that are architecturally complex and highly hydrophobic. The hydrophobicity is linked, in part, to the localisation of the protein BslA at the surface of the biofilm, which provides the community with increased resistance to biocides. As most of our knowledge about B. subtilis biofilm formation comes from one isolate, it is unclear if biofilm hydrophobicity is a widely distributed feature of the species. To address this knowledge gap, we collated a library of B. subtilis soil isolates and acquired their whole genome sequences. We used our novel isolates to examine biofilm hydrophobicity and found that, although BslA is encoded and produced by all isolates in our collection, hydrophobicity is not a universal feature of B. subtilis colony biofilms. To test whether the matrix exopolymer poly γ-glutamic acid could be masking hydrophobicity in our hydrophilic isolates, we constructed deletion mutants and found, contrary to our hypothesis, that the presence of poly γ-glutamic acid was not the reason for the observed hydrophilicity. This study highlights the natural variation in the properties of biofilms formed by different isolates and the importance of using a more diverse range of isolates as representatives of a species.
Collapse
Affiliation(s)
- Margarita Kalamara
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - James C Abbott
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - Cait E MacPhee
- National Biofilms Innovation Centre, School of Physics & Astronomy, University of Edinburgh, EH9 3FD Edinburgh, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| |
Collapse
|
16
|
Mohsin MZ, Omer R, Huang J, Mohsin A, Guo M, Qian J, Zhuang Y. Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials. Synth Syst Biotechnol 2021; 6:180-191. [PMID: 34401544 PMCID: PMC8332661 DOI: 10.1016/j.synbio.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 07/23/2021] [Indexed: 01/23/2023] Open
Abstract
Bacillus subtilis is a commonly used commercial specie with broad applications in the fields of bioengineering and biotechnology. B. subtilis is capable of producing both biofilms and spores. Biofilms are matrix-encased multicellular communities that comprise various components including exopolysaccharides, proteins, extracellular DNA, and poly-γ-glutamic acid. These biofilms resist environmental conditions such as oxidative stress and hence have applications in bioremediation technologies. Furthermore, biofilms and spores can be engineered through biotechnological techniques for environmentally-friendly and safe production of bio-products such as enzymes. The ability to withstand with harsh conditions and producing spores makes Bacillus a suitable candidate for surface display technology. In recent years, the spores of such specie are widely used as it is generally regarded as safe to use. Advances in synthetic biology have enabled the reprogramming of biofilms to improve their functions and enhance the production of value-added products. Globally, there is increased interest in the production of engineered biosensors, biocatalysts, and biomaterials. The elastic modulus and gel properties of B. subtilis biofilms have been utilized to develop living materials. This review outlines the formation of B. subtilis biofilms and spores. Biotechnological engineering processes and their increasing application in bioremediation and biocatalysis, as well as the future directions of B. subtilis biofilm engineering, are discussed. Furthermore, the ability of B. subtilis biofilms and spores to fabricate functional living materials with self-regenerating, self-regulating and environmentally responsive characteristics has been summarized. This review aims to resume advances in biological engineering of B. subtilis biofilms and spores and their applications.
Collapse
Key Words
- Bacillus subtilis
- Biocatalysis
- Biofilms
- Biomaterials
- Bioremediation
- Extracellular DNA, (eDNA)
- Extracellular Polymeric Substance/ Exopolysaccharide, (EPS)
- Gold nanoparticles, (AuNPs)
- Green fluorescent protein, (GFP)
- Isopropylthio-β-d-galactoside, (IPTG)
- Menaquinoe-7, (MK-7)
- Microbial fuel cell, (MFC)
- Mono (2-hydroxyethyl) terephthalic acid, (MHET)
- N-Acetyl-d-neuraminic Acid, (Neu5Ac)
- N-acetylglucosamine, (GlcNAc)
- Nanoparticles, (NPs)
- Nickel nitriloacetic acid, (Ni-NTA)
- Organophosphorus hydrolase, (OPH)
- Paranitrophenol, (PNP)
- Paraoxon, (PAR)
- Quantum dots, (QDs)
- Spores
- Synthetic biology
- d-psicose 3-epimerase, (DPEase)
- l-Arabinose Isomerase, (L-AI)
- p-aminophenol, (PAP)
- β-Galactosidase, (β-Gal)
Collapse
Affiliation(s)
- Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
17
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
18
|
Molina-Santiago C, de Vicente A, Romero D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Comput Struct Biotechnol J 2021; 19:2796-2805. [PMID: 34093994 PMCID: PMC8138678 DOI: 10.1016/j.csbj.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate megastructure made by bacterial cells to form architecturally complex biostructures called biofilms. Protection of cells, modulation of cell-to-cell signalling, cell differentiation and environmental sensing are functions of the ECM that reflect its diverse chemical composition. Proteins, polysaccharides and eDNA have specific functionalities while cooperatively interacting to sustain the architecture and biological relevance of the ECM. The accumulated evidence on the chemical heterogeneity and specific functionalities of ECM components has attracted attention because of their potential biotechnological applications, from agriculture to the water and food industries. This review compiles information on the most relevant bacterial ECM components, the biophysical and chemical features responsible for their biological roles, and their potential to be further translated into biotechnological applications.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| |
Collapse
|
19
|
Sharipova MR, Mardanova AM, Rudakova NL, Pudova DS. Bistability and Formation of the Biofilm Matrix as Adaptive Mechanisms during the Stationary Phase of Bacillus subtilis. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172006017x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Barreto HC, Cordeiro TN, Henriques AO, Gordo I. Rampant loss of social traits during domestication of a Bacillus subtilis natural isolate. Sci Rep 2020; 10:18886. [PMID: 33144634 PMCID: PMC7642357 DOI: 10.1038/s41598-020-76017-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Most model bacteria have been domesticated in laboratory conditions. Yet, the tempo with which a natural isolate diverges from its ancestral phenotype under domestication to a novel laboratory environment is poorly understood. Such knowledge, however is essential to understanding the rate of evolution, the time scale over which a natural isolate can be propagated without loss of its natural adaptive traits, and the reliability of experimental results across labs. Using experimental evolution, phenotypic assays, and whole-genome sequencing, we show that within a week of propagation in a common laboratory environment, a natural isolate of Bacillus subtilis acquires mutations that cause changes in a multitude of traits. A single adaptive mutational step in the gene coding for the transcriptional regulator DegU impairs a DegU-dependent positive autoregulatory loop and leads to loss of robust biofilm architecture, impaired swarming motility, reduced secretion of exoproteases, and to changes in the dynamics of sporulation across environments. Importantly, domestication also resulted in improved survival when the bacteria face pressure from cells of the innate immune system. These results show that degU is a target for mutations during domestication and underscores the importance of performing careful and extremely short-term propagations of natural isolates to conserve the traits encoded in their original genomes.
