1
|
Mirieri CK, Abd-Alla AM, Ros VI, van Oers MM. Evaluating the Effect of Irradiation on the Densities of Two RNA Viruses in Glossina morsitans morsitans. INSECTS 2023; 14:397. [PMID: 37103212 PMCID: PMC10140815 DOI: 10.3390/insects14040397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Tsetse flies are cyclic vectors of Trypanosoma parasites, which cause debilitating diseases in humans and animals. To decrease the disease burden, the number of flies is reduced using the sterile insect technique (SIT), where male flies are sterilized through irradiation and released into the field. This procedure requires the mass rearing of high-quality male flies able to compete with wild male flies for mating with wild females. Recently, two RNA viruses, an iflavirus and a negevirus, were discovered in mass-reared Glossina morsitans morsitans and named GmmIV and GmmNegeV, respectively. The aim of this study was to evaluate whether the densities of these viruses in tsetse flies are affected by the irradiation treatment. Therefore, we exposed tsetse pupae to various doses (0-150 Gy) of ionizing radiation, either in air (normoxia) or without air (hypoxia), for which oxygen was displaced by nitrogen. Pupae and/or emerging flies were collected immediately afterwards, and at three days post irradiation, virus densities were quantified through RT-qPCR. Generally, the results show that irradiation exposure had no significant impact on the densities of GmmIV and GmmNegeV, suggesting that the viruses are relatively radiation-resistant, even at higher doses. However, sampling over a longer period after irradiation would be needed to verify that densities of these insect viruses are not changed by the sterilisation treatment.
Collapse
Affiliation(s)
- Caroline K. Mirieri
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Vera I.D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Impact of Hypoxia over Human Viral Infections and Key Cellular Processes. Int J Mol Sci 2021; 22:ijms22157954. [PMID: 34360716 PMCID: PMC8347150 DOI: 10.3390/ijms22157954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Oxygen is essential for aerobic cells, and thus its sensing is critical for the optimal maintenance of vital cellular and tissue processes such as metabolism, pH homeostasis, and angiogenesis, among others. Hypoxia-inducible factors (HIFs) play central roles in oxygen sensing. Under hypoxic conditions, the α subunit of HIFs is stabilized and forms active heterodimers that translocate to the nucleus and regulate the expression of important sets of genes. This process, in turn, will induce several physiological changes intended to adapt to these new and adverse conditions. Over the last decades, numerous studies have reported a close relationship between viral infections and hypoxia. Interestingly, this relation is somewhat bidirectional, with some viruses inducing a hypoxic response to promote their replication, while others inhibit hypoxic cellular responses. Here, we review and discuss the cellular responses to hypoxia and discuss how HIFs can promote a wide range of physiological and transcriptional changes in the cell that modulate numerous human viral infections.
Collapse
|
3
|
Doğan E, Tapan U, Oral Tapan Ö, Alaşan F, Olcay SS, Çınar Olcay T. A case of B.1.1.7 SARS-CoV-2 UK strain with an atypical radiological presentation. Monaldi Arch Chest Dis 2021; 91. [PMID: 34121378 DOI: 10.4081/monaldi.2021.1840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022] Open
Abstract
The new UK strain was first described in December 2020. It was seen for the first time in Turkey in February 2021. It is not yet known whether the new strain has different CT patterns compared to the classical type. We present a 68-years-old male patient with an atypical CT presentation in which GGOs are gathered around the areas of paraseptal emphysema accompanied by CT and clinical findings. This involvement is an unexpected pattern because of the atypical distribution of the GGO.
Collapse
Affiliation(s)
- Emrah Doğan
- Department of Radiology, Faculty of Medicine, Mugla Sitki Koçman University, Mugla.
| | | | | | - Fatih Alaşan
- Department of Radiology, Faculty of Medicine, Mugla Sitki Koçman University, Mugla.
| | - Sabri Serhan Olcay
- Department of Radiology, Faculty of Medicine, Mugla Sitki Koçman University, Mugla.
| | - Tuğba Çınar Olcay
- Department of Radiology, Faculty of Medicine, Mugla Sitki Koçman University, Mugla.
