1
|
Duque Velásquez C, Kim C, Haldiman T, Kim C, Herbst A, Aiken J, Safar JG, McKenzie D. Chronic wasting disease (CWD) prion strains evolve via adaptive diversification of conformers in hosts expressing prion protein polymorphisms. J Biol Chem 2020; 295:4985-5001. [PMID: 32111742 PMCID: PMC7152757 DOI: 10.1074/jbc.ra120.012546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/22/2020] [Indexed: 11/06/2022] Open
Abstract
Chronic wasting disease (CWD) is caused by an unknown spectrum of prions and has become enzootic in populations of cervid species that express cellular prion protein (PrPC) molecules varying in amino acid composition. These PrPC polymorphisms can affect prion transmission, disease progression, neuropathology, and emergence of new prion strains, but the mechanistic steps in prion evolution are not understood. Here, using conformation-dependent immunoassay, conformation stability assay, and protein-misfolding cyclic amplification, we monitored the conformational and phenotypic characteristics of CWD prions passaged through deer and transgenic mice expressing different cervid PrPC polymorphisms. We observed that transmission through hosts with distinct PrPC sequences diversifies the PrPCWD conformations and causes a shift toward oligomers with defined structural organization, replication rate, and host range. When passaged in host environments that restrict prion replication, distinct co-existing PrPCWD conformers underwent competitive selection, stabilizing a new prion strain. Nonadaptive conformers exhibited unstable replication and accumulated only to low levels. These results suggest a continuously evolving diversity of CWD conformers and imply a critical interplay between CWD prion plasticity and PrPC polymorphisms during prion strain evolution.
Collapse
Affiliation(s)
- Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chiye Kim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Allen Herbst
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| |
Collapse
|
2
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
3
|
Baiardi S, Rossi M, Capellari S, Parchi P. Recent advances in the histo-molecular pathology of human prion disease. Brain Pathol 2019; 29:278-300. [PMID: 30588685 DOI: 10.1111/bpa.12695] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are progressive neurodegenerative disorders affecting humans and other mammalian species. The term prion, originally put forward to propose the concept that a protein could be infectious, refers to PrPSc , a misfolded isoform of the cellular prion protein (PrPC ) that represents the pathogenetic hallmark of these disorders. The discovery that other proteins characterized by misfolding and seeded aggregation can spread from cell to cell, similarly to PrPSc , has increased interest in prion diseases. Among neurodegenerative disorders, however, prion diseases distinguish themselves for the broader phenotypic spectrum, the fastest disease progression and the existence of infectious forms that can be transmitted through the exposure to diseased tissues via ingestion, injection or transplantation. The main clinicopathological phenotypes of human prion disease include Creutzfeldt-Jakob disease, by far the most common, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann-Sträussler-Scheinker disease. However, clinicopathological manifestations extend even beyond those predicted by this classification. Because of their transmissibility, the phenotypic diversity of prion diseases can also be propagated into syngenic hosts as prion strains with distinct characteristics, such as incubation period, pattern of PrPSc distribution and regional severity of histopathological changes in the brain. Increasing evidence indicates that different PrPSc conformers, forming distinct ordered aggregates, encipher the phenotypic variants related to prion strains. In this review, we summarize the most recent advances concerning the histo-molecular pathology of human prion disease focusing on the phenotypic spectrum of the disease including co-pathologies, the characterization of prion strains by experimental transmission and their correlation with the physicochemical properties of PrPSc aggregates.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Joiner S, Asante EA, Linehan JM, Brock L, Brandner S, Bellworthy SJ, Simmons MM, Hope J, Collinge J, Wadsworth JDF. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein. J Neurol Sci 2017; 386:4-11. [PMID: 29406965 PMCID: PMC5946165 DOI: 10.1016/j.jns.2017.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/01/2017] [Accepted: 12/28/2017] [Indexed: 11/02/2022]
Abstract
The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe.
