1
|
Nie C, Huang X, Xiang T, Wang Z, Zhang X. Discovery and characterization of the PpqI/R quorum sensing system activated by GacS/A and Hfq in Pseudomonas protegens H78. Microbiol Res 2024; 287:127868. [PMID: 39126862 DOI: 10.1016/j.micres.2024.127868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Pseudomonas protegens can generally produce multiple antibiotics including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). In this study, we discovered and characterized a quorum sensing (QS) system, PpqI/R, in P. protegens H78. PpqI/R, encoded by two open reading frames (ORFs) (H78_01960/01961) in P. protegens H78 genome, is a LuxI/R-type QS system. Four long-chain acyl homoserine lactone (AHL) signaling molecules, 3-OH-C10-HSL, 3-OH-C12-HSL, C12-HSL, and 3-OH-C14-HSL, are produced by H78. Biosynthesis of these AHLs is catalyzed by PpqI synthase and activated by the PpqR regulator in H78 and in Escherichia coli when heterologously expressed. PpqR activates ppqI expression by targeting the lux box upstream of the ppqI promoter in cooperation with corresponding AHLs. The four aforementioned AHLs exhibited different capabilities to induce ppqI promoter expression, with 3-OH-C12-HSL showing the highest induction activity. In H78 cells, ppqI/R expression is activated by the two-component system GacS/A and the RNA chaperone Hfq. Differential regulation of the PpqI/R system in secondary metabolism has a negative effect on DAPG biosynthesis and ped operon (involved in volatile organic compound biosynthesis) expression. In contrast, Plt biosynthesis and prn operon expression were positively regulated by PpqI/R. In summary, PpqI/R, the first characterized QS system in P. protegens, is activated by GacS/A and Hfq and controls the expression of secondary metabolites, including antibiotics.
Collapse
Affiliation(s)
- Chenxi Nie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Xiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Cui Y, Song K, Jin ZJ, Lee LH, Thawai C, He YW. Fructose promotes pyoluteorin biosynthesis via the CbrAB-CrcZ-Hfq/Crc pathway in the biocontrol strain Pseudomonas PA1201. Synth Syst Biotechnol 2023; 8:618-628. [PMID: 37823038 PMCID: PMC10562864 DOI: 10.1016/j.synbio.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Biocontrol strain Pseudomonas PA1201 produces pyoluteorin (Plt), which is an antimicrobial secondary metabolite. Plt represents a promising candidate pesticide due to its broad-spectrum antifungal and antibacterial activity. Although PA1201 contains a complete genetic cluster for Plt biosynthesis, it fails to produce detectable level of Plt when grown in media typically used for Pseudomonas strains. In this study, minimum medium (MM) was found to favor Plt biosynthesis. Using the medium M, which contains all the salts of MM medium except for mannitol, as a basal medium, we compared 10 carbon sources for their ability to promote Plt biosynthesis. Fructose, mannitol, and glycerol promoted Plt biosynthesis, with fructose being the most effective carbon source. Glucose or succinic acid had no significant effect on Plt biosynthesis, but effectively antagonized fructose-dependent synthesis of Plt. Promoter-lacZ fusion reporter strains demonstrated that fructose acted through activation of the pltLABCDEFG (pltL) operon but had no effect on other genes of plt gene cluster; glucose or succinic acid antagonized fructose-dependent pltL induction. Mechanistically, fructose-mediated Plt synthesis involved carbon catabolism repression. The two-component system CbrA/CbrB and small RNA catabolite repression control Z (crcZ) were essential for fructose-induced Plt synthesis. The small RNA binding protein Hfq and Crc negatively regulated fructose-induced Plt. Taken together, this study provides a new model of fructose-dependent Plt production in PA1201 that can help improve Plt yield by biosynthetic approaches.