Collapse
Affiliation(s)
- Hugo C Barreto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
21
|
Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis. J Bacteriol 2020; 202:JB.00120-20. [PMID: 32393519 DOI: 10.1128/jb.00120-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms robust biofilms in the presence of large amounts of carbon sources, such as glycerol. However, little is known about the importance of the metabolic systems, or the relationship between metabolic systems and regulatory systems, involved in biofilm formation. Glutamate synthase, encoded by gltAB, is an enzyme that converts 2-ketoglutarate (a tricarboxylic acid [TCA] cycle intermediate) and glutamine into glutamate, which is a general amino group donor in metabolism. Here, we show that a ΔgltA mutant exhibited early arrest of biofilm formation in complex medium containing glycerol. This phenotype was not due to glutamate auxotrophy. Consistent with its biofilm formation phenotype, the ΔgltA mutant exhibited an early decrease in expression of the epsA and tapA operons, which are responsible for production of biofilm matrix polymers. This resulted from decreased activity of their regulator, Spo0A, as evidenced by reduced expression of other Spo0A-regulated genes in the ΔgltA mutant. The ΔgltA mutation prevented biofilm formation only in the presence of large amounts of glycerol. Moreover, limited expression of citrate synthase (but not other TCA enzymes) restored biofilm-forming ability to the ΔgltA mutant. These results indicate that the ΔgltA mutant accumulates an inhibitory intermediate (citrate) in the TCA cycle in the presence of large amounts of glycerol. The ΔgltA mutant formed biofilms when excess iron was added to the medium. Taken together, the data suggest that accumulation of citrate ions by the ΔgltA mutant causes iron shortage due to chelation, which prevents activation of Spo0A and causes defective biofilm formation.IMPORTANCE Bacillus subtilis, a model organism for bacterial biofilm formation, forms robust biofilms in a medium-dependent manner. Although the regulatory network that controls biofilm formation has been well studied, the importance of the underlying metabolic systems remains to be elucidated. The present study demonstrates that a metabolic disorder in a well-conserved metabolic system causes accumulation of an inhibitory metabolic intermediate that prevents activation of the system that regulates biofilm formation. These findings increase our understanding of the coordination between cellular metabolic status and the regulatory networks governing biofilm formation.
Collapse
|
22
|
Role of Biofilm Formation by Bacillus pumilus HR10 in Biocontrol against Pine Seedling Damping-Off Disease Caused by Rhizoctonia solani. FORESTS 2020. [DOI: 10.3390/f11060652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biocontrol process mediated by plant growth-promoting rhizobacteria (PGPR) relies on multiple mechanisms. Biofilm formation plays an important role in the ability of PGPR to control plant diseases. Bacillus pumilus HR10, one such PGPR, promotes the growth of Pinus thunbergii. This study showed that the wild-type strain B. pumilus HR10 produces a stable and mature biofilm in vitro. Biofilm-deficient mutants of B. pumilus HR10 with different phenotypes were screened by mutagenesis. The contents of extracellular polysaccharides (EPS) and proteins produced by the mutant strains were significantly reduced, and the biofilms of the mutants were weakened to varying degrees. The swarming abilities of the wild-type and mutant strains were positively correlated with biofilm formation. A colonization assay demonstrated that B. pumilus HR10 could colonize the roots of Pinus massoniana seedlings in a large population and persist, while biofilm-deficient mutants showed weak colonization ability. Furthermore, a biocontrol assay showed that biocontrol efficacy of the mutants was reduced to a certain degree. We determined the inhibitory activity of B. pumilus HR10 and its ability to induce systemic resistance against Rhizoctonia solani of plants. The synthesis of lipopeptide antibiotics is probably involved in biofilm formation by B. pumilus HR10. These observations not only provide a reference for further research about the coordinated action between biofilm formation and the multiple biocontrol mechanisms of B. pumilus HR10 but also improve the understanding of the regulatory pathway of biofilm formation by B. pumilus HR10.
