1
|
Wang Y, Zheng X, Yang Y, Zhao X, Li M, Huang J, Zhang Q, Qin X, Yu Y, Pan Q, Cao Z. Effect of the CSFV NS5A protein on key proteins in the MAPK and PI3K-mTOR signaling pathways in porcine macrophages. Front Microbiol 2025; 16:1559840. [PMID: 40078537 PMCID: PMC11897277 DOI: 10.3389/fmicb.2025.1559840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease caused by classical swine fever virus (CSFV). NS5A, a non-structural protein of CSFV, plays an important role in regulating viral replication and protein translation. The purpose of this study was to investigate the effects of the CSFV NS5A protein on key proteins in the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) pathways in porcine macrophages. In this study, an NS5A lentivirus was constructed, and 3D4/21 cells were infected. The cells infected for 48 h were collected for proteomic analysis to screen the differential proteins in the two signaling pathways in the NS5A/control group, and the expression levels of key proteins were verified by Western blotting (Wb). CSFV NS5A lentivirus was successfully constructed and used to infect porcine macrophages, and 23 upregulated proteins and 16 downregulated proteins were found in the MAPK signaling pathway, whereas 5 upregulated and 15 downregulated proteins were found in the PI3K-mTOR signaling pathway. The results revealed that with increasing infection time, the expression of IKBKG, AKT1, CDC37, MAP3K2, and PKN2 decreased, whereas the expression of MAP3K7 and KRAS2 increased. The 3D4/21 cells infected with NS5A lentivirus and classical swine fever virus were inoculated, and the differential protein expression was verified via Wb. With increasing time, the protein expression levels of IKBKG and KRAS2 increased, whereas the protein expression levels of MAP3K7, MAP3K2, AKT1, CDC37, and PKN2 decreased. This study provides data for revealing the mechanism by which CSFV evades host antiviral immune clearance and has important scientific significance and potential application value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qing Pan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res 2018; 253:48-61. [PMID: 29864503 PMCID: PMC7114592 DOI: 10.1016/j.virusres.2018.05.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Viruses are known to exploit cellular signaling pathways. MAPK is a major cell signaling pathway activated by diverse group of viruses. MNK1 regulates both cap-dependent and IRES-mediated mRNA translation. This review discuss the role of MAPK, particularly the role of MNK1 in virus replication.
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome.
Collapse
Affiliation(s)
- Ram Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India; Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Nitin Khandelwal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Riyesh Thachamvally
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Bhupendra Nath Tripathi
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sanjay Barua
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Naveen Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India.
| |
Collapse
|
3
|
Hernández-Bartolomé Á, López-Rodríguez R, García-Buey L, Martín-Vílchez S, Rodríguez-Muñoz Y, Borque MJ, González-Moreno L, Real-Martínez Y, Mendoza-Ridruejo J, Martín-Pérez E, Moreno-Otero R, Sanz-Cameno P. Intrahepatic angiopoietin-2 correlates with chronic hepatitis C progression and is induced in hepatitis C virus replicon systems. Liver Int 2017; 37:1148-1156. [PMID: 28027429 DOI: 10.1111/liv.13352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Chronic hepatitis C (CHC) is a major cause of cirrhosis and hepatocellular carcinoma and angiogenesis is closely related to the pathogenesis and progression of different chronic liver diseases (CLD). Thus, the intrahepatic expression of angiopoietins 1 and 2 (Ang1 and Ang2), as relevant mediators of pathological angiogenesis in several CLD, was investigated. In addition, the differential influence of structural and non-structural genomic regions of HCV on the expression of angiopoietins and the possible signalling involved were studied. METHODS Ang1 and Ang2 expression was evaluated by western blotting and enzyme-linked immunosorbent assay (ELISA) in liver homogenates of CHC patients (n=47) and uninfected subjects (n=8). Their association with disease progression (according to METAVIR classification) was assessed by Spearman's correlation. Statistical differences among the expression of angiopoietins at different CHC stages were calculated by Mann-Whitney U-test. Finally, the in vitro expression of Angiopoietins in HCV replicons (complete or non-structural subgenomic) and the main signalling pathways involved were also examined. RESULTS Ang2 levels were significantly higher in the liver of CHC patients compared to controls and significantly correlated with inflammation and fibrosis. Accordingly, an increased expression of Ang2 was found in all HCV replicons tested. Interestingly, the inhibition of MEK and PI3K signalling pathways exerted differential effects on Ang2 expression concerning to the genomic region of HCV. CONCLUSIONS Hepatitis C virus induces Ang2 expression in hepatocytes through different signalling routes which may lead to the disregulation of vascular homeostasis in the liver. Thus, pharmacologic intervention on Ang2 signalling might constitute an important therapeutic tool.