Collapse
Affiliation(s)
- Susan Joiner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | | | - Lara Brock
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | | | | | - James Hope
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | |
Collapse
|
5
|
Prion Infectivity Plateaus and Conversion to Symptomatic Disease Originate from Falling Precursor Levels and Increased Levels of Oligomeric PrPSc Species. J Virol 2015; 89:12418-26. [PMID: 26423957 DOI: 10.1128/jvi.02142-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED In lethal prion neurodegenerative diseases, misfolded prion proteins (PrP(Sc)) replicate by redirecting the folding of the cellular prion glycoprotein (PrP(C)). Infections of different durations can have a subclinical phase with constant levels of infectious particles, but the mechanisms underlying this plateau and a subsequent exit to overt clinical disease are unknown. Using tandem biophysical techniques, we show that attenuated accumulation of infectious particles in presymptomatic disease is preceded by a progressive fall in PrP(C) level, which constricts replication rate and thereby causes the plateau effect. Furthermore, disease symptoms occurred at the threshold associated with increasing levels of small, relatively less protease-resistant oligomeric prion particles (oPrP(Sc)). Although a hypothetical lethal isoform of PrP cannot be excluded, our data argue that diminishing residual PrP(C) levels and continuously increasing levels of oPrP(Sc) are crucial determinants in the transition from presymptomatic to symptomatic prion disease. IMPORTANCE Prions are infectious agents that cause lethal brain diseases; they arise from misfolding of a cell surface protein, PrP(C) to a form called PrP(Sc). Prion infections can have long latencies even though there is no protective immune response. Accumulation of infectious prion particles has been suggested to always reach the same plateau in the brain during latent periods, with clinical disease only occurring when hypothetical toxic forms (called PrP(L) or TPrP) begin to accumulate. We show here that infectivity plateaus arise because PrP(C) precursor levels become downregulated and that the duration of latent periods can be accounted for by the level of residual PrP(C), which transduces a toxic effect, along with the amount of oligomeric forms of PrP(Sc).
Collapse
|
6
|
Cohen ML, Kim C, Haldiman T, ElHag M, Mehndiratta P, Pichet T, Lissemore F, Shea M, Cohen Y, Chen W, Blevins J, Appleby BS, Surewicz K, Surewicz WK, Sajatovic M, Tatsuoka C, Zhang S, Mayo P, Butkiewicz M, Haines JL, Lerner AJ, Safar JG. Rapidly progressive Alzheimer's disease features distinct structures of amyloid-β. ACTA ACUST UNITED AC 2015; 138:1009-22. [PMID: 25688081 DOI: 10.1093/brain/awv006] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genetic and environmental factors that increase the risk of late-onset Alzheimer disease are now well recognized but the cause of variable progression rates and phenotypes of sporadic Alzheimer's disease is largely unknown. We aimed to investigate the relationship between diverse structural assemblies of amyloid-β and rates of clinical decline in Alzheimer's disease. Using novel biophysical methods, we analysed levels, particle size, and conformational characteristics of amyloid-β in the posterior cingulate cortex, hippocampus and cerebellum of 48 cases of Alzheimer's disease with distinctly different disease durations, and correlated the data with APOE gene polymorphism. In both hippocampus and posterior cingulate cortex we identified an extensive array of distinct amyloid-β42 particles that differ in size, display of N-terminal and C-terminal domains, and conformational stability. In contrast, amyloid-β40 present at low levels did not form a major particle with discernible size, and both N-terminal and C- terminal domains were largely exposed. Rapidly progressive Alzheimer's disease that is associated with a low frequency of APOE e4 allele demonstrates considerably expanded conformational heterogeneity of amyloid-β42, with higher levels of distinctly structured amyloid-β42 particles composed of 30-100 monomers, and fewer particles composed of < 30 monomers. The link between rapid clinical decline and levels of amyloid-β42 with distinct structural characteristics suggests that different conformers may play an important role in the pathogenesis of distinct Alzheimer's disease phenotypes. These findings indicate that Alzheimer's disease exhibits a wide spectrum of amyloid-β42 structural states and imply the existence of prion-like conformational strains.
