1
|
Patria JN, Jwander L, Mbachu I, Parcells L, Ladman B, Trimpert J, Kaufer BB, Tavlarides-Hontz P, Parcells MS. The Meq Genes of Nigerian Marek's Disease Virus (MDV) Field Isolates Contain Mutations Common to Both European and US High Virulence Strains. Viruses 2024; 17:56. [PMID: 39861844 PMCID: PMC11769123 DOI: 10.3390/v17010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus Mardivirus. MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains. Mutations common to field strains that can overcome vaccine protection were identified in the C-terminal proline-rich repeats of the oncoprotein Meq (Marek's EcoRI-Q-encoded protein). These mutations in meq have been found to be distinct to their region of origin, with high virulence strains obtained in Europe differing from those having evolved in the US. The present work reports on meq mutations identified in MDV field strains in Nigeria, arising at farms employing different vaccination practices. MATERIALS AND METHODS DNA was isolated from FTA cards obtained at 12 farms affected by increased MD in the Plateau State, Nigeria. These sequences included partial whole genomes as well as targeted sequences of the meq oncogenes from these strains. Several of the meq genes were cloned for expression and their localization ability to interact with the chicken NF-IL3 protein, a putative Meq dimerization partner, were assessed. RESULTS Sequence analysis of the meq genes from these Nigerian field strains revealed an RB1B-like lineage co-circulating with a European Polen5-like lineage, as well as recombinants harboring a combination of these mutations. In a number of these isolates, Meq mutations accumulated in both N-terminal and C-terminal domains. DISCUSSION Our data, suggest a direct effect of the vaccine strategy on the selection of Meq mutations. Moreover, we posit the evolution of the next higher level of virulence MDVs, a very virulent plus plus pathotype (vv++).
Collapse
Affiliation(s)
- Joseph N. Patria
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Luka Jwander
- Central Diagnostic Laboratory, National Veterinary Research Institute, Vom 930101, Nigeria;
| | - Ifeoma Mbachu
- Department of Biological Sciences, Lincoln University, Lincoln University, PA 19352, USA;
| | - Levi Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Brian Ladman
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (J.T.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (J.T.); (B.B.K.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Phaedra Tavlarides-Hontz
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Mark S. Parcells
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| |
Collapse
|
2
|
Davidson I, Lupini C, Catelli E, Quaglia G, Maddaloni L, Mescolini G. Virulence evaluation of Israeli Marek's disease virus isolates from commercial poultry using their meq gene sequence. Virus Genes 2024; 60:32-43. [PMID: 38184501 DOI: 10.1007/s11262-023-02042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 01/08/2024]
Abstract
Fifty-seven Gallid alphaherpesvirus 2 (GaHV-2) isolates, collected during a 30-year period (1990-2019) from commercial poultry flocks affected by Marek's disease (MD), were molecularly characterised. The GaHV-2 meq gene was amplified and sequenced to evaluate the virus virulence, based on the number of PPPPs within the proline-rich repeats (PRRs) of its transactivation domain. The present illustration of virus virulence evaluation on a large scale of field virus isolates by molecular analysis exemplifies the practical benefit and usefulness of the molecular marker in commercial GaVH-2 isolates. The alternative assay of GaVH-2 virulence pathotyping is the classical Gold Standard ADOL method, which is difficult and impossible to employ on a large scale using the Specific Pathogen Free (SPF) chicks of the ADOL strains kept in isolators for two months. The phylogenetic analysis performed in the present study showed that the meq gene amino acid sequences of the 57 Israeli strains divide into 16 phylogenetic branches. The virulence evaluation was performed in comparison with 36 GaHV-2 prototype strains, previously characterised by the in vivo Gold Standard ADOL assay. The results obtained revealed that the GaHV-2 strains circulating in Israel have evolved into a higher virulence potential during the years, as the four-proline stretches number in the meq gene decreased over the investigated period, typically of very virulent virus prototypes. The present study supports the meq gene molecular markers for the assessment of field GaVH-2 strains virulence.
Collapse
Affiliation(s)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, Rome, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Operating Unit of Animal Health and Hygiene of Livestock Production, Department of Public Health, AUSL della Romagna, Forlì, FC, Italy
| |
Collapse
|
3
|
Žlabravec Z, Slavec B, Rožmanec E, Koprivec S, Dovč A, Zorman Rojs O. First Report of Marek's Disease Virus in Commercial Turkeys in Slovenia. Animals (Basel) 2024; 14:250. [PMID: 38254418 PMCID: PMC10812425 DOI: 10.3390/ani14020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Marek's disease (MD), caused by Mardivirus gallidalpha 2 (GaAHV-2), also known as MD virus (MDV), is a lymphoproliferative disease that primarily affects chickens. Recently, MDV has been detected in lymphomatous tumors in turkeys in various countries. Between 2021 and 2023, three cases ranging from no to severe clinical disorders (depression, lameness, and increased mortality) occurred in commercial turkey flocks in Slovenia. In all cases, MDV was detected by PCR in DNA samples extracted from organs developing tumor infiltrations. Sequencing and phylogenetic analysis of the meq gene revealed that the GaAHV-2 detected has molecular features of a very virulent pathotype and genetic similarity with GaAHV-2 detected in chickens in Tunisia. This is the first report of MDV in commercial turkeys in Slovenia.
