1
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Abstract
Progress against tuberculosis (TB) requires faster-acting drugs. Mycobacterium tuberculosis (Mtb) is the leading cause of death by an infectious disease and its treatment is challenging and lengthy. Mtb is remarkably successful, in part, due to its ability to become dormant in response to host immune pressures. The DosRST two-component regulatory system is induced by hypoxia, nitric oxide and carbon monoxide and remodels Mtb physiology to promote nonreplicating persistence (NRP). NRP bacteria are thought to play a role in the long course of TB treatment. Therefore, inhibitors of DosRST-dependent adaptation may function to kill this reservoir of persisters and potentially shorten therapy. This review examines the function of DosRST, newly discovered compounds that inhibit DosRST signaling and considers future development of DosRST inhibitors as adjunct therapies.
Collapse
|
3
|
Maarsingh JD, Yang S, Park JG, Haydel SE. Comparative transcriptomics reveals PrrAB-mediated control of metabolic, respiration, energy-generating, and dormancy pathways in Mycobacterium smegmatis. BMC Genomics 2019; 20:942. [PMID: 31810444 PMCID: PMC6898941 DOI: 10.1186/s12864-019-6105-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/13/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mycobacterium smegmatis is a saprophytic bacterium frequently used as a genetic surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. tuberculosis. RESULTS RNA-seq differential expression analysis of M. smegmatis wild-type (WT), ΔprrAB mutant, and complementation strains revealed that during in vitro exponential growth, PrrAB regulates 167 genes (q < 0.05), 57% of which are induced in the WT background. Gene ontology and cluster of orthologous groups analyses showed that PrrAB regulates genes participating in ion homeostasis, redox balance, metabolism, and energy production. PrrAB induced transcription of dosR (devR), a response regulator gene that promotes latent infection in M. tuberculosis and 21 of the 25 M. smegmatis DosRS regulon homologues. Compared to the WT and complementation strains, the ΔprrAB mutant exhibited an exaggerated delayed growth phenotype upon exposure to potassium cyanide and respiratory inhibition. Gene expression profiling correlated with these growth deficiency results, revealing that PrrAB induces transcription of the high-affinity cytochrome bd oxidase genes under both aerobic and hypoxic conditions. ATP synthesis was ~ 64% lower in the ΔprrAB mutant relative to the WT strain, further demonstrating that PrrAB regulates energy production. CONCLUSIONS The M. smegmatis PrrAB two-component system regulates respiratory and oxidative phosphorylation pathways, potentially to provide tolerance against the dynamic environmental conditions experienced in its natural ecological niche. PrrAB positively regulates ATP levels during exponential growth, presumably through transcriptional activation of both terminal respiratory branches (cytochrome c bc1-aa3 and cytochrome bd oxidases), despite transcriptional repression of ATP synthase genes. Additionally, PrrAB positively regulates expression of the dormancy-associated dosR response regulator genes in an oxygen-independent manner, which may serve to fine-tune sensory perception of environmental stimuli associated with metabolic repression.
Collapse
Affiliation(s)
- Jason D Maarsingh
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Shanshan Yang
- Bioinformatics Core, Knowledge Enterprise Development, Arizona State University, Tempe, AZ, USA
| | - Jin G Park
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Shelley E Haydel
- School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,The Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Liu Z, Gao Y, Yang H, Bao H, Qin L, Zhu C, Chen Y, Hu Z. Impact of Hypoxia on Drug Resistance and Growth Characteristics of Mycobacterium tuberculosis Clinical Isolates. PLoS One 2016; 11:e0166052. [PMID: 27835653 PMCID: PMC5106006 DOI: 10.1371/journal.pone.0166052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is a specific aerobic bacterium, but can survive under hypoxic conditions, such as those in lung cheese necrosis, granulomas, or macrophages. It is not clear whether the drug sensitivity and growth characteristics of MTB under hypoxic conditions are different from those under aerobic conditions. In this study, we examined the drug resistance and growth characteristics of MTB clinical isolates by a large sample of in vitro drug susceptibility tests, using an automatic growth instrument. Under hypoxic conditions, variance in drug resistance was observed in nearly one-third of the MTB strains and was defined as MTB strains with changed drug sensitivity (MTB-CDS). Among these strains, resistance in a considerable proportion of clinical strains was significantly increased, and some strains emerged as multi-drug resistant. Growth test results revealed a high growth rate and large survival number in macrophages under hypoxia in MTB-CDS. According to the results of fluorescence quantitative PCR, the expression of some genes, including RegX3 (involving RIF resistance), Rv0194 (efflux pump gene), four genes related to transcription regulation (KstR, DosR, Rv0081 and WhiB3) and gene related to translation regulation (DATIN), were upregulated significantly under hypoxic conditions compared to that under aerobic conditions (p < 0.05). Thus, we concluded that some MTB clinical isolates can survive under hypoxic conditions and their resistance could change. As for poor clinical outcomes in patients, based on routine drug susceptibility testing, drug susceptibility tests for tuberculosis under hypoxic conditions should also be recommended. However, the detailed mechanisms of the effect of hypoxia on drug sensitivity and growth characteristics of MTB clinical isolates still requires further study.