Collapse
Affiliation(s)
| | | | - Luisa García-Buey
- Liver Unit, Instituto Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain.,CIBERehd, Instituto de Salud Carlos III, ISCIII, Madrid, Spain
| | | | | | - María Jesús Borque
- Molecular Biology Unit, Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain
| | | | | | | | - Elena Martín-Pérez
- Digestive Surgery Service, Instituto Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain
| | - Ricardo Moreno-Otero
- Liver Unit, Instituto Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain.,CIBERehd, Instituto de Salud Carlos III, ISCIII, Madrid, Spain
| | - Paloma Sanz-Cameno
- Liver Unit, Instituto Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain.,CIBERehd, Instituto de Salud Carlos III, ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Tseng CK, Lin CK, Wu YH, Chen YH, Chen WC, Young KC, Lee JC. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep 2016; 6:32176. [PMID: 27553177 PMCID: PMC4995454 DOI: 10.1038/srep32176] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice’s brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection.
Collapse
Affiliation(s)
- Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.,Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kung-Chia Young
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Huynh VTT, Lim YS, Tran SC, Pham TM, Nguyen LN, Hwang SB. Hepatitis C Virus Nonstructural 5A Protein Interacts with Abelson Interactor 1 and Modulates Epidermal Growth Factor-mediated MEK/ERK Signaling Pathway. J Biol Chem 2016; 291:22607-22617. [PMID: 27551040 DOI: 10.1074/jbc.m116.727081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
The propagation of hepatitis C virus (HCV) is highly dependent on host cellular factors. To identify the cellular factors involved in HCV propagation, we have previously performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of ∼9,000 host proteins immobilized in a microarray, ∼90 cellular proteins were identified as HCV NS5A interacting partners. Of these candidates, we selected Abelson interactor 1 (Abi1) for further characterization. Binding of HCV NS5A to Abi1 was verified by both in vitro pulldown and coimmunoprecipitation assays. HCV NS5A interacted with Abi1 through regions I + II of Abi1 and domain I of NS5A. We further demonstrated that Abi1 colocalized with the HCV NS5A protein in the cytoplasm. We showed that NS5A inhibited epidermal growth factor-mediated ERK and Egr1 activations and this inhibitory activity of NS5A was nullified in Abi1-knockdown cells. Moreover, silencing of Abi1 expression impaired HCV replication, whereas overexpression of Abi1 promoted HCV propagation. Collectively, these data indicate that HCV exploits host Abi1 protein via NS5A to modulate MEK/ERK signaling pathway for its own propagation.
Collapse
Affiliation(s)
- Van T T Huynh
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Yun-Sook Lim
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Si C Tran
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Tu M Pham
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Lam N Nguyen
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Soon B Hwang
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| |
Collapse
|
6
|
Involvement of ERK pathway in interferon alpha-mediated antiviral activity against hepatitis C virus. Cytokine 2015; 72:17-24. [DOI: 10.1016/j.cyto.2014.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 01/19/2023]
|
7
|
Royall E, Doyle N, Abdul-Wahab A, Emmott E, Morley SJ, Goodfellow I, Roberts LO, Locker N. Murine norovirus 1 (MNV1) replication induces translational control of the host by regulating eIF4E activity during infection. J Biol Chem 2015; 290:4748-4758. [PMID: 25561727 PMCID: PMC4335213 DOI: 10.1074/jbc.m114.602649] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein synthesis is a tightly controlled process responding to several stimuli, including viral infection. As obligate intracellular parasites, viruses depend on the translation machinery of the host and can manipulate it by affecting the availability and function of specific eukaryotic initiation factors (eIFs). Human norovirus is a member of the Caliciviridae family and is responsible for gastroenteritis outbreaks. Previous studies on feline calicivirus and murine norovirus 1 (MNV1) demonstrated that the viral protein, genome-linked (VPg), acts to direct translation by hijacking the host protein synthesis machinery. Here we report that MNV1 infection modulates the MAPK pathway to activate eIF4E phosphorylation. Our results show that the activation of p38 and Mnk during MNV1 infection is important for MNV1 replication. Furthermore, phosphorylated eIF4E relocates to the polysomes, and this contributes to changes in the translational state of specific host mRNAs. We propose that global translational control of the host by eIF4E phosphorylation is a key component of the host-pathogen interaction.