Collapse
|
23
|
Liu Y, Feng H, Chen L, Zhang H, Dong X, Xiong Q, Zhang R. Root-Secreted Spermine Binds to Bacillus amyloliquefaciens SQR9 Histidine Kinase KinD and Modulates Biofilm Formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:423-432. [PMID: 31741422 DOI: 10.1094/mpmi-07-19-0201-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The signal molecules in root exudates that are sensed by plant growth-promoting rhizobacteria (PGPR) are critical to regulate their root colonization. Phosphorylated Spo0A is an important global transcriptional regulator that controls colonization and sporulation in Bacillus species. In this study, we found that deletion of kinD from PGPR strain Bacillus amyloliquefaciens SQR9, encoding an original phosphate donor of Spo0A, resulted in reduced biofilm formation in root exudates compared with the wild-type strain, indicating that KinD is responsible for sensing root exudates. Ligands of B. amyloliquefaciens SQR9 KinD in cucumber root exudates were determined by both the nontargeted ligand fishing method and the targeted surface plasmon resonance detection method. In total, we screened 80 compounds in root exudates for binding to KinD and found that spermine and guanosine could bind to KinD with dissociation constant values of 213 and 51 μΜ, respectively. In addition, calcium l-threonate, N-acetyl-l-aspartic acid, sodium decanoic acid, and parabanic acid could also bind weakly to KinD. The three-dimensional binding models were then constructed to demonstrate the interactions between the root-secreted signals and KinD. It was observed that exogenous spermine reduced the wrinkles of biofilm when kinD was deleted, indicating that KinD might be involved in sensing root-secreted spermine and stabilizing biofilm in response to this negative effector. This study provided a new insight of interaction between a rhizobacterial sensor and root-secreted signals.
Collapse
Affiliation(s)
- Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Haichao Feng
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, P. R. China
| | - Huihui Zhang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiaoyan Dong
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Qin Xiong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
24
|
Enhanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge. Molecules 2020; 25:molecules25040872. [PMID: 32079161 PMCID: PMC7070439 DOI: 10.3390/molecules25040872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
The naproxen-degrading bacterium Bacillus thuringiensis B1(2015b) was immobilised onto loofah sponge and introduced into lab-scale trickling filters. The trickling filters constructed for this study additionally contained stabilised microflora from a functioning wastewater treatment plant to assess the behavior of introduced immobilized biocatalyst in a fully functioning bioremediation system. The immobilised cells degraded naproxen (1 mg/L) faster in the presence of autochthonous microflora than in a monoculture trickling filter. There was also abundant colonization of the loofah sponges by the microorganisms from the system. Analysis of the influence of an acute, short-term naproxen exposure on the indigenous community revealed a significant drop in its diversity and qualitative composition. Bioaugmentation was also not neutral to the microflora. Introducing a new microorganism and increasing the removal of the pollutant caused changes in the microbial community structure and species composition. The incorporation of the immobilised B1(2015b) was successful and the introduced strain colonized the basic carrier in the trickling filter after the complete biodegradation of the naproxen. As a result, the bioremediation system could potentially be used to biodegrade naproxen in the future.
Collapse
|
25
|
Kotowicz N, Bhardwaj R, Ferreira W, Hong H, Olender A, Ramirez J, Cutting S. Safety and probiotic evaluation of two Bacillus strains producing antioxidant compounds. Benef Microbes 2019; 10:759-771. [DOI: 10.3920/bm2019.0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacillus species are becoming increasingly relevant for use as probiotics or feed additives where their heat stability can ensure survival in the food matrix or enable long-term storage at ambient temperature. Some Bacillus species are pigmented and in this study, we have examined two strains, one Bacillus pumilus (pigmented red) and the other Bacillus megaterium (pigmented yellow) for their safety for potential use in humans as dietary supplements. In addition, we have set out to determine if they might confer any potential health benefits. Both strains produce C30 carotenoids while the B. pumilus strain also produced large quantities of riboflavin equivalent to genetically modified Bacillus strains and most probably contributing to this strain’s pigmentation. Riboflavin’s and carotenoids are antioxidants, and we have evaluated the ability of vegetative cells and/or spores to influence populations of Faecalibacterium prausnitzii in the colon of mice. While both strains increased levels of F. prausnitzii, spores of the B. pumilus strain produced a significant increase in F. prausnitzii levels. If found to be reproducible in humans such an effect might, potentially, confer health benefits particularly for those suffering from inflammatory bowel disease.
Collapse
Affiliation(s)
- N. Kotowicz
- SporeGen Ltd., Bourne Labs, Egham, Surrey, TW20 OEX, United Kingdom
| | - R.K. Bhardwaj
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - W.T. Ferreira
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - H.A. Hong
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - A. Olender
- Department of Medical Microbiology, Medical University of Lublin, Chodzki 1 Street, Lublin, 20-093, Poland
| | - J. Ramirez
- Enviromedica, 2301 Scarbrough Drive, Suite 300, Austin, TX 78728, USA
| | - S.M. Cutting
- SporeGen Ltd., Bourne Labs, Egham, Surrey, TW20 OEX, United Kingdom
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| |
Collapse
|
26
|
Hayta EN, Lieleg O. Biopolymer-enriched B. subtilis NCIB 3610 biofilms exhibit increased erosion resistance. Biomater Sci 2019; 7:4675-4686. [PMID: 31475697 DOI: 10.1039/c9bm00927b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The erosion resistance of bacterial biofilms can be a double-edged sword: it hampers the removal of undesired biofilms in biomedical settings, but it is necessary for beneficial biofilms to be used in aqueous environments for biotechnological applications. Whether or not a bacterial biofilm exhibits this material property depends on the bacterial species and the detailed composition of the biofilm matrix. Here, we demonstrate how the erosion resistance of B. subtilis NCIB 3610 biofilms can be enhanced by integrating foreign (bio)polymers into the matrix during biofilm growth. As a result of this artificial macromolecule addition, the engineered biofilm colonies show changes in their surface topography which, in turn, cause an alteration in the mode of surface superhydrophobicity. Surprisingly, the viscoelastic properties and permeability of the biofilms towards antibiotics remain unaffected. The method introduced here may present a promising strategy for engineering beneficial biofilms such, that they become more stable towards shear forces caused by flowing water but, at the same time, remain permeable to nutrients or other molecules.