Collapse
Affiliation(s)
- Mark L Cohen
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Chae Kim
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Tracy Haldiman
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Mohamed ElHag
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Prachi Mehndiratta
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Termsarasab Pichet
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Frances Lissemore
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Michelle Shea
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Yvonne Cohen
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Wei Chen
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Janis Blevins
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Brian S Appleby
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 4 Department of Psychiatry, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Krystyna Surewicz
- 5 Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Witold K Surewicz
- 5 Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Martha Sajatovic
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 4 Department of Psychiatry, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Curtis Tatsuoka
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Shulin Zhang
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Ping Mayo
- 6 Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Mariusz Butkiewicz
- 6 Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Jonathan L Haines
- 6 Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Alan J Lerner
- 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| | - Jiri G Safar
- 1 Department of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 2 National Prion Disease Pathology Surveillance Centre, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA 3 Department of Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Diack AB, Head MW, McCutcheon S, Boyle A, Knight R, Ironside JW, Manson JC, Will RG. Variant CJD. 18 years of research and surveillance. Prion 2014; 8:286-95. [PMID: 25495404 PMCID: PMC4601215 DOI: 10.4161/pri.29237] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It is now 18 years since the first identification of a case of vCJD in the UK. Since that time, there has been much speculation over how vCJD might impact human health. To date there have been 177 case reports in the UK and a further 51 cases worldwide in 11 different countries. Since establishing that BSE and vCJD are of the same strain of agent, we have also shown that there is broad similarity between UK and non-UK vCJD cases on first passage to mice. Transgenic mouse studies have indicated that all codon 129 genotypes are susceptible to vCJD and that genotype may influence whether disease appears in a clinical or asymptomatic form, supported by the appearance of the first case of potential asymptomatic vCJD infection in a PRNP 129MV patient. Following evidence of blood transfusion as a route of transmission, we have ascertained that all blood components and leucoreduced blood in a sheep model of vCJD have the ability to transmit disease. Importantly, we recently established that a PRNP 129MV patient blood recipient with an asymptomatic infection and limited PrP(Sc) deposition in the spleen could readily transmit disease into mice, demonstrating the potential for peripheral infection in the absence of clinical disease. This, along with the recent appendix survey which identified 16 positive appendices in a study of 32,441 cases, underlines the importance of continued CJD surveillance and maintaining control measures already in place to protect human health.
Collapse
Affiliation(s)
- Abigail B Diack
- The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian, Scotland, UK,These authors contributed equally to this work.
| | - Mark W Head
- National CJD Research & Surveillance Unit; School of Clinical Sciences; University of Edinburgh; Western General Hospital; Edinburgh, Scotland, UK,These authors contributed equally to this work.
| | - Sandra McCutcheon
- The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian, Scotland, UK
| | - Aileen Boyle
- The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian, Scotland, UK
| | - Richard Knight
- National CJD Research & Surveillance Unit; School of Clinical Sciences; University of Edinburgh; Western General Hospital; Edinburgh, Scotland, UK
| | - James W Ironside
- National CJD Research & Surveillance Unit; School of Clinical Sciences; University of Edinburgh; Western General Hospital; Edinburgh, Scotland, UK
| | - Jean C Manson
- The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian, Scotland, UK,These authors contributed equally to this work.,Correspondence to: Jean C Manson;
| | - Robert G Will
- National CJD Research & Surveillance Unit; School of Clinical Sciences; University of Edinburgh; Western General Hospital; Edinburgh, Scotland, UK,These authors contributed equally to this work.