Collapse
Affiliation(s)
- Elizabeth Royall
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Nicole Doyle
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Azimah Abdul-Wahab
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Ed Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Simon J Morley
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, JMS Building, Brighton BN1 9RH, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Lisa O Roberts
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Nicolas Locker
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom.
| |
Collapse
|
8
|
Batista MN, Carneiro BM, Braga ACS, Rahal P. Caffeine inhibits hepatitis C virus replication in vitro. Arch Virol 2014; 160:399-407. [PMID: 25491197 DOI: 10.1007/s00705-014-2302-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/28/2014] [Indexed: 12/27/2022]
Abstract
Hepatitis C is considered the major cause of cirrhosis and hepatocellular carcinoma. Conventional treatment is not effective against some hepatitis C virus (HCV) genotypes; therefore, new treatments are needed. Coffee and, more recently, caffeine, have been found to have a beneficial effect in several disorders of the liver, including those manifesting abnormal liver biochemistry, cirrhosis and hepatocellular carcinoma. Caffeine acts directly by delaying fibrosis, thereby improving the function of liver cellular pathways and interfering with pathways used by the HCV replication cycle. In the current study, the direct relationship between caffeine and viral replication was evaluated. The Huh-7.5 cell line was used for transient infections with FL-J6/JFH-5'C19Rluc2AUbi and to establish a cell line stably expressing SGR-Feo JFH-1. Caffeine efficiently inhibited HCV replication in a dose-dependent manner at non-cytotoxic concentrations and demonstrated an IC50 value of 0.7263 mM after 48 h of incubation. These data demonstrate that caffeine may be an important new agent for anti-HCV therapies due to its efficient inhibition of HCV replication at non-toxic concentrations.
Collapse
Affiliation(s)
- Mariana N Batista
- Department of Biology, Institute of Bioscience, Language and Literature and Exact Science, São Paulo State University, IBILCE, UNESP, Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | | | | | | |
Collapse
|
9
|
Fluoxetine a novel anti-hepatitis C virus agent via ROS-, JNK-, and PPARβ/γ-dependent pathways. Antiviral Res 2014; 110:158-67. [PMID: 25151487 DOI: 10.1016/j.antiviral.2014.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/10/2014] [Accepted: 08/02/2014] [Indexed: 02/06/2023]
Abstract
More than 20% of chronic hepatitis C (CHC) patients receiving interferon-alpha (IFN-α)-based anti-hepatitis C virus (HCV) therapy experienced significant depression, which was relieved by treatment with fluoxetine. However, whether and how fluoxetine affected directly the anti-HCV therapy remained unclear. Here, we demonstrated that fluoxetine inhibited HCV infection and blocked the production of reactive oxygen species (ROS) and lipid accumulation in Huh7.5 cells. Fluoxetine facilitated the IFN-α-mediated antiviral actions via activations of signal transducer and activator of transcription (STAT)-1 and c-Jun amino-terminal kinases (JNK). Alternatively, fluoxetine elevated peroxisome proliferator-activated receptor (PPAR) response element activity under HCV infection. The inhibitory effects of fluoxetine on HCV infection and lipid accumulation, but not production of ROS, were partially reversed by the PPAR-β, -γ, and JNK antagonists. Furthermore, fluoxetine intervention to the IFN-α-2b regimen facilitated to reduce HCV titer and alanine transaminase level for CHC patients. Therefore, fluoxetine intervention to the IFN-α-2b regimen improved the efficacy of anti-HCV treatment, which might be related to blockades of ROS generation and lipid accumulation and activation of host antiviral JNK/STAT-1 and PPARβ/γ signals.