Collapse
Affiliation(s)
- Elif N Hayta
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Oliver Lieleg
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
27
|
Kandaswamy R, Ramasamy MK, Palanivel R, Balasundaram U. Impact of Pseudomonas putida RRF3 on the root transcriptome of rice plants: Insights into defense response, secondary metabolism and root exudation. J Biosci 2019. [DOI: 10.1007/s12038-019-9922-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Coherent Aspects of Multifaceted Eco-friendly Biopolymer - Polyglutamic Acid from the Microbes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Booker AE, Hoyt DW, Meulia T, Eder E, Nicora CD, Purvine SO, Daly RA, Moore JD, Wunch K, Pfiffner SM, Lipton MS, Mouser PJ, Wrighton KC, Wilkins MJ. Deep-Subsurface Pressure Stimulates Metabolic Plasticity in Shale-Colonizing Halanaerobium spp. Appl Environ Microbiol 2019; 85:e00018-19. [PMID: 30979840 PMCID: PMC6544827 DOI: 10.1128/aem.00018-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023] Open
Abstract
Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.
Collapse
Affiliation(s)
- Anne E Booker
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tea Meulia
- College of Food, Agricultural, and Environmental Sciences, Ohio State University, Columbus, Ohio, USA
| | - Elizabeth Eder
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rebecca A Daly
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Joseph D Moore
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Kenneth Wunch
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
30
|
Mahdinia E, Demirci A, Berenjian A. Biofilm reactors as a promising method for vitamin K (menaquinone-7) production. Appl Microbiol Biotechnol 2019; 103:5583-5592. [PMID: 31152205 DOI: 10.1007/s00253-019-09913-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Menaquinone-7 (MK-7) is the most potent subtype of vitamin K with extraordinarily high half-life in the circulatory system. Therefore, MK-7 plays a critical role in promoting human wellbeing today. Studies on MK-7 every year show more and more magnificent benefits of it in preventing cardiovascular diseases and osteoporosis to battling cancer cells, Alzheimer's and Parkinson's diseases. Thus, it needs to be supplemented to daily diet for accumulative and long-term benefits. Chemical synthesis of MK-7 produces a significant cis-isomer form of it, which has no biological activity. Fortunately, due to its key role in electron transfer in bacteria, trans-MK-7 is biosynthesized by especially Gram-positive strains mainly Bacillus genus. Concordantly, MK-7 could be produced via solid or liquid state fermentation strategies. In either regime, when static fermentation is applied in the absence of agitation and aeration, operational issues arise such as heat and mass transfer inefficiencies. Thus, scaling up the process becomes a challenge. On the other hand, studies have indicated that biofilm and pellicle formation that occur in static fermentations are key characteristics for extracellular MK-7 secretion. Therefore, this review covers the most recent discoveries of the therapeutic properties of MK-7 and optimization attempts at increasing its biosynthesis in different media compositions and effective growth parameters as well as the cutting-edge use of biofilm reactors where B. subtilis cells have the infrastructures to form mature biofilm formations on plastic composite supports. Biofilm reactors therefore can provide robust extracellular MK-7 secretion while simultaneously enduring high agitation and aeration rates, which then address the scale-up and operational issues associated with static fermentation strategies.
Collapse
Affiliation(s)
- Ehsan Mahdinia
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA
| | - Ali Demirci
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA. .,The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aydin Berenjian
- Faculty of Science and Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| |
Collapse
|
31
|
Spiesz EM, Schmieden DT, Grande AM, Liang K, Schwiedrzik J, Natalio F, Michler J, Garcia SJ, Aubin-Tam ME, Meyer AS. Bacterially Produced, Nacre-Inspired Composite Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805312. [PMID: 30951252 DOI: 10.1002/smll.201805312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/27/2019] [Indexed: 05/12/2023]
Abstract
The impressive mechanical properties of natural composites, such as nacre, arise from their multiscale hierarchical structures, which span from nano- to macroscale and lead to effective energy dissipation. While some synthetic bioinspired materials have achieved the toughness of natural nacre, current production methods are complex and typically involve toxic chemicals, extreme temperatures, and/or high pressures. Here, the exclusive use of bacteria to produce nacre-inspired layered calcium carbonate-polyglutamate composite materials that reach and exceed the toughness of natural nacre, while additionally exhibiting high extensibility and maintaining high stiffness, is introduced. The extensive diversity of bacterial metabolic abilities and the possibility of genetic engineering allows for the creation of a library of bacterially produced, cost-effective, and eco-friendly composite materials.