Collapse
Affiliation(s)
- Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yulu Gao
- Department of Laboratory Medicine, Kunshan Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Kunshan, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Bao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changtai Zhu
- Department of Transfusion, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yawen Chen
- Department of Nursing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhongyi Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c. Infect Immun 2012; 80:3018-33. [PMID: 22689819 DOI: 10.1128/iai.00520-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis remains a significant global pathogen, causing extensive morbidity and mortality worldwide. This bacterium persists within granulomatous lesions in a poorly characterized, nonreplicating state. The two-component signal transduction systems MprAB and DosRS-DosT (DevRS-Rv2027c) are responsive to conditions likely to be present within granulomatous lesions and mediate aspects of M. tuberculosis persistence in vitro and in vivo. Here, we describe a previously uncharacterized locus, Rv1813c-Rv1812c, that is coregulated by both MprA and DosR. We demonstrate that MprA and DosR bind to adjacent and overlapping sequences within the promoter region of Rv1813c and direct transcription from an initiation site located several hundred base pairs upstream of the Rv1813 translation start site. We further show that Rv1813c and Rv1812c are cotranscribed, and that the genomic organization of this operon is specific to M. tuberculosis and Mycobacterium bovis. Although Rv1813c is not required for survival of M. tuberculosis in vitro, including under conditions in which MprAB and DosRST signaling are activated, an M. tuberculosis ΔRv1813c mutant is attenuated in the low-dose aerosol model of murine tuberculosis, where it exhibits a lower bacterial burden, delayed time to death, and decreased ability to stimulate proinflammatory cytokines interleukin-1β (IL-1β) and IL-12. Interestingly, overcomplementation of these phenotypes is observed in the M. tuberculosis ΔRv1813c mutant expressing both Rv1813c and Rv1812c, but not Rv1813c alone, in trans. Therefore, Rv1813c and Rv1812c may represent general stress-responsive elements that are necessary for aspects of M. tuberculosis virulence and the host immune response to infection.
Collapse
|
6
|
Bretl DJ, Demetriadou C, Zahrt TC. Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol Mol Biol Rev 2011; 75:566-82. [PMID: 22126994 PMCID: PMC3232741 DOI: 10.1128/mmbr.05004-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis.
Collapse
Affiliation(s)
| | | | - Thomas C. Zahrt
- Center for Infectious Disease Research and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
7
|
Mashta A, Mishra P, Philipose S, Tamilzhalagan S, Mahmud H, Bhaskar S, Upadhyay P. Diagnosis of tuberculosis: the experience at a specialized diagnostic laboratory. J Negat Results Biomed 2011; 10:16. [PMID: 22093248 PMCID: PMC3228662 DOI: 10.1186/1477-5751-10-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/18/2011] [Indexed: 11/10/2022] Open
Abstract
This work describes the experience at a tuberculosis clinical laboratory where relatively new TB diagnosis technologies; nucleic acid detection of two target strands, IS6110 and devR, by PCR and microscopic observation drug susceptibility (MODS) were used. The LJ culture was the gold standard. This evaluation was done from August 2007 to July 2009 on 463 sputum samples of tuberculosis suspects at a specialized tuberculosis clinic in Delhi, India.None of the tests we evaluated can accurately detect the presence or absence of Mycobacterium tuberculosis in all the samples and smear microscopy was found to be the most reliable assay in this study.The PCR assay could detect down to 2 pg of H37Rv DNA. Sensitivity, specificity was 0.40, 0.60 and 0.19, 0.81 for smear positive (n = 228) and negative samples (n = 235) respectively. In the MODS assay, sensitivity, specificity of 0.48, 0.52 and 0.38, 0.76 was observed for smear positive and negative samples. Sputum smear microscopy had sensitivity of 0.77 and specificity of 0.70.