Collapse
|
10
|
Rodríguez ME, Brunetti JE, Wachsman MB, Scolaro LA, Castilla V. Raf/MEK/ERK pathway activation is required for Junín virus replication. J Gen Virol 2014; 95:799-805. [PMID: 24421112 DOI: 10.1099/vir.0.061242-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the present work we investigated the importance of the Raf/MEK/ERK signalling pathway in the multiplication of the arenavirus Junín (JUNV) in monkey and human cell cultures. We established that JUNV induces a biphasic activation of ERK and we proved that a specific inhibitor of the ERK pathway, U0126, impairs viral replication. Furthermore, U0126 exerted inhibitory action against the arenaviruses Tacaribe and Pichinde. Moreover, treatment with known ERK activators such as phorbol 12-myristate 13-acetate and serum increased viral yields whereas ERK silencing by small interfering RNAs caused the inhibition of viral multiplication. Therefore, activation of the Raf/MEK/ERK signalling pathway is required to ensure efficient JUNV replication and may constitute a host target for the development of novel effective therapeutic strategies to deal with arenavirus infections.
Collapse
Affiliation(s)
- María Eugenia Rodríguez
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jesús Emanuel Brunetti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Beatriz Wachsman
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Alberto Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Zampino R, Marrone A, Restivo L, Guerrera B, Sellitto A, Rinaldi L, Romano C, Adinolfi LE. Chronic HCV infection and inflammation: Clinical impact on hepatic and extra-hepatic manifestations. World J Hepatol 2013; 5:528-540. [PMID: 24179612 PMCID: PMC3812455 DOI: 10.4254/wjh.v5.i10.528] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/06/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
The liver has a central role in regulating inflammation by its capacity to secrete a number of proteins that control both local and systemic inflammatory responses. Chronic inflammation or an exaggerated inflammatory response can produce detrimental effects on target organs. Chronic hepatitis C virus (HCV) infection causes liver inflammation by complex and not yet well-understood molecular pathways, including direct viral effects and indirect mechanisms involving cytokine pathways, oxidative stress and steatosis induction. An increasing body of evidence recognizes the inflammatory response in chronic hepatitis C as pathogenically linked to the development of both liver-limited injury (fibrosis, cirrhosis and hepatocellular carcinoma) and extrahepatic HCV-related diseases (lymphoproliferative disease, atherosclerosis, cardiovascular and brain disease). Defining the complex mechanisms of HCV-induced inflammation could be crucial to determine the global impact of infection, to estimate progression of the disease, and to explore novel therapeutic approaches to avert HCV-related diseases. This review focuses on HCV-related clinical conditions as a result of chronic liver and systemic inflammatory states.
Collapse
|
12
|
Chen KJ, Tseng CK, Chang FR, Yang JI, Yeh CC, Chen WC, Wu SF, Chang HW, Lee JC. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation. PLoS One 2013; 8:e57704. [PMID: 23469054 PMCID: PMC3585194 DOI: 10.1371/journal.pone.0057704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/23/2013] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections.