| |
Collapse
|
4
|
Schouest B, Peterson TA, Szeltner DM, Scheef EA, Baddoo M, Ungerleider N, Flemington EK, MacLean AG, Maness NJ. Transcriptional signatures of Zika virus infection in astrocytes. J Neurovirol 2021; 27:116-125. [PMID: 33405202 PMCID: PMC7921019 DOI: 10.1007/s13365-020-00931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023]
Abstract
Astrocytes are an early and important target of Zika virus (ZIKV) infection in the developing brain, but the impacts of infection on astrocyte function remain controversial. Given that nonhuman primate (NHP) models of ZIKV infection replicate aspects of neurologic disease seen in human infections, we cultured primary astrocytes from the brain tissue of infant rhesus macaques and then infected the cells with Asian or African lineage ZIKV to identify transcriptional patterns associated with infection in these cells. The African lineage virus appeared to have greater infectivity and promote stronger antiviral signaling, but infection by either strain ultimately produced typical virus response patterns. Both viruses induced hypoxic stress, but the Asian lineage strain additionally had an effect on metabolic and lipid biosynthesis pathways. Together, these findings describe an NHP astrocyte model that may be used to assess transcriptional signatures following ZIKV infection.
Collapse
Affiliation(s)
- Blake Schouest
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tiffany A Peterson
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Dawn M Szeltner
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Elizabeth A Scheef
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
5
|
Reyes A, Corrales N, Gálvez NMS, Bueno SM, Kalergis AM, González PA. Contribution of hypoxia inducible factor-1 during viral infections. Virulence 2020; 11:1482-1500. [PMID: 33135539 PMCID: PMC7605355 DOI: 10.1080/21505594.2020.1836904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays critical roles during the cellular response to hypoxia. Under normoxic conditions, its function is tightly regulated by the degradation of its alpha subunit (HIF-1α), which impairs the formation of an active heterodimer in the nucleus that otherwise regulates the expression of numerous genes. Importantly, HIF-1 participates in both cancer and infectious diseases unveiling new therapeutic targets for those ailments. Here, we discuss aspects related to the activation of HIF-1, the effects of this transcription factor over immune system components, as well as the involvement of HIF-1 activity in response to viral infections in humans. Although HIF-1 is currently being assessed in numerous clinical settings as a potential therapy for different diseases, up to date, there are no clinical studies evaluating the pharmacological modulation of this transcription factor as a possible new antiviral treatment. However, based on the available evidence, clinical trials targeting this molecule are likely to occur soon. In this review we discuss the role of HIF-1 in viral immunity, the modulation of HIF-1 by different types of viruses, as well as the effects of HIF-1 over their life cycle and the potential use of HIF-1 as a new target for the treatment of viral infections.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento De Endocrinología, Facultad De Medicina, Escuela De Medicina, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Tinarwo P, Zewotir T, North D. Trends and Adaptive Optimal Set Points of CD4 + Count Clinical Covariates at Each Phase of the HIV Disease Progression. AIDS Res Treat 2020; 2020:1379676. [PMID: 32190387 PMCID: PMC7068150 DOI: 10.1155/2020/1379676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
In response to invasion by the human immunodeficiency virus (HIV), the self-regulatory immune system attempts to restore the CD4+ count fluctuations. Consequently, many clinical covariates are bound to adapt too, but little is known about their corresponding new optimal set points. It has been reported that there exist few strongest clinical covariates of the CD4+ count. The objective of this study is to harness them for a streamlined application of multidimensional viewing lens (statistical models) to zoom into the behavioural patterns of the adaptive optimal set points. We further postulated that the optimal set points of some of the strongest covariates are possibly controlled by dietary conditions or otherwise to enhance the CD4+ count. This study investigated post-HIV infection (acute to therapy phases) records of 237 patients involving repeated measurements of 17 CD4+ count clinical covariates that were found to be the strongest. The overall trends showed either downwards, upwards, or irregular behaviour. Phase-specific trends were mostly different and unimaginable, with LDH and red blood cells producing the most complex CD4+ count behaviour. The approximate optimal set points for dietary-related covariates were total protein 60-100 g/L (acute phase), <85 g/L (early phase), <75 g/L (established phase), and >85 g/L (ART phase), whilst albumin approx. 30-50 g/L (acute), >45 g/L (early and established), and <37 g/L (ART). Sodium was desirable at approx. <45 mEq/L (acute and early), <132 mEq/L (established), and >134 mEq/L (ART). Overall, desirable approximates were albumin >42 g/L, total protein <75 g/L, and sodium <137 mEq/L. We conclude that the optimal set points of the strongest CD4+ count clinical covariates tended to drift and adapt to either new ranges or overlapped with the known reference ranges to positively influence the CD4+ cell counts. Recommendation for phase-specific CD4+ cell count influence in adaptation to HIV invasion includes monitoring of the strongest covariates related to dietary conditions (sodium, albumin, and total protein), tissue oxygenation (red blood cells and its haematocrit), and hormonal control (LDH and ALP).