Collapse
Affiliation(s)
- Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Maharajan AD, Hansen H, Khider M, Willassen NP. Quorum sensing in Aliivibrio wodanis 06/09/139 and its role in controlling various phenotypic traits. PeerJ 2021; 9:e11980. [PMID: 34513327 PMCID: PMC8395575 DOI: 10.7717/peerj.11980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background Quorum Sensing (QS) is a cell-to-cell communication system that bacteria utilize to adapt to the external environment by synthesizing and responding to signalling molecules called autoinducers. The psychrotrophic bacterium Aliivibrio wodanis 06/09/139, originally isolated from a winter ulcer of a reared Atlantic salmon, produces the autoinducer N-3-hydroxy-decanoyl-homoserine-lactone (3OHC10-HSL) and encodes the QS systems AinS/R and LuxS/PQ, and the master regulator LitR. However, the role of QS in this bacterium has not been investigated yet. Results In the present work we show that 3OHC10-HSL production is cell density and temperature-dependent in A. wodanis 06/09/139 with the highest production occurring at a low temperature (6 °C). Gene inactivation demonstrates that AinS is responsible for 3OHC10-HSL production and positively regulated by LitR. Inactivation of ainS and litR further show that QS is involved in the regulation of growth, motility, hemolysis, protease activity and siderophore production. Of these QS regulated activities, only the protease activity was found to be independent of LitR. Lastly, supernatants harvested from the wild type and the ΔainS and ΔlitR mutants at high cell densities show that inactivation of QS leads to a decreased cytopathogenic effect (CPE) in a cell culture assay, and strongest attenuation of the CPE was observed with supernatants harvested from the ΔlitR mutant. Conclusion A. wodanis 06/09/139 use QS to regulate a number of activities that may prove important for host colonization or interactions. The temperature of 6 °C that is in the temperature range at which winter ulcer occurs, plays a role in AHL production and development of CPE on a Chinook Salmon Embryo (CHSE) cell line.
Collapse
Affiliation(s)
- Amudha Deepalakshmi Maharajan
- Norwegian Structural Biology Center and The Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hilde Hansen
- Norwegian Structural Biology Center and The Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Miriam Khider
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Nils Peder Willassen
- Norwegian Structural Biology Center and The Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway.,Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Wu L, Wang Z, Guan Y, Huang X, Shi H, Liu Y, Zhang X. The (p)ppGpp-mediated stringent response regulatory system globally inhibits primary metabolism and activates secondary metabolism in Pseudomonas protegens H78. Appl Microbiol Biotechnol 2020; 104:3061-3079. [PMID: 32009198 DOI: 10.1007/s00253-020-10421-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 01/08/2023]
Abstract
Pseudomonas protegens H78 produces multiple secondary metabolites, including antibiotics and iron carriers. The guanosine pentaphosphate or tetraphosphate ((p)ppGpp)-mediated stringent response is utilized by bacteria to survive during nutritional starvation and other stresses. RelA/SpoT homologues are responsible for the biosynthesis and degradation of the alarmone (p)ppGpp. Here, we investigated the global effect of relA/spoT dual deletion on the transcriptomic profiles, physiology, and metabolism of P. protegens H78 grown to mid- to late log phase. Transcriptomic profiling revealed that relA/spoT deletion globally upregulated the expression of genes involved in DNA replication, transcription, and translation; amino acid metabolism; carbohydrate and energy metabolism; ion transport and metabolism; and secretion systems. Bacterial growth was partially increased, while the cell survival rate was significantly reduced by relA/spoT deletion in H78. The utilization of some nutritional elements (C, P, S, and N) was downregulated due to relA/spoT deletion. In contrast, relA/spoT mutation globally inhibited the expression of secondary metabolic gene clusters (plt, phl, prn, ofa, fit, pch, pvd, and has). Correspondingly, antibiotic and iron carrier biosynthesis, iron utilization, and antibiotic resistance were significantly downregulated by the relA/spoT mutation. This work highlights that the (p)ppGpp-mediated stringent response regulatory system plays an important role in inhibiting primary metabolism and activating secondary metabolism in P. protegens.