Collapse
Affiliation(s)
- Anita Mashta
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Siddiqui KF, Amir M, Agrewala JN. Understanding the biology of 16 kDa antigen ofMycobacterium tuberculosis: Scope in diagnosis, vaccine design and therapy. Crit Rev Microbiol 2011; 37:349-57. [DOI: 10.3109/1040841x.2011.606425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Chakraborti PK, Matange N, Nandicoori VK, Singh Y, Tyagi JS, Visweswariah SS. Signalling mechanisms in Mycobacteria. Tuberculosis (Edinb) 2011; 91:432-40. [PMID: 21570916 DOI: 10.1016/j.tube.2011.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/28/2011] [Accepted: 04/10/2011] [Indexed: 11/18/2022]
Abstract
The importance of inter- and intracellular signal transduction in all forms of life cannot be underestimated. A large number of genes dedicated to cellular signalling are found in almost all sequenced genomes, and Mycobacteria are no exception. What appears to be interesting in Mycobacteria is that well characterized signalling mechanisms used by bacteria, such as the histidine-aspartate phosphorelay seen in two-component systems, are found alongside signalling components that closely mimic those seen in higher eukaryotes. This review will describe the important contribution made by researchers in India towards the identification and characterization of proteins involved in two-component signalling, protein phosphorylation and cyclic nucleotide metabolism.
Collapse
|
10
|
Mai D, Jones J, Rodgers JW, Hartman JL, Kutsch O, Steyn AJC. A screen to identify small molecule inhibitors of protein-protein interactions in mycobacteria. Assay Drug Dev Technol 2011; 9:299-310. [PMID: 21281130 DOI: 10.1089/adt.2010.0326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite extensive efforts in tuberculosis (TB) drug research, very few novel inhibitors have been discovered. This issue emphasizes the need for innovative methods to discover new anti-TB drugs. In this study, we established a new high-throughput screen (HTS) platform technology that differs from traditional TB drug screens because it utilizes Mycobacterial-Protein Fragment Complementation (M-PFC) to identify small molecule inhibitors of protein-protein interactions in mycobacteria. Several examples of protein-protein interactions were tested with M-PFC to highlight the diversity of selectable drug targets that could be used for screening. These included interactions of essential regulators (IdeR dimerization), enzymatic complexes (LeuCD), secretory antigens (Cfp10-Esat6), and signaling pathways (DevR dimerization). The feasibility of M-PFC in a HTS platform setting was tested by performing a proof-of-concept quantitative HTS of 3,600 small molecule compounds on DevR-DevR interaction, which was chosen because of its strong implications in Mycobacterium tuberculosis persistence and the need for effective drugs against latent TB. The calculated Z'-factor was consistently ≥0.8, indicating a robust and reproducible assay. Completion of the proof-of-concept screen allowed for the identification of advantages and disadvantages in the current assay design, where improvements made will further pioneer M-PFC-based applications in a large-scale HTS format.
Collapse
Affiliation(s)
- Deborah Mai
- The Department of Microbiology, University of Alabama at Birmingham, USA
| | | | | | | | | | | |
Collapse
|
11
|
Detrimental effects of hypoxia-specific expression of uracil DNA glycosylase (Ung) in Mycobacterium smegmatis. J Bacteriol 2010; 192:6439-46. [PMID: 20971917 DOI: 10.1128/jb.00679-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is known to reside latently in a significant fraction of the human population. Although the bacterium possesses an aerobic mode of metabolism, it adapts to persistence under hypoxic conditions such as those encountered in granulomas. While in mammalian systems hypoxia is a recognized DNA-damaging stress, aspects of DNA repair in mycobacteria under such conditions have not been studied. We subjected Mycobacterium smegmatis, a model organism, to the Wayne's protocol of hypoxia. Analysis of the mRNA of a key DNA repair enzyme, uracil DNA glycosylase (Ung), by real-time reverse transcriptase PCR (RT-PCR) revealed its downregulation during hypoxia. However, within an hour of recovery of the culture under normal oxygen levels, the Ung mRNA was restored. Analysis of Ung by immunoblotting and enzyme assays supported the RNA analysis results. To understand its physiological significance, we misexpressed Ung in M. smegmatis by using a hypoxia-responsive promoter of narK2 from M. tuberculosis. Although the misexpression of Ung during hypoxia decreased C-to-T mutations, it compromised bacterial survival upon recovery at normal oxygen levels. RT-PCR analysis of other base excision repair gene transcripts (UdgB and Fpg) suggested that these DNA repair functions also share with Ung the phenomenon of downregulation during hypoxia and recovery with return to normal oxygen conditions. We discuss the potential utility of this phenomenon in developing attenuated strains of mycobacteria.