Collapse
Affiliation(s)
- Kuan-Jen Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lin YT, Wu YH, Tseng CK, Lin CK, Chen WC, Hsu YC, Lee JC. Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation. PLoS One 2013; 8:e54466. [PMID: 23365670 PMCID: PMC3554764 DOI: 10.1371/journal.pone.0054466] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/11/2012] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is the leading risk factor for hepatocellular carcinoma (HCC) and chronic liver disease worldwide. Green tea, in addition to being consumed as a healthy beverage, contains phenolic catechins that have been used as medicinal substances. In the present study, we illustrated that the epicatechin isomers (+)-epicatechin and (−)-epicatechin concentration-dependently inhibited HCV replication at nontoxic concentrations by using in vitro cell-based HCV replicon and JFH-1 infectious systems. In addition to significantly suppressing virus-induced cyclooxygenase-2 (COX-2) expression, our results revealed that the anti-HCV activity of the epicatechin isomers occurred through the down-regulation of COX-2. Furthermore, both the epicatechin isomers additively inhibited HCV replication in combination with either interferon-α or viral enzyme inhibitors [2′-C-methylcytidine (NM-107) or telaprevir]. They also had prominent anti-inflammatory effects by inhibiting the gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and inducible nitrite oxide synthase as well as the COX-2 in viral protein-expressing hepatoma Huh-7 cells. Collectively, (+)-epicatechin and (−)-epicatechin may serve as therapeutic supplements for treating HCV-related diseases.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Catechin/pharmacology
- Cell Line, Tumor
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Gene Expression/drug effects
- Hepacivirus/drug effects
- Hepacivirus/physiology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Humans
- Inflammation/prevention & control
- Interferon-alpha/pharmacology
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/genetics
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/genetics
- Oligopeptides/pharmacology
- RNA, Viral/antagonists & inhibitors
- Stereoisomerism
- Tea/chemistry
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Ying-Ting Lin
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsuan Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Kuang Lin
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Chin Hsu
- Department of Chinese Medicine, ChiMei Medical Center, Tainan, Taiwan
- * E-mail: (YCH); (JCL)
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (YCH); (JCL)
| |
Collapse
|
14
|
Regulation of hepatitis C virus replication and gene expression by the MAPK-ERK pathway. Virol Sin 2012; 27:278-85. [PMID: 23001481 DOI: 10.1007/s12250-012-3257-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/17/2012] [Indexed: 12/12/2022] Open
Abstract
The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Con1 with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Con1 cells was inhibited by IFN-α. The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.
Collapse
|
15
|
Hepatitis C virus sensitizes host cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 via a MEK1-dependent pathway. PLoS One 2012; 7:e37700. [PMID: 22662193 PMCID: PMC3360765 DOI: 10.1371/journal.pone.0037700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/22/2012] [Indexed: 12/20/2022] Open
Abstract
Background Hepatitis C virus (HCV) is the leading cause of liver fibrosis, cirrhosis and hepatocellular carcinoma. It is believed that continuous liver cell apoptosis contributes to HCV pathogenesis. Recent studies have shown that HCV infection can sensitize host cells to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis, but the mechanism by which HCV regulates the TRAIL pathway remains unclear. Methods and Results Using a sub-genomic replicon and full length virus, JFH-1, we demonstrate that HCV can sensitize host cells to TRAIL-induced apoptosis by up-regulating two TRAIL receptors, death receptor 4 (DR4) and death receptor 5 (DR5). Furthermore, the HCV replicon enhanced transcription of DR5 via Sp1, and the HCV-mediated up-regulation of DR4 and DR5 required MEK1 activity. HCV infection also stimulated the activity of MEK1, and the inhibition of MEK1 activity or the knockdown of MEK1 increased the replication of HCV. Conclusions Our studies demonstrate that HCV replication sensitizes host cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 via a MEK1 dependent pathway. These findings may help to further understand the pathogenesis of HCV infection and provide a therapeutic target.
Collapse
|
16
|
Activation of the Ras/Raf/MEK pathway facilitates hepatitis C virus replication via attenuation of the interferon-JAK-STAT pathway. J Virol 2011; 86:1544-54. [PMID: 22114332 DOI: 10.1128/jvi.00688-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases worldwide, often leading to the development of hepatocellular carcinoma (HCC). Constitutive activation of the Ras/Raf/MEK pathway is responsible for approximately 30% of cancers. Here we attempted to address the correlation between activation of this pathway and HCV replication. We showed that knockdown of Raf1 inhibits HCV replication, while activation of the Ras/Raf/MEK pathway by V12, a constitutively active form of Ras, stimulates HCV replication. We further demonstrated that this effect is regulated through attenuation of the interferon (IFN)-JAK-STAT pathway. Activation of the Ras/Raf/MEK pathway downregulates the expression of IFN-stimulated genes (ISGs), attenuates the phosphorylation of STAT1/2, and inhibits the expression of interferon (alpha, beta, and omega) receptors 1 and 2 (IFNAR1/2). Furthermore, we observed that HCV infection activates the Ras/Raf/MEK pathway. Thus, we propose that during HCV infection, the Ras/Raf/MEK pathway is activated, which in turn attenuates the IFN-JAK-STAT pathway, resulting in stimulation of HCV replication.