Collapse
Affiliation(s)
- Lingyu Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yejun Guan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Huimin Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujie Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Li T, Wang D, Ren L, Mei Y, Ding T, Li Q, Chen H, Li J. Involvement of Exogenous N-Acyl-Homoserine Lactones in Spoilage Potential of Pseudomonas fluorescens Isolated From Refrigerated Turbot. Front Microbiol 2019; 10:2716. [PMID: 31849873 PMCID: PMC6895499 DOI: 10.3389/fmicb.2019.02716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023] Open
Abstract
Some bacteria can modulate their spoilage potential by responding to environmental signaling molecules via the quorum sensing (QS) system. However, the ability of Pseudomonas fluorescens, the specific spoilage organism (SSO) of turbot, to response to environmental signaling molecules remains unclear. This study investigated the effects of six synthetic N-acyl homoserine lactones (AHLs) on typical behaviors mediated by QS in P. fluorescens, such as biofilm formation and extracellular protease activity. Total volatile basic nitrogen (TVB-N) was used as a spoilage indicator to evaluate quality changes in AHL-treated turbot filets during storage. The results confirm the enhancing effect of environmental AHLs on QS-dependent factors of P. fluorescens and quality deterioration of turbot filets, with C4-HSL and C14-HSL being the most effective. Moreover, the content decrease of exogenous AHLs was also validated by gas chromatography–mass spectrometry analysis. Further, changes in rhlR transcription levels in P. fluorescens suggest that this bacterium can sense environmental AHLs. Finally, molecular docking analysis demonstrates the potential interactions of RhlR protein with various exogenous AHLs. These findings strongly implicate environmental AHLs in turbot spoilage caused by P. fluorescens, suggesting preservation of turbot should not exclusively consider the elimination of SSO-secreted AHLs.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Yongchao Mei
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Ting Ding
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
6
|
Li T, Wang D, Ren L, Mei Y, Ding T, Li Q, Chen H, Li J. Involvement of Exogenous N-Acyl-Homoserine Lactones in Spoilage Potential of Pseudomonas fluorescens Isolated From Refrigerated Turbot. Front Microbiol 2019; 10:2716. [PMID: 31849873 DOI: 10.3389/fmicb.2019.0271610.3389/fmicb.2019.02716.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 05/28/2023] Open
Abstract
Some bacteria can modulate their spoilage potential by responding to environmental signaling molecules via the quorum sensing (QS) system. However, the ability of Pseudomonas fluorescens, the specific spoilage organism (SSO) of turbot, to response to environmental signaling molecules remains unclear. This study investigated the effects of six synthetic N-acyl homoserine lactones (AHLs) on typical behaviors mediated by QS in P. fluorescens, such as biofilm formation and extracellular protease activity. Total volatile basic nitrogen (TVB-N) was used as a spoilage indicator to evaluate quality changes in AHL-treated turbot filets during storage. The results confirm the enhancing effect of environmental AHLs on QS-dependent factors of P. fluorescens and quality deterioration of turbot filets, with C4-HSL and C14-HSL being the most effective. Moreover, the content decrease of exogenous AHLs was also validated by gas chromatography-mass spectrometry analysis. Further, changes in rhlR transcription levels in P. fluorescens suggest that this bacterium can sense environmental AHLs. Finally, molecular docking analysis demonstrates the potential interactions of RhlR protein with various exogenous AHLs. These findings strongly implicate environmental AHLs in turbot spoilage caused by P. fluorescens, suggesting preservation of turbot should not exclusively consider the elimination of SSO-secreted AHLs.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Yongchao Mei
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Ting Ding
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
7
|
Improvement of pyoluteorin production in Pseudomonas protegens H78 through engineering its biosynthetic and regulatory pathways. Appl Microbiol Biotechnol 2019; 103:3465-3476. [DOI: 10.1007/s00253-019-09732-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/26/2022]
|
8
|
Wang Z, Huang X, Liu Y, Yang G, Liu Y, Zhang X. GacS/GacA activates pyoluteorin biosynthesis through Gac/Rsm-RsmE cascade and RsmA/RsmE-driven feedback loop inPseudomonas protegensH78. Mol Microbiol 2017; 105:968-985. [DOI: 10.1111/mmi.13749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Yujie Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Guohuan Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Yang Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
9
|
Global control of GacA in secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol 2013; 195:3387-400. [PMID: 23708134 DOI: 10.1128/jb.00214-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rhizobacterium Pseudomonas aeruginosa M18 can produce a broad spectrum of secondary metabolites, including the antibiotics pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), hydrogen cyanide, and the siderophores pyoverdine and pyochelin. The antibiotic biosynthesis of M18 is coordinately controlled by multiple distinct regulatory pathways, of which the GacS/GacA system activates Plt biosynthesis but strongly downregulates PCA biosynthesis. Here, we investigated the global influence of a gacA mutation on the M18 transcriptome and related metabolic and physiological processes. Transcriptome profiling revealed that the transcript levels of 839 genes, which account for approximately 15% of the annotated genes in the M18 genome, were significantly influenced by the gacA mutation during the early stationary growth phase of M18. Most secondary metabolic gene clusters, such as pvd, pch, plt, amb, and hcn, were activated by GacA. The GacA regulon also included genes encoding extracellular enzymes and cytochrome oxidases. Interestingly, the primary metabolism involved in the assimilation and metabolism of phosphorus, sulfur, and nitrogen sources was also notably regulated by GacA. Another important category of the GacA regulon was secretion systems, including H1, H2, and H3 (type VI secretion systems [T6SSs]), Hxc (T2SS), and Has and Apr (T1SSs), and CupE and Tad pili. More remarkably, GacA inhibited swimming, swarming, and twitching motilities. Taken together, the Gac-initiated global regulation, which was mostly mediated through multiple regulatory systems or factors, was mainly involved in secondary and primary metabolism, secretion systems, motility, etc., contributing to ecological or nutritional competence, ion homeostasis, and biocontrol in M18.