| |
Collapse
|
8
|
Peden AH, Sarode DP, Mulholland CR, Barria MA, Ritchie DL, Ironside JW, Head MW. The prion protein protease sensitivity, stability and seeding activity in variably protease sensitive prionopathy brain tissue suggests molecular overlaps with sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun 2014; 2:152. [PMID: 25331173 PMCID: PMC4210614 DOI: 10.1186/s40478-014-0152-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Variably protease sensitive prionopathy (VPSPr) is a recently described, sporadic human prion disease that is pathologically and biochemically distinct from the currently recognised sporadic Creutzfeldt-Jakob disease (sCJD) subtypes. The defining biochemical features of the abnormal form of the prion protein (PrPSc) in VPSPr are increased sensitivity to proteolysis and the presence of an N- and C-terminally cleaved ~8 kDa protease resistant PrPSc (PrPres) fragment. The biochemical and neuropathological profile of VPSPr has been proposed to resemble either Gerstmann-Sträussler-Scheinker syndrome (GSS) or familial CJD with the PRNP-V180I mutation. However, in some cases of VPSPr two protease resistant bands have been observed in Western blots that co-migrate with those of type 2 PrPres, suggesting that a proportion of the PrPSc present in VPSPr has properties similar to those of sCJD. RESULTS Here, we have used conformation dependent immunoassay to confirm the presence of PrPSc in VPSPr that is more protease sensitive compared with sCJD. However, CDI also shows that a proportion of PrPSc in VPSPr resists PK digestion of its C-terminus, distinguishing it from GSS associated with ~8 kDa PrPres, and showing similarity to sCJD. Intensive investigation of a single VPSPr case with frozen tissue from multiple brain regions shows a broad, region-specific spectrum of protease sensitivity and differential stability of PrPSc in the absence of PK treatment. Finally, using protein misfolding cyclic amplification and real-time quaking induced conversion, we show that VPSPr PrPSc has the potential to seed conversion in vitro and that seeding activity is dispersed through a broad range of aggregate sizes. We further propose that seeding activity is associated with the ~19 and ~23 kDa PrPres rather than the ~8 kDa fragment. CONCLUSIONS Therefore, PrPSc in VPSPr is heterogeneous in terms of protease sensitivity and stability to denaturation with the chaotrope GdnHCl and includes a proportion with similar properties to that found in sCJD.
Collapse
|
9
|
Choi YP, Head MW, Ironside JW, Priola SA. Uptake and degradation of protease-sensitive and -resistant forms of abnormal human prion protein aggregates by human astrocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3299-307. [PMID: 25280631 DOI: 10.1016/j.ajpath.2014.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare, transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form (PrP(Sc)) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrP(Sc) is present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive form (sPrP(Sc)). Although evidence suggests that sPrP(Sc) may play a role in prion pathogenesis, little is known about how it interacts with cells during prion infection. Here, we show that protease-sensitive abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the astrocyte's ability to degrade PrP(Sc). Furthermore, the cell does not appear to distinguish between sPrP(Sc) and protease-resistant PrP(Sc), suggesting that sPrP(Sc) could contribute to prion infection.
Collapse
Affiliation(s)
- Young Pyo Choi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Mark W Head
- National Creutzfeldt Jakob Disease Research & Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James W Ironside
- National Creutzfeldt Jakob Disease Research & Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana.
| |
Collapse
|
10
|
Lukan A, Černilec M, Vranac T, Popović M, Čurin Šerbec V. Regional distribution of anchorless prion protein, PrP226*, in the human brain. Prion 2014; 8:28388. [PMID: 24584121 PMCID: PMC4189891 DOI: 10.4161/pri.28388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It was shown previously that truncated molecules of prion protein can be found in brains of patients with some types of transmissible spongiform encephalopathy. One such molecule, PrP226*, is a fragment of prion protein, truncated at Tyr226. It was found to be present in aggregates, from which it can be released using chaotropic salts. In this study we investigated the distribution of PrP226* in Creutzfeldt–Jakob disease affected human brain, employing the mAb V5B2, specifically recognizing this fragment. The results show that PrP226* is not evenly distributed among different regions of human brain. Among brain regions analyzed, the fragment was found most likely to be accumulated in the cerebellum. Its distribution correlates with the distribution of PrPSc.
