1
|
Bloch S, Hager-Mair FF, Bacher J, Tomek MB, Janesch B, Andrukhov O, Schäffer C. Investigating the role of a Tannerella forsythia HtrA protease in host protein degradation and inflammatory response. FRONTIERS IN ORAL HEALTH 2024; 5:1425937. [PMID: 39035711 PMCID: PMC11257890 DOI: 10.3389/froh.2024.1425937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Degradation of host proteins by bacterial proteases leads to the subversion of the host response and disruption of oral epithelial integrity, which is considered an essential factor in the progression of periodontitis. High-temperature requirement A (HtrA) protease, which is critical for bacterial survival and environmental adaptation, is found in several oral bacteria, including the periodontal pathogen Tannerella forsythia. This study investigated the proteolytic activity of HtrA from T. forsythia and its ability to modulate the host response. METHODS HtrA of T. forsythia was identified bioinformatically and produced as a recombinant protein. T. forsythia mutants with depleted and restored HtrA production were constructed. The effect of T. forsythia wild-type, mutants and recombinant HtrA on the degradation of casein and E-cadherin was tested in vitro. Additionally, the responses of human gingival fibroblasts and U937 macrophages to the different HtrA-stimuli were investigated and compared to those triggered by the HtrA-deficient mutant. RESULTS T. forsythia wild-type producing HtrA as well as the recombinant enzyme exhibited proteolytic activity towards casein and E-cadherin. No cytotoxic effect of either the wild-type, T. forsythia mutants or rHtrA on the viability of host cells was found. In hGFB and U937 macrophages, both T. forsythia species induced an inflammatory response of similar magnitude, as indicated by gene and protein expression of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor α and monocyte chemoattractant protein (MCP)-1. Recombinant HtrA had no significant effect on the inflammatory response in hGFBs, whereas in U937 macrophages, it induced a transient inflammatory response at the early stage of infection. CONCLUSION HtrA of T. forsythia exhibit proteolytic activity towards the host adhesion molecule E-cadherin and has the potential to influence the host response. Its role in the progression of periodontitis needs further clarification.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Johanna Bacher
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus B. Tomek
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Bettina Janesch
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
2
|
Lo HH, Chang HC, Wu YJ, Liao CT, Hsiao YM. Functional characterization and transcriptional analysis of degQ of Xanthomonas campestris pathovar campestris. J Basic Microbiol 2024; 64:e2300441. [PMID: 38470163 DOI: 10.1002/jobm.202300441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 03/13/2024]
Abstract
High-temperature-requirement protein A (HtrA) family proteins play important roles in controlling protein quality and are recognized as virulence factors in numerous animal and human bacterial pathogens. The role of HtrA family proteins in plant pathogens remains largely unexplored. Here, we investigated the HtrA family protein, DegQ, in the crucifer black rot pathogen Xanthomonas campestris pathovar campestris (Xcc). DegQ is essential for bacterial attachment and full virulence of Xcc. Moreover, the degQ mutant strain showed increased sensitivity to heat treatment and sodium dodecyl sulfate. Expressing the intact degQ gene in trans in the degQ mutant could reverse the observed phenotypic changes. In addition, we demonstrated that the DegQ protein exhibited chaperone-like activity. Transcriptional analysis displayed that degQ expression was induced under heat treatment. Our results contribute to understanding the function and expression of DegQ of Xcc for the first time and provide a novel perspective about HtrA family proteins in plant pathogen.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yi-Jyun Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
3
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
4
|