Collapse
|
10
|
Yong YC, Zhong JJ. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway. BIORESOURCE TECHNOLOGY 2013; 136:761-765. [PMID: 23582222 DOI: 10.1016/j.biortech.2013.03.134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
The mechanism for quorum sensing (QS) regulation on aromatics degradation was investigated. Deletion of rhl QS system resulted in a significant decrease in aromatics biodegradation as well as the activity of catechol 2,3-dioxygenase (C23O, key enzyme for catechol meta-cleavage pathway) in Pseudomonas aeruginosa CGMCC1.860. Interestingly, this repression could be relieved by N-butyryl homoserine lactone (the signaling molecule of rhl QS system) addition. In accordance, the transcription level of nahH (the gene encoding C23O) and nahR (transcriptional activator) also responded to rhl perturbation in a similar way. The results indicated that rhl QS system positively controlled the catechol meta-cleavage pathway, and hence improved aromatics biodegradation. It suggested manipulation of QS system could be a promising strategy to tune the catechol cleavage pathway and to control aromatics biodegradation.
Collapse
Affiliation(s)
- Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | | |
Collapse
|
11
|
Li S, Huang X, Wang G, Xu Y. Transcriptional activation of pyoluteorin operon mediated by the LysR-type regulator PltR bound at a 22 bp lys box in Pseudomonas aeruginosa M18. PLoS One 2012; 7:e39538. [PMID: 22761817 PMCID: PMC3382589 DOI: 10.1371/journal.pone.0039538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/25/2012] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa M18, a rhizosphere-isolated bacterial strain showing strong antifungal activity, can produce secondary metabolites such as phenazine-1-carboxylic acid and pyoluteorin (Plt). The LysR-type transcriptional regulator PltR activates the Plt biosynthesis operon pltLABCDEFG, the expression of which is induced by Plt. Here, we identified and characterized the non-conserved pltL promoter (pltLp) specifically activated by PltR and its upstream neighboring lys box from the complicated pltR–pltL intergenic sequence. The 22 bp palindromic lys box, which consists of two 9 bp complementary inverted repeats interrupted by 4 bp, was found to contain the conserved, GC-rich LysR-binding motif (T-N11-A). Evidence obtained in vivo from mutational and lacZ report analyses and in vitro from electrophoretic mobility shift assays reveals that the PltR protein directly bound to the pltLp region as the indispensable binding motif “lys box”, thereby transcriptionally activating the pltLp-driven plt operon expression. Plt, as a potential non-essential coinducer of PltR, specifically induced the pltLp expression and thus strengthened its biosynthetic plt operon expression.