Collapse
Affiliation(s)
- Partson Tinarwo
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Temesgen Zewotir
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Delia North
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
7
|
He J, Yu Y, Qin XW, Zeng RY, Wang YY, Li ZM, Mi S, Weng SP, Guo CJ, He JG. Identification and functional analysis of the Mandarin fish (Siniperca chuatsi) hypoxia-inducible factor-1α involved in the immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 92:141-150. [PMID: 31176007 DOI: 10.1016/j.fsi.2019.04.298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a popular cultured freshwater fish species due to its high market value in China. With increasing density of breeding, mandarin fish is often cultured under low environmental oxygen concentrations (hypoxia). In this study, the relative expression levels of hypoxia response element (HRE)-luciferase reporter and the HIF signaling pathway downstream genes (scldha, scvegf, and scglut-1) were significantly increased by hypoxic stress, thereby indicating that mandarin fish has an HIF signaling pathway. The mandarin fish HIF-1α (scHIF-1α) was also characterized. Multiple sequence alignments showed that scHIF-1α presented similar architectures to other known vertebrates. Subcellular localization analysis showed that scHIF-1α was mainly located in the nucleus of the mandarin fish fry-1 (MFF-1) cells. The role of scHIF-1α in the regulation of the HIF signaling pathway was confirmed. Overexpression of scHIF-1α could induce the HIF signaling pathway, whereas knockdown of scHIF-1α inhibited the activity of the HIF-1 signaling pathway. Tissue distribution analysis showed that schif-1α was significantly highly expressed in the blood, heart, and liver, which indicated that the main function of scHIF-1α was closely related to the circulatory system. Furthermore, scHIF-1α expression was significantly induced by poly I:C, poly dG:dC or PMA, thereby indicating that scHIF-1α was involved in the immune response. HIF-1α plays an important role in pathogen infections in mammals, but its role in fish is rarely investigated. Overexpression of scHIF-1α could inhibit MRV and SCRV infections, whereas knockdown of scHIF-1α could promote such infections. Those results suggested that scHIF-1α played an important role in fish virus infection. Our study will help understand the hypoxia associated with the outbreaks of aquatic viral disease.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Xiao-Wei Qin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Ruo-Yun Zeng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Yuan-Yuan Wang
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Zhi-Min Li
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Shu Mi
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Shao-Ping Weng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| | - Jian-Guo He
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
8
|
Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog 2018; 14:e1007062. [PMID: 29746587 PMCID: PMC5963815 DOI: 10.1371/journal.ppat.1007062] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022] Open
Abstract
Kaposi’s sarcoma associated herpesvirus (KSHV) infection stabilizes hypoxia inducible factors (HIFs). The interaction between KSHV encoded factors and HIFs plays a critical role in KSHV latency, reactivation and associated disease phenotypes. Besides modulation of large-scale signaling, KSHV infection also reprograms the metabolic activity of infected cells. However, the mechanism and cellular pathways modulated during these changes are poorly understood. We performed comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α) of KSHV negative or positive background to identify changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. We identified the KSHV-encoded vGPCR, as a novel target of HIF1α and one of the main viral antigens of this metabolic reprogramming. Bioinformatics analysis of vGPCR promoter identified 9 distinct hypoxia responsive elements which were activated by HIF1α in-vitro. Expression of vGPCR alone was sufficient for induction of changes in the metabolic phenotype similar to those induced by KSHV under hypoxic conditions. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia as well as KSHV encoded factors and other synergistically activated genes belonging to cellular pathways. These include those involved in carbohydrate, lipid and amino acids metabolism. Further DNA methyltranferases, DNMT3A and DNMT3B were found to be regulated by either KSHV, hypoxia, or both synergistically at the transcript and protein levels. This study showed distinct and common, as well as synergistic effects of HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in the hypoxia. Hypoxia inducible factors (HIFs) play a critical role in survival and growth of cancerous cells, in addition to modulating cellular metabolism. Kaposi’s sarcoma associated herpesvirus (KSHV) infection stabilizes HIFs. Several factors encoded by KSHV are known to interact with up or downstream targets of HIFs. However, the process by which KSHV infection leads to stabilized HIF1α and modulation of the cellular metabolism is not understood. Comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α), of KSHV negative or positive cells led to identification of changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. KSHV-encoded vGPCR was identified as a novel target of HIF1α regulation and a major viral antigen involved in metabolic reprogramming. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia and KSHV-encoded factors, as well as other synergistically activated genes belonging to cellular metabolic pathways. This study showed unique, common and the synergistic effects of both HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in hypoxia.
