1
|
Wang Y, Shi Z, Wu S, Zeng W, Wang C, Zhao Y, Deng R, Shi R, Xiao Y, Tan L. Differential pathogenicity of heterologous nucleopolyhedroviruses on Spodoptera frugiperda corresponds to modulated expression of immune-response-related genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106232. [PMID: 40015841 DOI: 10.1016/j.pestbp.2024.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 03/01/2025]
Abstract
The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a notorious invasive pest wreaking havoc on various crops globally. Nucleopolyhedroviruses (NPVs) are viral pathogens that specially target lepidopteran pests. However, the homologous virus, Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), has not been commercialized in China. Therefore, understanding the molecular mechanisms underlying heterologous virus-host interactions can inform the design of virus-based insecticides for controlling S. frugiperda. The pathogenicity of the four heterologous NPVs on S. frugiperda varied greatly. Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) exhibited the most potent virulence on larvae and induced the most robust sublethal effects on adults. Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection was characterized by more moderate pathogenicity, and larvae were relatively resistant to Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) and Spodoptera litura multiple nucleopolyhedrovirus (SlMNPV). Larval mortality was virus-concentration and larval stage dependent. Specifically, the corrected mortality rate of third instar larvae after treatment with 1 × 106, 1 × 107, and 1 × 108 OBs/mL MbMNPV was 88.9 %, 100.0 %, and 100.0 %, respectively. All four NPVs negatively affected the longevity and fecundity of S. frugiperda adults. Female adults surviving treatment with MbMNPV and SeMNPV were unable to lay eggs. Transcriptomic analysis revealed that MbMNPV infection might suppress the antiviral immune response, and dysregulate biological pathways of S. frugiperda larvae to facilitate systemic infection. However, the overall transcript profiles remain unchanged after SlMNPV infection. The results reinforce the potential of NPVs, specifically MbMNPV, as potent biocontrol agents for S. frugiperda. These findings yield valuable insights into the complex arms race between S. frugiperda and NPVs that may advance the development of virus-based strategies to mitigate the destructive impact of this pest.
Collapse
Affiliation(s)
- Yusheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zihan Shi
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Shaolong Wu
- Tobacco Company of Hunan Province, Changsha 410004, China
| | - Weiai Zeng
- Changsha Tobacco Company of Hunan Province, Changsha 410128, China
| | - Can Wang
- Tobacco Company of Hunan Province, Changsha 410004, China
| | - Yingying Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Rujing Deng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Chenzhou Tobacco Company of Hunan Province, Chenzhou 423000, China
| | - Rui Shi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou 423000, China.
| | - Lin Tan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Ávila-Hernández E, Molina-Ruiz CS, Gómez-Díaz JS, Williams T. Fecal Transmission of Spodoptera frugiperda Multiple Nucleopolyhedrovirus (SfMNPV; Baculoviridae). Viruses 2025; 17:298. [PMID: 40143229 PMCID: PMC11946685 DOI: 10.3390/v17030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
The production of viable nucleopolyhedrovirus in the feces of infected lepidopteran larvae represents a poorly understood route for virus transmission prior to host death. In the present study, we examined the presence of viable virus in the feces of fourth-instar Spodoptera frugiperda larvae infected with the Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV-NIC). Feces production increased in samples taken at 2 to 6 days post-inoculation but was significantly lower in infected insects compared to controls. Second instars experienced 3.9 to 68.3% of polyhedrosis disease following consumption of feces collected at 2-5 days post-inoculation, which subsequently fell to 29.1% in the 6-day sample. Calibration of the insect bioassay using OB-spiked samples of feces indicated that the concentration of OBs varied between 5.4 × 102 and 4.4 × 105 OBs/100 mg of feces in infected fourth instars. Quantitative PCR analysis of fecal samples indicated the presence of 0 to 7629 copies/mg feces following amplification targeted at the polyhedrin gene. However, no correlation was detected between qPCR estimates of virus concentration and time of sample collection or the quantity of feces collected. The qPCR estimates were positively correlated with the prevalence of lethal infection observed in the insect bioassay, but the correlation was weak and several samples did not amplify. Calibration of the qPCR assay using OB-spiked samples of feces provided estimates that were 5- to 10-fold lower than the insect bioassay, indicating inhibition of the amplification reaction or loss of material during processing. In a greenhouse experiment, 2.5-48.3% of second-instar larvae acquired lethal infection following a 24 h period of feeding on maize plants on which fourth instar larvae had deposited their feces at 3 days and 4 days post-infection, respectively. These findings highlight the potential of OB-contaminated feces as a source of biologically significant quantities of inoculum for virus transmission prior to the death of infected insects and represent an additional contribution to the biological control of lepidopteran pests by these pathogens.
Collapse
Affiliation(s)
- Eduardo Ávila-Hernández
- Instituto de Ecología AC (INECOL), Xalapa 91073, Veracruz, Mexico; (E.Á.-H.); (C.S.M.-R.); (J.S.G.-D.)