Collapse
Affiliation(s)
- Sainan Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- * E-mail: (XH); (YX)
| | - Guohao Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuquan Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- * E-mail: (XH); (YX)
| |
Collapse
|
12
|
The RNA chaperone Hfq regulates antibiotic biosynthesis in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol 2012; 194:2443-57. [PMID: 22427627 DOI: 10.1128/jb.00029-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The rhizosphere microbe Pseudomonas aeruginosa M18 shows strong antifungal activities, mainly due to the biosynthesis of antibiotics like pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA). The ubiquitous RNA chaperone Hfq regulates bacterial virulence and stress tolerance through global posttranscriptional regulation. Here, we explored the molecular mechanism by which Hfq controls antibiotic biosynthesis in P. aeruginosa M18. The robust downregulation of Plt biosynthesis by Hfq was mediated exclusively by the posttranscriptional downregulation of the plt transcriptional activator PltR. Hfq posttranscriptionally repressed phzM expression and consequently reduced the conversion of PCA to pyocyanin. However, Hfq positively controlled the phz2 operon and PCA biosynthesis through both QscR-mediated transcriptional regulation at the promoter and an unknown regulation at the operator. Also, Hfq was shown to directly bind at the mRNA 5' untranslated leaders of pltR, qscR, and phzM. These three negatively regulated target genes of Hfq shared a similar secondary structure with a short single-stranded AU-rich spacer (a potential Hfq-binding motif) linking two stem-loops. Taken together, these results indicate that Hfq, potentially in collaboration with unknown small noncoding RNAs (sRNAs), tightly controls antibiotic biosynthesis through both direct posttranscriptional inhibition and indirect transcriptional regulation.
Collapse
|
13
|
Yong YC, Zhong JJ. Impacts of quorum sensing on microbial metabolism and human health. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 131:25-61. [PMID: 22767136 DOI: 10.1007/10_2012_138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteria were considered to be lonely 'mutes' for hundreds of years. However, recently it was found that bacteria usually coordinate their behaviors at the population level by producing (speaking), sensing (listening), and responding to small signal molecules. This so-called quorum sensing (QS) regulation enables bacteria to live in a 'society' with cell-cell communication and controls many important bacterial behaviors. In this chapter, QS systems and their signal molecules for Gram-negative and Gram-positive bacteria are introduced. Most interestingly, QS regulates the important bacterial behaviors such as metabolism and pathogenesis. QS-regulated microbial metabolism includes antibiotic synthesis, pollutant biodegradation, and bioenergy production, which are very relevant to human health. QS is also well-known for its involvement in bacterial pathogenesis, such as iin nfections by Pseudomonas aeruginosa and Staphylococcus aureus. Novel disease diagnosis strategies and antimicrobial agents have also been developed based on QS regulation on bacterial infections. In addition, to meet the requirements for the detection/quantification of QS signaling molecules for research and application, different biosensors have been constructed, which will also be reviewed here. QS regulation is essential to bacterial survival and important to human health. A better understanding of QS could lead better control/manipulation of bacteria, thus making them more helpful to people.
Collapse
Affiliation(s)
- Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu Province, China
| | | |
Collapse
|
14
|
Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 2011; 12:438. [PMID: 21884571 PMCID: PMC3189399 DOI: 10.1186/1471-2164-12-438] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/31/2011] [Indexed: 12/31/2022] Open
Abstract
Background Our previously published reports have described an effective biocontrol agent named Pseudomonas sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of P. aeruginosa, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures. Results The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved P. aeruginosa core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a capB gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other P. aeruginosa strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of P. aeruginosa strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C. Conclusions The P. aeruginosa strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.
Collapse
Affiliation(s)
- Da-Qiang Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Regulatory feedback loop of two phz gene clusters through 5'-untranslated regions in Pseudomonas sp. M18. PLoS One 2011; 6:e19413. [PMID: 21559370 PMCID: PMC3084852 DOI: 10.1371/journal.pone.0019413] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 04/05/2011] [Indexed: 12/31/2022] Open
Abstract
Background Phenazines are important compounds produced by pseudomonads and other bacteria. Two phz gene clusters called phzA1-G1 and phzA2-G2, respectively, were found in the genome of Pseudomonas sp. M18, an effective biocontrol agent, which is highly homologous to the opportunistic human pathogen P. aeruginosa PAO1, however little is known about the correlation between the expressions of two phz gene clusters. Methodology/Principal Findings Two chromosomal insertion inactivated mutants for the two gene clusters were constructed respectively and the correlation between the expressions of two phz gene clusters was investigated in strain M18. Phenazine-1-carboxylic acid (PCA) molecules produced from phzA2-G2 gene cluster are able to auto-regulate expression itself and activate the expression of phzA1-G1 gene cluster in a circulated amplification pattern. However, the post-transcriptional expression of phzA1-G1 transcript was blocked principally through 5′-untranslated region (UTR). In contrast, the phzA2-G2 gene cluster was transcribed to a lesser extent and translated efficiently and was negatively regulated by the GacA signal transduction pathway, mainly at a post-transcriptional level. Conclusions/Significance A single molecule, PCA, produced in different quantities by the two phz gene clusters acted as the functional mediator and the two phz gene clusters developed a specific regulatory mechanism which acts through 5′-UTR to transfer a single, but complex bacterial signaling event in Pseudomonas sp. strain M18.