Collapse
Affiliation(s)
- Anja Lukan
- Department for the Production of Diagnostic Reagents and Research; Blood Transfusion Centre of Slovenia; Ljubljana, Slovenia
| | - Maja Černilec
- Department for the Production of Diagnostic Reagents and Research; Blood Transfusion Centre of Slovenia; Ljubljana, Slovenia
| | - Tanja Vranac
- Department for the Production of Diagnostic Reagents and Research; Blood Transfusion Centre of Slovenia; Ljubljana, Slovenia
| | - Mara Popović
- Institut for Pathology; Medical Faculty; University of Ljubljana; Korytkova, Ljubljana
| | - Vladka Čurin Šerbec
- Department for the Production of Diagnostic Reagents and Research; Blood Transfusion Centre of Slovenia; Ljubljana, Slovenia
| |
Collapse
|
11
|
Mays CE, Kim C, Haldiman T, van der Merwe J, Lau A, Yang J, Grams J, Di Bari MA, Nonno R, Telling GC, Kong Q, Langeveld J, McKenzie D, Westaway D, Safar JG. Prion disease tempo determined by host-dependent substrate reduction. J Clin Invest 2014; 124:847-58. [PMID: 24430187 DOI: 10.1172/jci72241] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023] Open
Abstract
The symptoms of prion infection can take years or decades to manifest following the initial exposure. Molecular markers of prion disease include accumulation of the misfolded prion protein (PrPSc), which is derived from its cellular precursor (PrPC), as well as downregulation of the PrP-like Shadoo (Sho) glycoprotein. Given the overlapping cellular environments for PrPC and Sho, we inferred that PrPC levels might also be altered as part of a host response during prion infection. Using rodent models, we found that, in addition to changes in PrPC glycosylation and proteolytic processing, net reductions in PrPC occur in a wide range of prion diseases, including sheep scrapie, human Creutzfeldt-Jakob disease, and cervid chronic wasting disease. The reduction in PrPC results in decreased prion replication, as measured by the protein misfolding cyclic amplification technique for generating PrPSc in vitro. While PrPC downregulation is not discernible in animals with unusually short incubation periods and high PrPC expression, slowly evolving prion infections exhibit downregulation of the PrPC substrate required for new PrPSc synthesis and as a receptor for pathogenic signaling. Our data reveal PrPC downregulation as a previously unappreciated element of disease pathogenesis that defines the extensive, presymptomatic period for many prion strains.
Collapse
|
12
|
Kovacs GG, Peden A, Weis S, Höftberger R, Berghoff AS, Yull H, Ströbel T, Koppi S, Katzenschlager R, Langenscheidt D, Assar H, Zaruba E, Gröner A, Voigtländer T, Puska G, Hametner E, Grams A, Muigg A, Knoflach M, László L, Ironside JW, Head MW, Budka H. Rapidly progressive dementia with thalamic degeneration and peculiar cortical prion protein immunoreactivity, but absence of proteinase K resistant PrP: a new disease entity? Acta Neuropathol Commun 2013; 1:72. [PMID: 24252716 PMCID: PMC3835463 DOI: 10.1186/2051-5960-1-72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 01/03/2023] Open
Abstract
Background Human prion diseases are a group of rare fatal neurodegenerative conditions with well-developed clinical and neuropathological diagnostic criteria. Recent observations have expanded the spectrum of prion diseases beyond the classically recognized forms. Results In the present study we report six patients with a novel, apparently sporadic disease characterised by thalamic degeneration and rapidly progressive dementia (duration of illness 2–12 months; age at death: 55–81 years). Light and electron microscopic immunostaining for the prion protein (PrP) revealed a peculiar intraneuritic distribution in neocortical regions. Proteinase K resistant PrP (PrPres) was undetectable by Western blotting in frontal cortex from the three cases with frozen tissue, even after enrichment for PrPres by centrifugation or by phosphotungstic acid precipitation. Conformation-dependent immunoassay analysis using a range of PK digestion conditions (and no PK digestion) produced only very limited evidence of meaningful D-N (denatured/native) values, indicative of the presence of disease-associated PrP (PrPSc) in these cases, when the results were compared with appropriate negative control groups. Conclusions Our observation expands the spectrum of conditions associated with rapidly progressive dementia and may have implications for the understanding of the pathogenesis of prion diseases.