Collapse
|
12
|
Aravindhan V, Christy AJ, Roy S, Ajitkumar P, Narayanan PR, Narayanan S. Mycobacterium tuberculosis groEpromoter controls the expression of the bicistronicgroESL1operon and shows differential regulation under stress conditions. FEMS Microbiol Lett 2009; 292:42-9. [DOI: 10.1111/j.1574-6968.2008.01465.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Rao SP, Camacho L, Huat Tan B, Boon C, Russel DG, Dick T, Pethe K. Recombinase-based reporter system and antisense technology to study gene expression and essentiality in hypoxic nonreplicating mycobacteria. FEMS Microbiol Lett 2008; 284:68-75. [DOI: 10.1111/j.1574-6968.2008.01193.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Bagchi G, Chauhan S, Sharma D, Tyagi JS. Transcription and autoregulation of the Rv3134c-devR-devS operon of Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2006; 151:4045-4053. [PMID: 16339949 DOI: 10.1099/mic.0.28333-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DevR is a transcriptional regulator that mediates the genetic response of Mycobacterium tuberculosis to oxygen limitation and nitric oxide exposure. devR is co-transcribed along with devS, which encodes its cognate sensor kinase, and an upstream gene, Rv3134c. The transcriptional activity of this operon was characterized by primer extension, transcriptional fusion and electrophoretic mobility shift assays (EMSAs) under aerobic conditions. Transcription start points (Tsps) were detected upstream of both Rv3134c and devR, and the major transcript was derived from upstream of Rv3134c. Sequences with similarity to sigma factor consensus elements and to DevR-binding motifs were detected in the vicinity of the Tsps by in silico analysis. EMSAs with promoter regions and DevR protein showed that DevR binds to its own promoters in a sequence-specific manner with differing affinities. Consistent with the primer extension and EMSA data, Rv3134c promoters, and not devR promoters, were determined to be the principal promoters of this operon using reporter assays performed in Mycobacterium smegmatis and Escherichia coli. Furthermore, DevR modulated the activity of both devR and Rv3134c promoters. From these findings it is inferred that the Rv3134c-devR-devS operon is transcribed from multiple promoters and is autoregulated.
Collapse
Affiliation(s)
- Gargi Bagchi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Santosh Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Deepak Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
15
|
Saini DK, Malhotra V, Dey D, Pant N, Das TK, Tyagi JS. DevR–DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology (Reading) 2004; 150:865-875. [PMID: 15073296 DOI: 10.1099/mic.0.26218-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems play a central role in the adaptation of pathogenic bacteria to the environment prevailing within host tissues. The genes encoding the response regulator DevR (Rv3133c/DosR) and the cytoplasmic portion (DevS201) of the histidine kinase DevS (Rv3132c/DosS), a putative two-component system ofMycobacterium tuberculosis, were cloned and the protein products were overexpressed, purified and refolded as N-terminally His6-tagged proteins fromEscherichia coli. DevS201underwent autophosphorylation and participated in rapid phosphotransfer to DevR in a Mg2+-dependent manner. Chemical stability analysis and site-directed mutagenesis implicated the highly conserved residues His395and Asp54as the sites of phosphorylation in DevS and DevR, respectively. Mutations in Asp8and Asp9residues, postulated to form the acidic Mg2+-binding pocket, and the invariant Lys104of DevR, abrogated phosphoryl transfer from DevS201to DevR. DevR–DevS was thus established as a typical two-component regulatory system based on His-to-Asp phosphoryl transfer. Expression of theRv3134c–devR–devSoperon was induced at the RNA level in hypoxic cultures ofM. tuberculosisH37Rv and was associated with an increase in the level of DevR protein. However, in adevRmutant strain expressing the N-terminal domain of DevR, induction was observed at the level of RNA expression but not at that of protein. DevS was translated independently of DevR and induction ofdevStranscripts was not associated with an increase in protein level in either wild-type or mutant strains, reflecting differential regulation of this locus during hypoxia.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Malhotra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepanwita Dey
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neha Pant
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Taposh K Das
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|