Collapse
|
17
|
Lee J, Tseng C, Wu S, Chang F, Chiu C, Wu Y. San-Huang-Xie-Xin-Tang extract suppresses hepatitis C virus replication and virus-induced cyclooxygenase-2 expression. J Viral Hepat 2011; 18:e315-24. [PMID: 21692943 PMCID: PMC7185454 DOI: 10.1111/j.1365-2893.2010.01424.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is associated with chronic inflammation of liver, which leads to the development of cirrhosis and hepatocellular carcinoma (HCC). Because of severe side effects and only a 50-70% cure rate in genotype 1 HCV-infected patients upon current standard treatment with pegylated interferon-α plus ribavirin, new therapeutic regimens are still needed. San-Huang-Xie-Xin-Tang (SHXT) is a transitional Chinese herbal formula, composed of Rhei rhizoma, Scutellaria radix and Coptidis rhizome, and possesses anti-inflammatory effect. Here, we describe a (+)-catechin-containing fraction extracted from SHXT, referred as SHXT-frC, exhibited effective inhibition of HCV replication, with selectivity index value (SI; CC50 /EC50) of 84, and displayed synergistic anti-HCV effects when combined with interferon-α, HCV protease inhibitor telaprevir or polymerase inhibitor 2'-C-methylcytidine. The activation of factor-κB (NF-κB) and cyclooxygenase-2 (COX-2) signalling pathway has particular relevance to HCV-associated HCC. SHXT-frC treatment also caused a concentration-dependent decrease in the induction of COX-2 and NF-κB expression caused by either HCV replication or HCV NS5A protein. Collectively, SHXT-frC could be an adjuvant treatment for patients with HCV-induced liver diseases.
Collapse
Affiliation(s)
- J.‐C. Lee
- Department of Biotechnology, College of Life Science,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - C.‐k. Tseng
- Department of Biotechnology, College of Life Science
| | - S.‐F. Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - F.‐R. Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - C.‐C. Chiu
- Department of Biotechnology, College of Life Science
| | - Y.‐C. Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University,Natural Medicinal Products Research Center, China Medical University Hospital, Taichung, Taiwan, China
| |
Collapse
|
18
|
Lee JC, Chen WC, Wu SF, Tseng CK, Chiou CY, Chang FR, Hsu SH, Wu YC. Anti-hepatitis C virus activity of Acacia confusa extract via suppressing cyclooxygenase-2. Antiviral Res 2010; 89:35-42. [PMID: 21075144 DOI: 10.1016/j.antiviral.2010.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/14/2010] [Accepted: 11/04/2010] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis C virus (HCV) infection continues to be an important cause of morbidity and mortality by chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) throughout the world. It is of tremendous importance to discover more effective and safer agents to improve the clinical treatment on HCV carriers. Here we report that the n-butanol-methanol extract obtained from Acacia confusa plant, referred as ACSB-M4, exhibited the inhibition of HCV RNA replication in the HCV replicon assay system, with an EC(50) value and CC(50)/EC(50) selective index (SI) of 5 ± 0.3 μg/ml and >100, respectively. Besides, ACSB-M4 showed antiviral synergy in combination with IFN-α and as HCV protease inhibitor (Telaprevir; VX-950) and polymerase inhibitor (2'-C-methylcytidine; NM-107) by a multiple linear logistic model and isobologram analysis. A complementary approach involving the overexpression of COX-2 protein in ACSB-M4-treated HCV replicon cells was used to evaluate the antiviral action at the molecular level. ACSB-M4 significantly suppressed COX-2 expression in HCV replicon cells. Viral replication was gradually restored if COX-2 was added simultaneously with ACSB-M4, suggesting that the anti-HCV activity of ACSB-M4 was associated with down-regulation of COX-2, which was correlated with the suppression of nuclear factor-kappaB (NF-κB) activation. ACSB-M4 may serve as a potential protective agent for use in the management of patients with chronic HCV infection.
Collapse
Affiliation(s)
- Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|