Collapse
|
13
|
Haldiman T, Kim C, Cohen Y, Chen W, Blevins J, Qing L, Cohen ML, Langeveld J, Telling GC, Kong Q, Safar JG. Co-existence of distinct prion types enables conformational evolution of human PrPSc by competitive selection. J Biol Chem 2013; 288:29846-61. [PMID: 23974118 DOI: 10.1074/jbc.m113.500108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrP(Sc)). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrP(Sc) particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrP(Sc) particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrP(C) substrate, the dominant PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrP(Sc) is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers.
Collapse
|
14
|
Head MW. Human prion diseases: Molecular, cellular and population biology. Neuropathology 2013; 33:221-36. [DOI: 10.1111/neup.12016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Mark W. Head
- National CJD Research & Surveillance Unit; Centre for Clinical Brain Sciences; School of Clinical Sciences; The University of Edinburgh; Edinburgh; UK
| |
Collapse
|
15
|
Janouskova O, Rakusan J, Karaskova M, Holada K. Photodynamic inactivation of prions by disulfonated hydroxyaluminium phthalocyanine. J Gen Virol 2012; 93:2512-2517. [DOI: 10.1099/vir.0.044727-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulfonated phthalocyanines (Pcs) are cyclic tetrapyrroles that constitute a group of photosensitizers. In the presence of visible light and diatomic oxygen, Pcs produce singlet oxygen and other reactive oxygen species that have known degradation effects on lipids, proteins and/or nucleic acids. Pcs have been used successfully in the treatment of bacterial, yeast and fungal infections, but their use in the photodynamic inactivation of prions has never been reported. Here, we evaluated the photodynamic activity of the disodium salt of disulfonated hydroxyaluminium phthalocyanine (PcDS) against mouse-adapted scrapie RML prions in vitro. PcDS treatment of RML brain homogenate resulted in a time- and dose-dependent inactivation of prions. The photodynamic potential of Pcs offers a new way to inactivate prions using biodegradable compounds at room temperature and normal pressure, which could be useful for treating thermolabile materials and liquids.
Collapse
Affiliation(s)
- Olga Janouskova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Studnickova 7, 128 00 Prague 2, Czech Republic
| | - Jan Rakusan
- Centre for Organic Chemistry Ltd, Rybitvi 296, 53354 Rybitvi, Czech Republic
| | - Marie Karaskova
- Centre for Organic Chemistry Ltd, Rybitvi 296, 53354 Rybitvi, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Studnickova 7, 128 00 Prague 2, Czech Republic
| |
Collapse
|
16
|
Head MW, Ironside JW. The contribution of different prion protein types and host polymorphisms to clinicopathological variations in Creutzfeldt-Jakob disease. Rev Med Virol 2012; 22:214-29. [DOI: 10.1002/rmv.725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 01/22/2023]
Affiliation(s)
- Mark W. Head
- The National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine; University of Edinburgh; Edinburgh UK
| | - James W. Ironside
- The National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine; University of Edinburgh; Edinburgh UK
| |
Collapse
|
17
|
Peden AH, McGuire LI, Appleford NEJ, Mallinson G, Wilham JM, Orrú CD, Caughey B, Ironside JW, Knight RS, Will RG, Green AJE, Head MW. Sensitive and specific detection of sporadic Creutzfeldt-Jakob disease brain prion protein using real-time quaking-induced conversion. J Gen Virol 2011; 93:438-449. [PMID: 22031526 DOI: 10.1099/vir.0.033365-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Real-time quaking-induced conversion (RT-QuIC) is an assay in which disease-associated prion protein (PrP) initiates a rapid conformational transition in recombinant PrP (recPrP), resulting in the formation of amyloid that can be monitored in real time using the dye thioflavin T. It therefore has potential advantages over analogous cell-free PrP conversion assays such as protein misfolding cyclic amplification (PMCA). The QuIC assay and the related amyloid seeding assay have been developed largely using rodent-passaged sheep scrapie strains. Given the potential RT-QuIC has for Creutzfeldt-Jakob disease (CJD) research and human prion test development, this study characterized the behaviour of a range of CJD brain specimens with hamster and human recPrP in the RT-QuIC assay. The results showed that RT-QuIC is a rapid, sensitive and specific test for the form of abnormal PrP found in the most commonly occurring forms of sporadic CJD. The assay appeared to be largely independent of species-related sequence differences between human and hamster recPrP and of the methionine/valine polymorphism at codon 129 of the human PrP gene. However, with the same conditions and substrate, the assay was less efficient in detecting the abnormal PrP that characterizes variant CJD brain. Comparison of these QuIC results with those previously obtained using PMCA suggested that these two seemingly similar assays differ in important respects.