Miller DP, Scott DA. Inherently and Conditionally Essential Protein Catabolism Genes of Porphyromonas gingivalis. Trends Microbiol 2020; 29:54-64. [PMID: 33071035 DOI: 10.1016/j.tim.2020.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Proteases are critical virulence determinants of Porphyromonas gingivalis, an emerging Alzheimer's disease, cancer, and arthritis pathogen and established agent of periodontitis. Transposon sequencing has been employed to define the core essential genome of this bacterium and genes conditionally essential in multiple environments - abscess formation; epithelial colonization; and cigarette smoke toxin exposure; as well as to elucidate genes required for iron acquisition and a functional type 9 secretion system. Validated and predicted protein catabolism genes identified include a combination of established virulence factors and a larger set of seemingly more mundane proteolytic genes. The functions and relevance of genes that share essentiality in multiple disease-relevant conditions are examined. These common stress-related genes may represent particularly attractive therapeutic targets for the control of P. gingivalis infections.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
5
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
6
|
Using Tn-seq To Identify Pigmentation-Related Genes of Porphyromonas gingivalis: Characterization of the Role of a Putative Glycosyltransferase. J Bacteriol 2017; 199:JB.00832-16. [PMID: 28484050 DOI: 10.1128/jb.00832-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/04/2017] [Indexed: 11/20/2022] Open
Abstract
Cellular pigmentation is an important virulence factor of the oral pathogen Porphyromonas gingivalis Pigmentation has been associated with many bacterial functions, including but not limited to colonization, maintaining a local anaerobic environment by binding oxygen molecules, and defense against reactive oxygen species (ROS) produced by immune cells. Pigmentation-associated loci identified to date have involved lipopolysaccharide, fimbriae, and heme acquisition and processing. We utilized a transposon mutant library of P. gingivalis strain ATCC 33277 and screened for pigmentation-defective colonies using massively parallel sequencing of the transposon junctions (Tn-seq) to identify genes involved in pigmentation. Transposon insertions at 235 separate sites, located in 67 genes and 15 intergenic regions, resulted in altered pigmentation: 7 of the genes had previously been shown to be involved in pigmentation, while 75 genes and intergenic regions had not. To further confirm identification, we generated a smaller transposon mutant library in P. gingivalis strain W83 and identified pigment mutations in several of the same loci as those identified in the screen in ATCC 33277 but also eight that were not identified in the ATCC 33277 screen. PGN_0361/PG_0264, a putative glycosyltransferase gene located between two tRNA synthetase genes and adjacent to a miniature inverted-repeat transposable element, was identified in the Tn-seq screen and then verified through targeted deletion and complementation. Deletion mutations in PGN_0361/PG_0264 glycosyltransferase abolish pigmentation, modulate gingipain protease activity, and alter lipopolysaccharide. The mechanisms of involvement in pigmentation for other loci identified in this study remain to be determined, but our screen provides the most complete survey of genes involved in pigmentation to date.IMPORTANCEP. gingivalis has been implicated in the onset and progression of periodontal disease. One important virulence factor is the bacterium's ability to produce pigment. Using a transposon library, we were able to identify both known and novel genes involved in pigmentation of P. gingivalis We identified a glycosyltransferase, previously not associated with pigmentation, that is required for pigmentation and determined its mechanism of involvement. A better understanding of the genes involved in pigmentation may lead to new insights into the complex mechanisms involved in this important virulence characteristic and could facilitate development of novel therapeutics.
Collapse
|
7
|
Zenobia C, Hajishengallis G. Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence 2016; 6:236-43. [PMID: 25654623 PMCID: PMC4601496 DOI: 10.1080/21505594.2014.999567] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oral bacterium Porphyromonas gingivalis has special nutrient requirements due to its asaccharolytic nature subsisting on small peptides cleaved from host proteins. Using proteases and other virulence factors, P. gingivalis thrives as a component of a polymicrobial community in nutritionally favorable inflammatory environments. In this regard, P. gingivalis has a number of strategies that subvert the host immune response in ways that promote its colonization and facilitate the outgrowth of the surrounding microbial community. The focus of this review is to discuss at the molecular level how P. gingivalis subverts leukocytes to create a favorable environment for a select community of bacteria that, in turn, adversely affects the periodontal tissues.