Collapse
|
16
|
Utilizing RNA/DNA hybridization to directly quantify mRNA levels in microbial fermentation samples. J Microbiol Methods 2009; 79:205-10. [DOI: 10.1016/j.mimet.2009.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 11/22/2022]
|
17
|
Lu J, Huang X, Zhang M, Li S, Jiang H, Xu Y. The Distinct Quorum Sensing Hierarchy of las and rhl in Pseudomonas sp. M18. Curr Microbiol 2009; 59:621-7. [DOI: 10.1007/s00284-009-9483-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/21/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
|
18
|
Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol 2009; 75:6568-80. [PMID: 19717631 DOI: 10.1128/aem.01148-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain M18, an effective biological control agent isolated from the melon rhizosphere, has a genetic background similar to that of the opportunistic human pathogen Pseudomonas aeruginosa PAO1. However, the predominant phenazine produced by strain M18 is phenazine-1-carboxylic acid (PCA) rather than pyocyanin (PYO); the quantitative ratio of PCA to PYO is 105 to 1 at 28 degrees C in strain M18, while the ratio is 1 to 2 at 37 degrees C in strain PAO1. We first provided evidence that the differential production of the two phenazines in strains M18 and PAO1 is related to the temperature-dependent and strain-specific expression patterns of phzM, a gene involved in the conversion of PCA to PYO. Transcriptional levels of phzM were measured by quantitative real-time PCR, and the activities of both transcriptional and translational phzM'-'lacZ fusions were determined in strains M18 and PAO1, respectively. Using lasI::Gm and ptsP::Gm inactivation M18 mutants, we further show that expression of the phzM gene is positively regulated by the quorum-sensing protein LasI and negatively regulated by the phosphoenolpyruvate phosphotransferase protein PtsP. Surprisingly, the lasI and ptsP regulatory genes were also expressed in a temperature-dependent and strain-specific manner. The differential production of the phenazines PCA and PYO by strains M18 and PAO1 may be a consequence of selective pressure imposed on P. aeruginosa PAO1 and its relative M18 in the two different niches over a long evolutionary process.
Collapse
|
19
|
Lu J, Huang X, Li K, Li S, Zhang M, Wang Y, Jiang H, Xu Y. LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18. J Biotechnol 2009; 143:1-9. [PMID: 19539673 DOI: 10.1016/j.jbiotec.2009.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
The biocontrol rhizobacterium Pseudomonas sp. M18 can produce two different types of antibiotics, pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), which are inhibitory to a number of soil-borne plant pathogens. The pqsR gene, identified in Pseudomonas sp. M18, encodes a LysR-type transcriptional regulator in the Pseudomonas quinolone signal (PQS)-mediated quorum-sensing (QS) system. Here we investigated the regulatory mechanisms of PqsR in PCA and Plt biosyntheses. The results clearly suggest that PqsR functions as a double-duty transcriptional regulator, either as a repressor of Plt biosynthesis or as an activator of PCA biosynthesis. The chromosomal inactivation of pqsR resulted in significant enhancement of Plt production and its genes expression, while almost full inhibition of PCA production and its genes expression. This was further confirmed by multiple pqsR gene dosage experiments, lacZ fusion reporter analysis, and semi-quantitative RT-PCR. Furthermore, PqsR had little effect on expression of the plt pathway-specific activator PltR, indicating that PqsR does not exert its negative regulation on Plt biosynthesis through the mediator PltR. In addition, the pqsR mutation did not have any obvious influence on production of RhlI directing N-acylhomoserine lactones (C4 and C8-HSLs). This result shows PqsR functions as a crucial transcriptional regulator independently of the rhl QS system.