- Instituto Tecnológico Superior de Libres, Libres 73780, Puebla, Mexico
| | - Cindy S. Molina-Ruiz
- Instituto de Ecología AC (INECOL), Xalapa 91073, Veracruz, Mexico; (E.Á.-H.); (C.S.M.-R.); (J.S.G.-D.)
| | - Juan S. Gómez-Díaz
- Instituto de Ecología AC (INECOL), Xalapa 91073, Veracruz, Mexico; (E.Á.-H.); (C.S.M.-R.); (J.S.G.-D.)
| | - Trevor Williams
- Instituto de Ecología AC (INECOL), Xalapa 91073, Veracruz, Mexico; (E.Á.-H.); (C.S.M.-R.); (J.S.G.-D.)
| |
Collapse
|
3
|
Hussain AG, Wennmann JT, Goergen G, Bryon A, Ros VI. Viruses of the Fall Armyworm Spodoptera frugiperda: A Review with Prospects for Biological Control. Viruses 2021; 13:v13112220. [PMID: 34835026 PMCID: PMC8625175 DOI: 10.3390/v13112220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a native pest species in the Western hemisphere. Since it was first reported in Africa in 2016, FAW has spread throughout the African continent and is now also present in several countries in Asia as well as Australia. The invasion of FAW in these areas has led to a high yield reduction in crops, leading to huge economic losses. FAW management options in the newly invaded areas are limited and mainly rely on the use of synthetic pesticides. Since there is a risk of resistance development against pesticides in addition to the negative environmental and human health impacts, other effective, sustainable, and cost-efficient control alternatives are desired. Insect pathogenic viruses fulfil these criteria as they are usually effective and highly host-specific with no significant harmful effect on beneficial insects and non-target organisms. In this review, we discuss all viruses known from FAW and their potential to be used for biological control. We specifically focus on baculoviruses and describe the recent advancements in the use of baculoviruses for biological control in the native geographic origin of FAW, and their potential use in the newly invaded areas. Finally, we identify current knowledge gaps and suggest new avenues for productive research on the use of viruses as a biopesticide against FAW.
Collapse
Affiliation(s)
- Ahmed G. Hussain
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany;
| | - Georg Goergen
- International Institute of Tropical Agriculture (IITA), Biological Control Centre for Africa, Cotonou 08 BP 0932, Benin;
| | - Astrid Bryon
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
| | - Vera I.D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
- Correspondence:
| |
Collapse
|
4
|
Sauer AJ, Fritsch E, Undorf-Spahn K, Iwata K, Kleespies RG, Nakai M, Jehle JA. Cross-Resistance of the Codling Moth against Different Isolates of Cydia pomonella Granulovirus Is Caused by Two Different but Genetically Linked Resistance Mechanisms. Viruses 2021; 13:1952. [PMID: 34696382 PMCID: PMC8537427 DOI: 10.3390/v13101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Cydia pomonella granulovirus (CpGV) is a widely used biological control agent of the codling moth. Recently, however, the codling moth has developed different types of field resistance against CpGV isolates. Whereas type I resistance is Z chromosomal inherited and targeted at the viral gene pe38 of isolate CpGV-M, type II resistance is autosomal inherited and targeted against isolates CpGV-M and CpGV-S. Here, we report that mixtures of CpGV-M and CpGV-S fail to break type II resistance and is expressed at all larval stages. Budded virus (BV) injection experiments circumventing initial midgut infection provided evidence that resistance against CpGV-S is midgut-related, though fluorescence dequenching assay using rhodamine-18 labeled occlusion derived viruses (ODV) could not fully elucidate whether the receptor binding or an intracellular midgut factor is involved. From our peroral and intra-hemocoel infection experiments, we conclude that two different (but genetically linked) resistance mechanisms are responsible for type II resistance in the codling moth: resistance against CpGV-M is systemic whereas a second and/or additional resistance mechanism against CpGV-S is located in the midgut of CpR5M larvae.
Collapse
Affiliation(s)
- Annette J. Sauer
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany; (A.J.S.); (E.F.); (K.U.-S.); (R.G.K.)
| | - Eva Fritsch
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany; (A.J.S.); (E.F.); (K.U.-S.); (R.G.K.)
| | - Karin Undorf-Spahn
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany; (A.J.S.); (E.F.); (K.U.-S.); (R.G.K.)
| | - Kento Iwata
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (K.I.); (M.N.)
| | - Regina G. Kleespies
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany; (A.J.S.); (E.F.); (K.U.-S.); (R.G.K.)
| | - Madoka Nakai
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (K.I.); (M.N.)
| | - Johannes A. Jehle
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany; (A.J.S.); (E.F.); (K.U.-S.); (R.G.K.)
| |
Collapse
|
5
|
Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication. Virology 2010; 410:360-7. [PMID: 21190707 DOI: 10.1016/j.virol.2010.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/29/2010] [Accepted: 11/22/2010] [Indexed: 11/21/2022]
Abstract
An up to 10,000-fold resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV) was observed in field populations of codling moth, C. pomonella, in Europe. Following different experimental approaches, a modified peritrophic membrane, a modified midgut receptor, or a change of the innate immune response could be excluded as possible resistance mechanisms. When CpGV replication was traced by quantitative PCR in different tissues of susceptible and resistant insects after oral and intra-hemocoelic infection, no virus replication could be detected in any of the tissues of resistant insects, suggesting a systemic block prior to viral DNA replication. This conclusion was corroborated by fluorescence microscopy using a modified CpGV (bacCpGV(hsp-eGFP)) carrying enhanced green fluorescent gene (eGFP), which showed that infection in resistant insects did not spread. In conclusion, the different lines of evidence indicate that CpGV can enter but not replicate in the cells of resistant codling moth larvae.
Collapse
|