Collapse
Affiliation(s)
- Ewa M Spiesz
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Dominik T Schmieden
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Antonio M Grande
- Department of Aerospace Science and Technology, Politecnico di Milano, Via Giuseppe La Masa, 34, 20156, Milan, Italy
| | - Kuang Liang
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Jakob Schwiedrzik
- Laboratory for Mechanics of Materials and Nanostructures, EMPA Swiss Federal Laboratories for Materials Science and Technology, Überland Str. 129, 8600, Dübendorf, Switzerland
| | - Filipe Natalio
- Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, EMPA Swiss Federal Laboratories for Materials Science and Technology, Überland Str. 129, 8600, Dübendorf, Switzerland
| | - Santiago J Garcia
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629, HS Delft, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Anne S Meyer
- Department of Biology, University of Rochester, Hutchison Road, Rochester, NY, 14620, USA
| |
Collapse
|
32
|
Ostrov I, Paz T, Shemesh M. Robust Biofilm-Forming Bacillus Isolates from the Dairy Environment Demonstrate an Enhanced Resistance to Cleaning-in-Place Procedures. Foods 2019; 8:E134. [PMID: 31010041 PMCID: PMC6518050 DOI: 10.3390/foods8040134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
One of the main strategies for maintaining the optimal hygiene level in dairy processing facilities is regular cleaning and disinfection, which is incorporated in the cleaning-in-place (CIP) regimes. However, a frail point of the CIP procedures is their variable efficiency in eliminating biofilm bacteria. In the present study, we evaluated the susceptibility of strong biofilm-forming dairy Bacillus isolates to industrial cleaning procedures using two differently designed model systems. According to our results, the dairy-associated Bacillus isolates demonstrate a higher resistance to CIP procedures, compared to the non-dairy strain of B. subtilis. Notably, the tested dairy isolates are highly persistent to different parameters of the CIP operations, including the turbulent flow of liquid (up to 1 log), as well as the cleaning and disinfecting effects of commercial detergents (up to 2.3 log). Moreover, our observations indicate an enhanced resistance of poly-γ-glutamic acid (PGA)-overproducing B. subtilis, which produces high amounts of proteinaceous extracellular matrix, to the CIP procedures (about 0.7 log, compared to the wild-type non-dairy strain of B. subtilis). We therefore suggest that the enhanced resistance to the CIP procedures by the dairy Bacillus isolates can be attributed to robust biofilm formation. In addition, this study underlines the importance of evaluating the efficiency of commercial cleaning agents in relation to strong biofilm-forming bacteria, which are relevant to industrial conditions. Consequently, we believe that the findings of this study can facilitate the assessment and refining of the industrial CIP procedures.
Collapse
Affiliation(s)
- Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, 7528809 Rishon LeZion, Israel.
- The Hebrew University-Hadassah, 9112001 Jerusalem, Israel.
| | - Tali Paz
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, 7528809 Rishon LeZion, Israel.
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, 7528809 Rishon LeZion, Israel.
| |
Collapse
|
33
|
Dinh ТL, Akhmetova GR, Martykanova DS, Rudakova NL, Sharipova МR. Influence of Divalent Metal Ions on Biofilm Formation by Bacillus subtilis. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00621-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Ostrov I, Sela N, Belausov E, Steinberg D, Shemesh M. Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability. Food Microbiol 2019; 82:316-324. [PMID: 31027789 DOI: 10.1016/j.fm.2019.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Biofilm-forming Bacillus species are often involved in contamination of dairy products and therefore present a major microbiological challenge in the field of food quality and safety. In this study, we sequenced and analyzed the genomes of milk- and non-milk-derived Bacillus strains, and evaluated their biofilm-formation potential in milk. Unlike non-dairy Bacillus isolates, the dairy-associated Bacillus strains were characterized by formation of robust submerged and air-liquid interface biofilm (pellicle) during growth in milk. Moreover, genome comparison analysis revealed notable differences in putative biofilm-associated determinants between the dairy and non-dairy Bacillus isolates, which correlated with biofilm phenotype. These results suggest that biofilm formation by Bacillus species might represent a presumable adaptation strategy to the dairy environment.
Collapse
Affiliation(s)
- Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO) the Volcani Center, Rishon LeZion, Israel; Biofilm Research Laboratory, Hebrew University - Hadassah, Jerusalem, Israel.
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Rishon LeZion, Israel.
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel.
| | - Doron Steinberg
- Biofilm Research Laboratory, Hebrew University - Hadassah, Jerusalem, Israel.
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO) the Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
35
|
Klotz M, Kretschmer M, Goetz A, Ezendam S, Lieleg O, Opitz M. Importance of the biofilm matrix for the erosion stability of Bacillus subtilis NCIB 3610 biofilms. RSC Adv 2019; 9:11521-11529. [PMID: 35520264 PMCID: PMC9063333 DOI: 10.1039/c9ra01955c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Erosion of bacterial biofilms is dependent on the composition of the biofilm matrix and the surrounding chemical environment.