Collapse
Affiliation(s)
- Camille Zenobia
- a Department of Microbiology; University of Pennsylvania School of Dental Medicine ; Philadelphia , PA , USA
| | | |
Collapse
|
8
|
Ciuraszkiewicz J, Śmiga M, Mackiewicz P, Gmiterek A, Bielecki M, Olczak M, Olczak T. Fur homolog regulatesPorphyromonas gingivalisvirulence under low-iron/heme conditions through a complex regulatory network. Mol Oral Microbiol 2014; 29:333-53. [DOI: 10.1111/omi.12077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/22/2022]
Affiliation(s)
- J. Ciuraszkiewicz
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Śmiga
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - P. Mackiewicz
- Department of Genomics; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - A. Gmiterek
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Bielecki
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Olczak
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - T. Olczak
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| |
Collapse
|
9
|
Aruni AW, Robles A, Fletcher HM. VimA mediates multiple functions that control virulence in Porphyromonas gingivalis. Mol Oral Microbiol 2012; 28:167-80. [PMID: 23279905 DOI: 10.1111/omi.12017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/31/2022]
Abstract
Porphyromonas gingivalis, a black-pigmented, gram-negative anaerobe, is an important etiological agent of periodontal disease. Its ability to survive in the periodontal pocket and orchestrate the microbial/host activities that can lead to disease suggest that P. gingivalis possesses a complex regulatory network involving transcriptional and post-transcriptional mechanisms. The vimA (virulence modulating) gene is part of the 6.15-kb bcp-recA-vimA-vimE-vimF-aroG locus and plays a role in oxidative stress resistance. In addition to the glycosylation and anchorage of several surface proteins including the gingipains, VimA can also modulate sialylation, acetyl coenzyme A transfer, lipid A and its associated proteins and may be involved in protein sorting and transport. In this review, we examine the multifunctional role of VimA and discuss its possible involvement in a major regulatory network important for survival and virulence regulation in P. gingivalis. It is postulated that the multifunction of VimA is modulated via a post-translational mechanism involving acetylation.
Collapse
Affiliation(s)
- A W Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | | |
Collapse
|
10
|
Osbourne D, Aruni AW, Dou Y, Perry C, Boskovic DS, Roy F, Fletcher HM. VimA-dependent modulation of the secretome in Porphyromonas gingivalis. Mol Oral Microbiol 2012; 27:420-35. [PMID: 23134608 DOI: 10.1111/j.2041-1014.2012.00661.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The VimA protein of Porphyromonas gingivalis is a multifunctional protein involved in cell surface biogenesis. To further determine if its acetyl coenzyme A (acetyl-CoA) transfer and putative sorting functions can affect the secretome, its role in peptidoglycan biogenesis and effects on the extracellular proteins of P. gingivalis FLL92, a vimA-defective mutant, were evaluated. There were structural and compositional differences in the peptidoglycan of P. gingivalis FLL92 compared with the wild-type strain. Sixty-eight proteins were present only in the extracellular fraction of FLL92. Fifteen proteins present in the extracellular fraction of the parent strain were missing in the vimA-defective mutant. These proteins had protein sorting characteristics that included a C-terminal motif with a common consensus Gly-Gly-CTERM pattern and a polar tail consisting of aromatic amino acid residues. These observations suggest that the VimA protein is likely involved in peptidoglycan synthesis, and corroborates our previous report, which suggests a role in protein sorting.