Collapse
Affiliation(s)
- Jishun Lu
- Key Laboratory of Microbial Metabolism, Ministry of Education, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schmidt S, Blom JF, Pernthaler J, Berg G, Baldwin A, Mahenthiralingam E, Eberl L. Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of theBurkholderia cepaciacomplex. Environ Microbiol 2009; 11:1422-37. [DOI: 10.1111/j.1462-2920.2009.01870.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
An easily-automated assay for the physiological state quantification of Pseudomonas sp. M18. Anal Chim Acta 2008; 630:40-6. [PMID: 19068324 DOI: 10.1016/j.aca.2008.09.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 11/21/2022]
Abstract
In order to foreknow poorly performing cultures before wasting energy to scale them to large cultures, industrial microbial fermentation can greatly benefit from knowledge of the physiological state of cells. The method currently proposed is an easily automated physiological state determination method. We have designed one universal rRNA-specific probe for bacteria and developed novel signal probe hybridization (SPH) assay featuring no RNA extraction and no PCR amplification steps necessary to quantify the physiological state of microbial cells. The microbial cell was lysed with sonication and SDS. Signal probes were applied to hybridize and protect the rRNA target. S1 nuclease was then applied to remove the excessive signal probes, the single-stranded RNA and the mismatch RNA/DNA hybrids. The remaining signal probe was captured with a corresponding capture probe immobilized on a microplate and quantified with a horseradish peroxidase-conjugated color reaction. We then systemically optimized our assay. Results showed that the cell limit of detection (LOD) and the cell limit of quantification (LOQ) were 2.64 x 10(4) cells and 9.86 x 10(4) cells per well of microplate, respectively. The limit of detection (LOD) and the limit of quantification (LOQ) of signal probe were 49.0 fM and 344.0 fM respectively. Using this technique, we quantified the 16S rRNA levels during the fermentation process of Pseudomonas sp. M18. Our results indicate that the 16S rRNA levels can directly inform us about the physiological state of microbial cells. This technique has great potential for application to the microbial fermentation industry.
Collapse
|
22
|
Huang X, Zhang X, Xu Y. PltR expression modulated by the global regulators GacA, RsmA, LasI and RhlI in Pseudomonas sp. M18. Res Microbiol 2008; 159:128-36. [DOI: 10.1016/j.resmic.2007.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 11/29/2022]
|
23
|
Las-like quorum-sensing system negatively regulates both pyoluteorin and phenazine-1-carboxylic acid production in Pseudomonas sp. M18. ACTA ACUST UNITED AC 2008; 51:174-81. [DOI: 10.1007/s11427-008-0026-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 10/16/2007] [Indexed: 11/26/2022]
|
24
|
Wang Y, Huang X, Hu H, Zhang X, Xu Y. QscR acts as an intermediate in gacA-dependent regulation of PCA biosynthesis in Pseudomonas sp. M-18. Curr Microbiol 2008; 56:339-45. [PMID: 18176822 DOI: 10.1007/s00284-007-9087-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 11/01/2007] [Indexed: 11/28/2022]
Abstract
The qscR gene, encoding a quorum sensing regulator, was cloned and the qscR-null mutant strain M-18Q derived from Pseudomonas sp. M-18 was constructed to study the effect of the qscR gene on biosynthesis of phenazine-1-carboxylic acid (PCA) and pyoluteorin (Plt) in strain M-18. Results showed that the PCA produced in the mutant increased four- to six-fold, while the synthesis of Plt was barely influenced in comparison with the wild type. The results were confirmed by complementation with the qscR gene in trans in strain M-18Q. The negative effect of the qscR gene on PCA production was further confirmed by analysis of beta-galactosidase activities from the translational phzA'-lacZ' fusion. Furthermore, by introducing a qscR-lacZ transcriptional fusion vector to strains M-18, M-18Q, and M-18G, a gacA inactivation mutant in strain M-18, respectively, it was found that beta-galactosidase activity in both strain M-18G and strain M-18Q was decreased to half that in the wild type. This suggested that QscR might be involved in autoinducing its own gene expression and act as an intermediate in GacA-dependent gene regulation as well. The result was further demonstrated by the overexpression of the gacA gene in strain M-18Q.
Collapse
Affiliation(s)
- Yi Wang
- Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
|