Collapse
Affiliation(s)
- M. Klotz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - M. Kretschmer
- Munich School of BioEngineering and Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - A. Goetz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - S. Ezendam
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - O. Lieleg
- Munich School of BioEngineering and Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - M. Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| |
Collapse
|
36
|
Kim MH, Khan MSI, Lee KW, Kim YJ. Biofilm reduction potential of micro-plasma discharged water (m-PDW) against the microbes isolated from a tofu manufacturing plant. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces. J Microbiol 2018; 57:1-8. [DOI: 10.1007/s12275-019-8353-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022]
|
38
|
Resuscitation-Promoting Factors Are Required for Mycobacterium smegmatis Biofilm Formation. Appl Environ Microbiol 2018; 84:AEM.00687-18. [PMID: 29915116 DOI: 10.1128/aem.00687-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/10/2018] [Indexed: 12/19/2022] Open
Abstract
Resuscitation-promoting factors (Rpfs) have previously been shown to act as growth-stimulatory molecules via their lysozyme-like activity on peptidoglycan in the bacterial cell wall. In this study, we investigated the ability of Mycobacterium smegmatis strains lacking rpf genes to form biofilms and tested their susceptibilities to cell wall-targeting agents. M. smegmatis contains four distinct rpf homologues, namely, MSMEG_5700 (rpfA), MSMEG_5439 (rpfB), MSMEG_4640 (rpfE2), and MSMEG_4643 (rpfE). During axenic growth of the wild-type strain, all four mRNA transcripts were expressed to various degrees, but the expression of MSMEG_4643 was significantly greater during exponential growth. Similarly, all rpf mRNA transcripts could be detected in biofilms grown for 7, 14, and 28 days, with MSMEG_4643 expressed at the highest abundance after 7 days. In-frame unmarked deletion mutants (single and combinatorial) were generated and displayed altered colony morphologies and the inability to form typical biofilms. Moreover, any strain lacking rpfA and rpfB simultaneously exhibited increased susceptibility to rifampin, vancomycin, and SDS. Exogenous Rpf supplementation in the form of culture filtrate failed to restore biofilm formation. Liquid chromatography-mass spectrometry (LC-MS) analysis of peptidoglycan (PG) suggested a reduction in 4-3 cross-linked PG in the ΔrpfABEE2 mutant strain. In addition, the level of PG-repeat units terminating in 1,6-anhydroMurNAc appeared to be significantly reduced in the quadruple rpf mutant. Collectively, our data have shown that Rpfs play an important role in biofilm formation, possibly through alterations in PG cross-linking and the production of signaling molecules.IMPORTANCE The cell wall of pathogenic mycobacteria is composed of peptidoglycan, arabinogalactan, mycolic acids, and an outer capsule. This inherent complexity renders it resistant to many antibiotics. Consequently, its biosynthesis and remodeling during growth directly impact viability. Resuscitation-promoting factors (Rpfs), enzymes with lytic transglycosylase activity, have been associated with the revival of dormant cells and subsequent resumption of vegetative growth. Mycobacterium smegmatis, a soil saprophyte and close relative of the human pathogen Mycobacterium tuberculosis, encodes four distinct Rpfs. Herein, we assessed the relationship between Rpfs and biofilm formation, which is used as a model to study drug tolerance and bacterial signaling in mycobacteria. We demonstrated that progressive deletion of rpf genes hampered the development of biofilms and reduced drug tolerance. These effects were accompanied by a reduction in muropeptide production and altered peptidoglycan cross-linking. Collectively, these observations point to an important role for Rpfs in mycobacterial communication and drug tolerance.
Collapse
|
39
|
Yu Y, Yan F, He Y, Qin Y, Chen Y, Chai Y, Guo JH. The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis. Microbiology (Reading) 2018; 164:848-862. [DOI: 10.1099/mic.0.000658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yiyang Yu
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Fang Yan
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yinghao He
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yuxuan Qin
- Department of Biology, Northeastern University, Boston, MA 02115, USA
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Jian-hua Guo
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
| |
Collapse
|
40
|
Romero CM, Martorell PV, López AG, Peñalver CGN, Chaves S, Mechetti M. Architecture and physicochemical characterization of Bacillus biofilm as a potential enzyme immobilization factory. Colloids Surf B Biointerfaces 2017; 162:246-255. [PMID: 29216511 DOI: 10.1016/j.colsurfb.2017.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022]
Abstract
Biocatalysis for industrial application is based on the use of enzymes to perform complex transformations. However, these systems have some disadvantage related to the costs of the biocatalyst. In this work, an alternative strategy for producing green immobilized biocatalysts based on biofilm was developed.A study of the rheological behavior of the biofilm from Bacillus sp. Mcn4, as well as the determination of its composition, was carried out. The dynamic rheological measurements, viscosity (G") and elasticity (G') module, showed that the biofilm presents appreciable elastic components, which is a recognized property for enzymes immobilization. After the partial purification, the exopolysaccharidewas identified as a levan with a non-Newtonian behavior. Extracellular DNA with fragments between 10,000 and 1000bp was detected also in the biofilm, and amyloid protein in the extracellular matrix using a fluorescence technique was identified. Bacillus sp. Mcn4 biofilms were developed on different surfaces, being the most stable those developed on hydrophilic supports. The biofilm showed lipase activity suggesting the presence of constitutive lipases entrapped into the biofilm. Indeed, two enzymes with lipase activity were identified in native PAGE. These were used as biocatalysts, whose reuse showed a residual lipase activity after more than one cycle of catalysis. The components identified in the biofilm could be the main contributors of the rheological characteristic of this material, giving an exceptional environment to the lipase enzyme. Based on these findings, the current study proposes green and natural biopolymers matrix as support for the enzyme immobilization for industrial applications.
Collapse
Affiliation(s)
- C M Romero
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina.
| | - P V Martorell
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - A Gómez López
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - C G Nieto Peñalver
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - S Chaves
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - M Mechetti
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| |
Collapse
|
41
|
Antolak H, Oracz J, Otlewska A, Żyżelewicz D, Kręgiel D. Identification of Carotenoids and Isoprenoid Quinones from Asaia lannensis and Asaia bogorensis. Molecules 2017; 22:molecules22101608. [PMID: 28946700 PMCID: PMC6151773 DOI: 10.3390/molecules22101608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/24/2017] [Accepted: 09/24/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to identify and quantitatively assess of carotenoids and isoprenoid quinones biosynthesized by six different strains of acetic acid bacteria, belonging to genus Asaia, that are common beverage-spoiling bacteria in Europe. Bacterial cultures were conducted in a laboratory liquid culture minimal medium with 2% sucrose. Carotenoids and isoprenoid quinones were investigated using UHPLC-DAD-ESI-MS analysis. In general, tested strains of Asaia spp. were able to produce 10 carotenoids and 3 isoprenoid quinones: menaquinone-7, menaquinone-8, and ubiquinone-10. The main identified carotenoids in Asaia lannensis strains were phytofluene, neurosporene, α-carotene, while for Asaia bogorensis, neurosporene, canthaxanthin, and zeaxanthin were noted. What is more, tested Asaia spp. were able to produce myxoxanthophyll, which has so far been identified primarily in cyanobacteria. The results show that A. lannensis are characterized by statistically higher concentrations of produced carotenoids, as well as a greater variety of these compounds. We have noted that carotenoids were not only accumulated by bacterial cells, but also some strains of A. lannensis produced extracellular carotenoids.