Collapse
Affiliation(s)
- D Osbourne
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Henry LG, McKenzie RME, Robles A, Fletcher HM. Oxidative stress resistance in Porphyromonas gingivalis. Future Microbiol 2012; 7:497-512. [PMID: 22439726 DOI: 10.2217/fmb.12.17] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Leroy G Henry
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
12
|
Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. J Bacteriol 2012; 194:1582-92. [PMID: 22247513 DOI: 10.1128/jb.06457-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porphyromonas gingivalis, the causative agent of adult periodontitis, must maintain nitric oxide (NO) homeostasis and surmount nitric oxide stress from host immune responses or other oral bacteria to survive in the periodontal pocket. To determine the involvement of a putative hydroxylamine reductase (PG0893) and a putative nitrite reductase-related protein (PG2213) in P. gingivalis W83 NO stress resistance, genes encoding those proteins were inactivated by allelic exchange mutagenesis. The isogenic mutants P. gingivalis FLL455 (PG0893ermF) and FLL456 (PG2213ermF) were black pigmented and showed growth rates and gingipain and hemolytic activities similar to those of the wild-type strain. P. gingivalis FLL455 was more sensitive to NO than the wild type. Complementation of P. gingivalis FLL455 with the wild-type gene restored the level of NO sensitivity to a level similar to that of the parent strain. P. gingivalis FLL455 and FLL456 showed sensitivity to oxidative stress similar to that of the wild-type strain. DNA microarray analysis showed that PG0893 and PG2213 were upregulated 1.4- and 2-fold, respectively, in cells exposed to NO. In addition, 178 genes were upregulated and 201 genes downregulated more than 2-fold. The majority of these modulated genes were hypothetical or of unknown function. PG1181, predicted to encode a transcriptional regulator, was upregulated 76-fold. Transcriptome in silico analysis of the microarray data showed major metabolomic variations in key pathways. Collectively, these findings indicate that PG0893 and several other genes may play an important role in P. gingivalis NO stress resistance.
Collapse
|
13
|
VimA-dependent modulation of acetyl coenzyme A levels and lipid A biosynthesis can alter virulence in Porphyromonas gingivalis. Infect Immun 2011; 80:550-64. [PMID: 22144476 DOI: 10.1128/iai.06062-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Porphyromonas gingivalis VimA protein has multifunctional properties that can modulate several of its major virulence factors. To further characterize VimA, P. gingivalis FLL406 carrying an additional vimA gene and a vimA-defective mutant in a different P. gingivalis genetic background were evaluated. The vimA-defective mutant (FLL451) in the P. gingivalis ATCC 33277 genetic background showed a phenotype similar to that of the vimA-defective mutant (FLL92) in the P. gingivalis W83 genetic background. In contrast to the wild type, gingipain activity was increased in P. gingivalis FLL406, a vimA chimeric strain. P. gingivalis FLL451 had a five times higher biofilm-forming capacity than the parent strain. HeLa cells incubated with P. gingivalis FLL92 showed a decrease in invasion, in contrast to P. gingivalis FLL451 and FLL406, which showed increases of 30 and 40%, respectively. VimA mediated coenzyme A (CoA) transfer to isoleucine and reduced branched-chain amino acid metabolism. The lipid A content and associated proteins were altered in the vimA-defective mutants. The VimA chimera interacted with several proteins which were found to have an LXXTG motif, similar to the sorting motif of gram-positive organisms. All the proteins had an N-terminal signal sequence with a putative sorting signal of L(P/T/S)X(T/N/D)G and two unique signatures of EXGXTX and HISXXGXG, in addition to a polar tail. Taken together, these observations further confirm the multifunctional role of VimA in modulating virulence possibly through its involvement in acetyl-CoA transfer and lipid A synthesis and possibly by protein sorting.
Collapse
|
14
|
Vanterpool E, Aruni AW, Roy F, Fletcher HM. regT can modulate gingipain activity and response to oxidative stress in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2010; 156:3065-3072. [PMID: 20595264 PMCID: PMC3068696 DOI: 10.1099/mic.0.038315-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recombinant VimA protein can interact with the gingipains and several other proteins that may play a role in its biogenesis in Porphyromonas gingivalis. In silico analysis of PG2096, a hypothetical protein that was shown to interact with VimA, suggests that it may have environmental stress resistance properties. To further evaluate the role(s) of PG2096, the predicted open reading frame was PCR amplified from P. gingivalis W83 and insertionally inactivated using the ermF-ermAM antibiotic-resistance cassette. One randomly chosen PG2096-defective mutant created by allelic exchange and designated FLL205 was further characterized. Under normal growth conditions at 37 °C, Arg-X and Lys-X gingipain activities in FLL205 were reduced by approximately 35 % and 21 %, respectively, compared to the wild-type strain. However, during prolonged growth at an elevated temperature of 42 °C, Arg-X activity was increased by more than 40 % in FLL205 in comparison to the wild-type strain. In addition, the PG2096-defective mutant was more resistant to oxidative stress when treated with 0.25 mM hydrogen peroxide. Taken together these results suggest that the PG2096 gene, designated regT (regulator of gingipain activity at elevated temperatures), may be involved in regulating gingipain activity at elevated temperatures and be important in oxidative stress resistance in P. gingivalis.