Collapse
Affiliation(s)
- Alexander H Peden
- National CJD Research and Surveillance Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | - Lynne I McGuire
- National CJD Research and Surveillance Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | - Nigel E J Appleford
- Bristol Institute for Transfusion Sciences, National Blood Service, Bristol, UK
| | - Gary Mallinson
- Bristol Institute for Transfusion Sciences, National Blood Service, Bristol, UK
| | - Jason M Wilham
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Christina D Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - James W Ironside
- National CJD Research and Surveillance Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | - Richard S Knight
- National CJD Research and Surveillance Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | - Robert G Will
- National CJD Research and Surveillance Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | - Alison J E Green
- National CJD Research and Surveillance Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark W Head
- National CJD Research and Surveillance Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Kim C, Haldiman T, Cohen Y, Chen W, Blevins J, Sy MS, Cohen M, Safar JG. Protease-sensitive conformers in broad spectrum of distinct PrPSc structures in sporadic Creutzfeldt-Jakob disease are indicator of progression rate. PLoS Pathog 2011; 7:e1002242. [PMID: 21931554 PMCID: PMC3169556 DOI: 10.1371/journal.ppat.1002242] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/12/2011] [Indexed: 11/21/2022] Open
Abstract
The origin, range, and structure of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), are largely unknown. To investigate the molecular mechanism responsible for the broad phenotypic variability of sCJD, we analyzed the conformational characteristics of protease-sensitive and protease-resistant fractions of the pathogenic prion protein (PrPSc) using novel conformational methods derived from a conformation-dependent immunoassay (CDI). In 46 brains of patients homozygous for polymorphisms in the PRNP gene and exhibiting either Type 1 or Type 2 western blot pattern of the PrPSc, we identified an extensive array of PrPSc structures that differ in protease sensitivity, display of critical domains, and conformational stability. Surprisingly, in sCJD cases homozygous for methionine or valine at codon 129 of the PRNP gene, the concentration and stability of protease-sensitive conformers of PrPSc correlated with progression rate of the disease. These data indicate that sCJD brains exhibit a wide spectrum of PrPSc structural states, and accordingly argue for a broad spectrum of prion strains coding for different phenotypes. The link between disease duration, levels, and stability of protease-sensitive conformers of PrPSc suggests that these conformers play an important role in the pathogenesis of sCJD. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disease worldwide. This neurodegenerative disease, which is transmissible and invariably fatal, is characterized by the accumulation of an abnormally folded isoform (PrPSc) of a host-encoded protein (PrPC), predominantly in the brain. Most researchers believe that PrPSc is the infectious agent and five or six subtypes of sCJD have been identified. Whether or not these subtypes represent distinct strains of sCJD prions is debated in the context of the extraordinary variability of sCJD phenotypes, frequent co-occurrence of different PrPSc fragments in the same brain, and the fact that up to 90% of protease-sensitive PrPSc eludes the conventional analysis because it is destroyed by protease treatment. Using novel conformational methods, we identified within each clinical and pathological category an array of PrPSc structures that differ in protease-sensitivity, display of critical domains, and conformational stability. Each of these features offers evidence of a distinct conformation. The link between the rate at which the disease progresses, on the one hand, and the concentration and stability of protease-sensitive conformers of PrPSc on the other, suggests that these conformers play an important role in how the disease originates and progresses.
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tracy Haldiman
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yvonne Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wei Chen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Janis Blevins
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jiri G. Safar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|