Collapse
Affiliation(s)
- Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 171/173 Wólczańska, 90-924 Lodz, Poland.
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Science, Lodz University of Technology, 4/10 Stefanowskiego, 90-924 Lodz, Poland.
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 171/173 Wólczańska, 90-924 Lodz, Poland.
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Science, Lodz University of Technology, 4/10 Stefanowskiego, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 171/173 Wólczańska, 90-924 Lodz, Poland.
| |
Collapse
|
42
|
Bedrunka P, Graumann PL. Subcellular clustering of a putative c-di-GMP-dependent exopolysaccharide machinery affecting macro colony architecture in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:211-222. [PMID: 27897378 DOI: 10.1111/1758-2229.12496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The structure of bacterial biofilms is predominantly established through the secretion of extracellular polymeric substances (EPS). They show that Bacillus subtilis contains an operon (ydaJ-N) whose induction leads to increased Congo Red staining of biofilms and strongly altered biofilm architecture, suggesting that it mediates the production of an unknown exopolysaccharide. Supporting this idea, overproduction of YdaJKLMN leads to cell clumping during exponential growth in liquid culture, and also causes colony morphology alterations in wild type cells, as well as in a mutant background lacking the major exopolysaccharide of B. subtilis. The first gene product of the operon, YdaJ, appears to modify the overproduction effects, but is not essential for cell clumping or altered colony morphology, while the presence of the c-di-GMP receptor YdaK is required, suggesting an involvement of second messenger c-di-GMP. YdaM, YdaN and YdaK colocalize to clusters predominantly at the cell poles and are statically positioned at this subcellular site, similar to other exopolysaccharide machinery components in other bacteria. Their analysis reveals that B. subtilis contains a static subcellular assembly of an EPS machinery that affects cell aggregation and biofilm formation.
Collapse
Affiliation(s)
- Patricia Bedrunka
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse, Marburg, 35043, Germany
| | - Peter L Graumann
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse, Marburg, 35043, Germany
| |
Collapse
|
43
|
Chebbi A, Elshikh M, Haque F, Ahmed S, Dobbin S, Marchant R, Sayadi S, Chamkha M, Banat IM. Rhamnolipids fromPseudomonas aeruginosastrain W10; as antibiofilm/antibiofouling products for metal protection. J Basic Microbiol 2017; 57:364-375. [DOI: 10.1002/jobm.201600658] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alif Chebbi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Mohamed Elshikh
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| | - Farazul Haque
- Biochemical Engineering Research & Process Development Center (BERPDC); CSIR-Institute of Microbial Technology; Chandigarh India
| | - Syed Ahmed
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| | - Sara Dobbin
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| | - Roger Marchant
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Ibrahim M. Banat
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| |
Collapse
|
44
|
Tallawi M, Opitz M, Lieleg O. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater Sci 2017; 5:887-900. [DOI: 10.1039/c6bm00832a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we highlight recent research on the relationship between biofilm matrix composition, biofilm mechanics and environmental stimuli.
Collapse
Affiliation(s)
- Marwa Tallawi
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technische Universität München
- Garching
- Germany
| | - Madeleine Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technische Universität München
- Garching
- Germany
| |
Collapse
|
45
|
Kesel S, von Bronk B, Falcón García C, Götz A, Lieleg O, Opitz M. Matrix composition determines the dimensions of Bacillus subtilis NCIB 3610 biofilm colonies grown on LB agar. RSC Adv 2017. [DOI: 10.1039/c7ra05559e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exopolymeric substances secreted by biofilm formingBacillus subtilisNCIB 3610 bacteria influence the growth and final dimensions of these biofilms.
Collapse
Affiliation(s)
- Sara Kesel
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Benedikt von Bronk
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Carolina Falcón García
- Institute of Medical Engineering IMETUM
- Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - Alexandra Götz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Oliver Lieleg
- Institute of Medical Engineering IMETUM
- Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - Madeleine Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| |
Collapse
|
46
|
Din L, Rudakova N, Sharipova M. Factors Influencing the Formation of Biofilms on Bacilli Model Systems. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
A submerged dielectric barrier discharge plasma inactivation mechanism of biofilms produced by Escherichia coli O157:H7, Cronobacter sakazakii, and Staphylococcus aureus. Sci Rep 2016. [PMCID: PMC5378952 DOI: 10.1038/srep37072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used to inactivate biofilm produced by three different food-borne pathogens, namely Escherichia coli O157:H7 (ATCC 438), Cronobacter sakazakii (ATCC 29004), and Staphylococcus aureus (KCCM 40050). The inactivation that were obtained after 90 minutes of plasma operation were found to measure 5.50 log CFU/coupon, 6.88 log CFU/coupon and 4.20 log CFU/coupon for Escherichia coli O157:H7 (ATCC 438), Cronobacter sakazakii (ATCC 29004), and Staphylococcus aureus (KCCM 40050), respectively. Secondary Electron Images (SEI) obtained from Field Emission Scanning Electron Microscopy (FE-SEM) show the biofilm morphology and its removal trend by plasma operation at different time intervals. An attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurement was performed to elucidate the biochemical changes that occur on the bacterial cell and extracellular polymeric substance (EPS) of biofilm during the plasma inactivation process. The ATR-FTIR measurement shows the gradual reduction of carbohydrates, proteins, and lipid and DNA peak regions with increased plasma exposure time. The presence of an EPS layer on the upper surface of the biofilm plays a negative and significant role in its removal from stainless steel (SS) coupons.