Collapse
Affiliation(s)
- E Vanterpool
- Department of Biological Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - A Wilson Aruni
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - F Roy
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - H M Fletcher
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
15
|
|
16
|
Lo AW, Seers CA, Boyce JD, Dashper SG, Slakeski N, Lissel JP, Reynolds EC. Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiol 2009; 9:18. [PMID: 19175941 PMCID: PMC2637884 DOI: 10.1186/1471-2180-9-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 01/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porphyromonas gingivalis in subgingival dental plaque, as part of a mature biofilm, has been strongly implicated in the onset and progression of chronic periodontitis. In this study using DNA microarray we compared the global gene expression of a P. gingivalis biofilm with that of its planktonic counterpart grown in the same continuous culture. RESULTS Approximately 18% (377 genes, at 1.5 fold or more, P-value < 0.01) of the P. gingivalis genome was differentially expressed when the bacterium was grown as a biofilm. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in cell envelope biogenesis, DNA replication, energy production and biosynthesis of cofactors, prosthetic groups and carriers. A number of genes encoding transport and binding proteins were up-regulated in P. gingivalis biofilm cells. Several genes predicted to encode proteins involved in signal transduction and transcriptional regulation were differentially regulated and may be important in the regulation of biofilm growth. CONCLUSION This study analyzing global gene expression provides insight into the adaptive response of P. gingivalis to biofilm growth, in particular showing a down regulation of genes involved in growth and metabolic activity.
Collapse
Affiliation(s)
- Alvin W Lo
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yuan L, Rodrigues PH, Bélanger M, Dunn WA, Progulske-Fox A. Porphyromonas gingivalis htrA is involved in cellular invasion and in vivo survival. MICROBIOLOGY-SGM 2008; 154:1161-1169. [PMID: 18375808 DOI: 10.1099/mic.0.2007/015131-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HtrA is a heat-stress protein that functions both as a chaperone and as a serine protease. HtrA has been shown in several organisms to be involved in responses to stressful environmental conditions and involvement of HtrA in virulence has been reported in pathogenic species. A Porphyromonas gingivalis htrA mutant demonstrated no significant difference to the W83 parent strain when subjected to high temperature and pH values from 3 to 11. However, the htrA mutant showed increased sensitivity to H(2)O(2). Cell invasion assays indicated that the total interaction (adherence) with KB cells, human coronary artery endothelial cells and gingival epithelial cells (GEC) was the same for both the wild-type and the htrA mutant. However, the htrA mutant showed increased invasion in KB cells and GEC. Microarray experiments indicated that a total of 253 genes were differentially regulated in the htrA mutant, including a group of stress-related genes, which might be responsible for the observed decreased resistance to H(2)O(2). In animal experiments, a competition assay showed that the htrA mutant did not survive as well as the wild-type. In another in vivo assay, fewer mice infected with the htrA mutant died than mice infected with W83, suggesting that the htrA gene is virulence-related. These data indicate that the htrA gene in P. gingivalis does not relate to stress conditions such as high temperature and pH, but rather to H(2)O(2) stress. The htrA gene also appears to be important for virulence and survival in in vivo animal models.