Collapse
|
9
|
Hypoxia inducible factor one alpha and human viral pathogens. Curr Res Transl Med 2017; 65:7-9. [PMID: 28340697 DOI: 10.1016/j.retram.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
If the oxygen tension level is 21% in ambient air, it is only between 14% and 1% in vivo. Consequently, viral pathogens are exposed and must adapt to these fluctuating oxygen levels to colonize the host and cause diseases. The problem is that for many years, the virological studies have been performed at 21% oxygen levels and consequently this is a real handicap to have a correct view of the mechanistic aspects of human viral infections. In this brief review, we describe for some selected examples the interactions of human viruses with this relative hypoxia observed in vivo.
Collapse
|
10
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Morinet F, Parent M, Lebbé C, Pillet S, Koken M, Capron C. Oxygen, a regulator of viral gene expression? Curr Res Transl Med 2016; 64:165-166. [PMID: 27765278 DOI: 10.1016/j.retram.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 11/26/2022]
Affiliation(s)
- F Morinet
- Hôpital Saint-Louis, université Paris-7, Paris-Diderot, AP-HP, 75010 Paris, France.
| | - M Parent
- Hôpital Ambroise-Paré, université Versailles-Saint-Quentin-en-Yvelines, AP-HP, 92100 Boulogne-Billancourt, France
| | - C Lebbé
- Hôpital Saint-Louis, université Paris-7, Paris-Diderot, AP-HP, 75010 Paris, France
| | - S Pillet
- Laboratoire des agents infectieux et d'hygiène, hôpital Saint-Étienne, université de Saint-Étienne, 42270 Saint-Étienne, France
| | - M Koken
- LABOCEA R&D-CNRS, 29280 Plouazané, France
| | - C Capron
- Hôpital Ambroise-Paré, université Versailles-Saint-Quentin-en-Yvelines, AP-HP, 92100 Boulogne-Billancourt, France
| |
Collapse
|
12
|
Servant-Delmas A, Morinet F. Update of the human parvovirus B19 biology. Transfus Clin Biol 2016; 23:5-12. [PMID: 26778837 DOI: 10.1016/j.tracli.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 12/13/2022]
Abstract
Since its discovery, the human parvovirus B19 (B19V) has been associated with many clinical situations in addition to the prototype clinical manifestations, i.e. erythema infectiosum and erythroblastopenia crisis. The clinical significance of the viral B19V DNA persistence in sera after acute infection remains largely unknown. Such data may constitute a new clinical entity and is discussed in this manuscript. In 2002, despite the genetic diversity among B19V viruses has been reported to be very low, the description of markedly distinct sequences showed a new organization into three genotypes. The most recent common ancestor for B19V genotypes was estimated at early 1800s. B19V replication is enhanced by hypoxia and this might to explain the high viral load detected by quantitative PCR in the sera of infected patients. The minimum infectious dose necessary to transmit B19V infection by the transfusion of labile blood products remains unclear. At the opposite, the US Food and Drug Administration proposed a limit of 10(4)IU/mL of viral DNA in plasma pools used for the production of plasma derivatives. Recently, a new human parvovirus (PARV4) has been discovered. The consequences on blood transfusion of this blood-borne agent and its pathogenicity are still unknown.
Collapse
Affiliation(s)
- A Servant-Delmas
- Institut national de la transfusion sanguine (INTS), département d'études des agents transmissibles par le sang, Centre national de référence des hépatites virales B et C et du VIH en transfusion, Paris, France
| | - F Morinet
- Pôle biologie-pathologie-physiologie, CHU Saint-Louis, AP-HP, 75010 Paris, France.
| |
Collapse
|