Collapse
|
48
|
Yu Y, Yan F, Chen Y, Jin C, Guo JH, Chai Y. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis. Front Microbiol 2016; 7:1811. [PMID: 27891125 PMCID: PMC5102903 DOI: 10.3389/fmicb.2016.01811] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/27/2016] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis-plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis-plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that.
Collapse
Affiliation(s)
- Yiyang Yu
- Department of Plant Pathology, Nanjing Agricultural UniversityNanjing, China; Department of Biology, Northeastern UniversityBoston, MA, USA
| | - Fang Yan
- Department of Plant Pathology, Nanjing Agricultural UniversityNanjing, China; Department of Biology, Northeastern UniversityBoston, MA, USA
| | - Yun Chen
- Department of Biology, Northeastern UniversityBoston, MA, USA; Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Christopher Jin
- Department of Biology, Northeastern University Boston, MA, USA
| | - Jian-Hua Guo
- Department of Plant Pathology, Nanjing Agricultural UniversityNanjing, China; Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing, China
| | - Yunrong Chai
- Department of Biology, Northeastern University Boston, MA, USA
| |
Collapse
|
49
|
Ozaki T, Abe N, Kimura K, Suzuki A, Kaneko J. Genomic analysis of Bacillus subtilis lytic bacteriophage ϕNIT1 capable of obstructing natto fermentation carrying genes for the capsule-lytic soluble enzymes poly-γ-glutamate hydrolase and levanase. Biosci Biotechnol Biochem 2016; 81:135-146. [PMID: 27885938 DOI: 10.1080/09168451.2016.1232153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis strains including the fermented soybean (natto) starter produce capsular polymers consisting of poly-γ-glutamate and levan. Capsular polymers may protect the cells from phage infection. However, bacteriophage ϕNIT1 carries a γ-PGA hydrolase gene (pghP) that help it to counteract the host cell's protection strategy. ϕNIT had a linear double stranded DNA genome of 155,631-bp with a terminal redundancy of 5,103-bp, containing a gene encoding an active levan hydrolase. These capsule-lytic enzyme genes were located in the possible foreign gene cluster regions between central core and terminal redundant regions, and were expressed at the late phase of the phage lytic cycle. All tested natto origin Spounavirinae phages carried both genes for capsule degrading enzymes similar to ϕNIT1. A comparative genomic analysis revealed the diversity among ϕNIT1 and Bacillus phages carrying pghP-like and levan-hydrolase genes, and provides novel understanding on the acquisition mechanism of these enzymatic genes.
Collapse
Affiliation(s)
- Tatsuro Ozaki
- a Department of Microbial Biotechnology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Naoki Abe
- a Department of Microbial Biotechnology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Keitarou Kimura
- b Laboratory of Applied Microbiology , Food Research Institute-National Agriculture and Food Research Organization (NFRI-NARO) , Tsukuba , Japan
| | - Atsuto Suzuki
- a Department of Microbial Biotechnology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Jun Kaneko
- a Department of Microbial Biotechnology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
50
|
Loss of GltB Inhibits Biofilm Formation and Biocontrol Efficiency of Bacillus subtilis Bs916 by Altering the Production of γ-Polyglutamate and Three Lipopeptides. PLoS One 2016; 11:e0156247. [PMID: 27223617 PMCID: PMC4880196 DOI: 10.1371/journal.pone.0156247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023] Open
Abstract
Aims This study examined the contribution of GltB on biofilm formation and biocontrol efficiency of B. subtilis Bs916. Methods and Results The gltB gene was identified through a biofilm phenotype screen and a bioinformatics analysis of serious biofilm formation defects, and then a gltB single knockout mutant was constructed using homologous recombination. This mutant demonstrated severe deficits in biofilm formation and colonisation along with significantly altered production ofγ-polyglutamate (γ-PGA) and three lipopeptide antibiotics (LPs) as measured by a transcriptional analysis of both the wild type B. subtilis Bs916 and the gltB mutant. Consequently, the mutant strain retained almost no antifungal activity against Rhizoctonia solani and exhibited decreased biocontrol efficiency against rice sheath blight. Very few gltB mutant cells colonised the rice stem, and they exhibited no significant nutrient chemotaxis compared to the wild type B. subtilis Bs916. The mechanism underlying these deficits in the gltB mutant appears to be decreased significantly in production of γ-PGA and a reduction in the production of both bacillomycin L and fengycin. Biofilm restoration of gltB mutant by additionγ-PGA in the EM medium demonstrated that biofilm formation was able to restore significantly at 20 g/L. Conclusions GltB regulates biofilm formation by altering the production ofγ-PGA, the LPs bacillomycin L and fengcin and influences bacterial colonisation on the rice stem, which consequently leads to poor biocontrol efficiency against rice sheath blight. Significance and Impact of Study This is the first report of a key regulatory protein (GltB) that is involved in biofilm regulation and its regulation mechanism and biocontrol efficiency by B. subtilis.
Collapse
|