Collapse
Affiliation(s)
- Lihui Yuan
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Paulo H Rodrigues
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Myriam Bélanger
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - William A Dunn
- Department of Anatomy and Cell Biology, College of Medicine and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Proteomic analysis of stationary phase in the marine bacterium "Candidatus Pelagibacter ubique". Appl Environ Microbiol 2008; 74:4091-100. [PMID: 18469119 DOI: 10.1128/aem.00599-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Pelagibacter ubique," an abundant marine alphaproteobacterium, subsists in nature at low ambient nutrient concentrations and may often be exposed to nutrient limitation, but its genome reveals no evidence of global regulatory mechanisms for adaptation to stationary phase. High-resolution capillary liquid chromatography coupled online to an LTQ mass spectrometer was used to build an accurate mass and time (AMT) tag library that enabled quantitative examination of proteomic differences between exponential- and stationary-phase "Ca. Pelagibacter ubique" cells cultivated in a seawater medium. The AMT tag library represented 65% of the predicted protein-encoding genes. "Ca. Pelagibacter ubique" appears to respond adaptively to stationary phase by increasing the abundance of a suite of proteins that contribute to homeostasis rather than undergoing a major remodeling of its proteome. Stationary-phase abundances increased significantly for OsmC and thioredoxin reductase, which may mitigate oxidative damage in "Ca. Pelagibacter," as well as for molecular chaperones, enzymes involved in methionine and cysteine biosynthesis, proteins involved in rho-dependent transcription termination, and the signal transduction enzyme CheY-FisH. We speculate that this limited response may enable "Ca. Pelagibacter ubique" to cope with ambient conditions that deprive it of nutrients for short periods and, furthermore, that the ability to resume growth overrides the need for a more comprehensive global stationary-phase response to create a capacity for long-term survival.
Collapse
|
19
|
Sheets SM, Robles-Price AG, McKenzie RME, Casiano CA, Fletcher HM. Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:3215-38. [PMID: 18508429 PMCID: PMC3403687 DOI: 10.2741/2922] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porphyromonas gingivalis, a major periodontal pathogen, must acquire nutrients from host derived substrates, overcome oxidative stress and subvert the immune system. These activities can be coordinated via the gingipains which represent the most significant virulence factor produced by this organism. In the context of our contribution to this field, we will review the current understanding of gingipain biogenesis, glycosylation, and regulation, as well as discuss their role in oxidative stress resistance and apoptosis. We can postulate a model, in which gingipains may be part of the mechanism for P. gingivalis virulence.
Collapse
Affiliation(s)
- Shaun M. Sheets
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Antonette G. Robles-Price
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Rachelle M. E. McKenzie
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Carlos A. Casiano
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
- The Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Hansel M. Fletcher
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
20
|
Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J Bacteriol 2007; 190:1436-46. [PMID: 18065546 DOI: 10.1128/jb.01632-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Clp proteases and chaperones are ubiquitous among prokaryotes and eukaryotes, and in many pathogenic bacteria the Clp stress response system is also involved in regulation of virulence properties. In this study, the roles of ClpB, ClpC, and ClpXP in stress resistance, homotypic and heterotypic biofilm formation, and intracellular invasion in the oral opportunistic pathogen Porphyromonas gingivalis were investigated. Absence of ClpC and ClpXP, but not ClpB, resulted in diminished tolerance to high temperatures. Response to oxidative stress was not affected by the loss of any of the Clp proteins. The clpC and clpXP mutants demonstrated elevated monospecies biofilm formation, and the absence of ClpXP also enhanced heterotypic P. gingivalis-Streptococcus gordonii biofilm formation. All clp mutants adhered to gingival epithelial cells to the same level as the wild type; however, ClpC and ClpXP were found to be necessary for entry into host epithelial cells. ClpB did not play a role in entry but was required for intracellular replication and survival. ClpXP negatively regulated the surface exposure of the minor fimbrial (Mfa) protein subunit of P. gingivalis, which stimulates biofilm formation but interferes with epithelial cell entry. Collectively, these results show that the Clp protease complex and chaperones control several processes that are important for the colonization and survival of P. gingivalis in the oral cavity.
Collapse
|