Collapse
Affiliation(s)
- Zoran Žlabravec
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Brigita Slavec
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Ema Rožmanec
- Veterinarska Ambulanta PP, d.o.o., Potrčeva cesta 10, 2250 Ptuj, Slovenia
| | - Saša Koprivec
- Institute of Preclinical Sciences, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia
| | - Alenka Dovč
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Olga Zorman Rojs
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| |
Collapse
|
4
|
Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken. Res Vet Sci 2021; 135:134-142. [PMID: 33485054 DOI: 10.1016/j.rvsc.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Marek's disease virus (MDV), the causative agent of Marek's disease (MD), results in highly infectious phymatosis, lymphatic tissue hyperplasia, and neoplasia. MD is associated with high morbidity and mortality rate. Non-coding RNAs (ncRNAs) entails long non-coding RNA (lncRNA) and microRNA (miRNA). Numerous studies have reported that specific miRNAs and lncRNAs participate in multiple cellular processes, such as proliferation, migration, and tumor cell invasion. Specialized miRNAs and lncRNAs militate a similar role in MD tumor oncogenesis. Despite its growing popularity, only a few reviews are available on ncRNA in MDV tumor oncogenes. Herein, we summarized the role of the miRNAs and lncRNAs in MD tumorigenesis. Altogether, we brought forth the research issues, such as MD prevention, screening, regulatory network formation, novel miRNAs, and lncRNAs analysis in MD that needs to be explored further. This review provides a theoretical platform for the further analysis of miRNAs and lncRNAs functions and the prevention and control of MD and malignancies in domestic animals.
Collapse
|
5
|
Murata S, Machida Y, Isezaki M, Maekawa N, Okagawa T, Konnai S, Ohashi K. Genetic characterization of a Marek's disease virus strain isolated in Japan. Virol J 2020; 17:186. [PMID: 33228722 PMCID: PMC7684920 DOI: 10.1186/s12985-020-01456-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/15/2020] [Indexed: 01/29/2023] Open
Abstract
Background Marek’s disease virus (MDV) causes malignant lymphomas in chickens (Marek’s disease, MD). MD is currently controlled by vaccination; however, MDV strains have a tendency to develop increased virulence. Distinct diversity and point mutations are present in the Meq proteins, the oncoproteins of MDV, suggesting that changes in protein function induced by amino acid substitutions might affect MDV virulence. We previously reported that recent MDV isolates in Japan display distinct mutations in Meq proteins from those observed in traditional MDV isolates in Japan, but similar to those in MDV strains isolated from other countries. Methods To further investigate the genetic characteristics in Japanese field strains, we sequenced the whole genome of an MDV strain that was successfully isolated from a chicken with MD in Japan. A phylogenetic analysis of the meq gene was also performed. Results Phylogenetic analysis revealed that the Meq proteins in most of the Japanese isolates were similar to those of Chinese and European strains, and the genomic sequence of the Japanese strain was classified into the Eurasian cluster. Comparison of coding region sequences among the Japanese strain and MDV strains from other countries revealed that the genetic characteristics of the Japanese strain were similar to those of Chinese and European strains. Conclusions The MDV strains distributed in Asian and European countries including Japan seem to be genetically closer to each other than to MDV strains from North America. These findings indicate that the genetic diversities of MDV strains that emerged may have been dependent on the different vaccination-based control approaches.
Collapse
Affiliation(s)
- Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan. .,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Yuka Machida
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
6
|
Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Fiorentini L, Catelli E. Molecular characterization of a Marek's disease virus strain detected in tumour-bearing turkeys. Avian Pathol 2019; 49:202-207. [PMID: 31702386 DOI: 10.1080/03079457.2019.1691715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative disease caused by Gallid alphaherpesvirus 2 (GaHV-2), which primarily affects chickens. However, the virus is also able to induce tumours in turkeys, albeit less frequently than in chickens. This study reports the molecular characterization of a GaHV-2 strain detected in a flock of Italian meat-type turkeys exhibiting visceral lymphomas. Sequencing and phylogenetic analysis of the meq gene revealed that the turkey GaHV-2 has molecular features of high virulence and genetic similarity with GaHV-2 strains recently detected in Italian commercial and backyard chickens. GaHV-2 is ubiquitous among chickens despite vaccination, and chicken-to-turkey transmission is hypothesized due to the presence of broilers in neighbouring pens.RESEARCH HIGHLIGHTS A GaHV-2 strain from Italian turkeys was molecularly characterized.The turkey strain presented molecular characteristics of high virulence in its meq gene.The turkey strain was closely related to previously detected chicken strains.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, FC, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, FC, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, FC, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
7
|
Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Catelli E. Marek's disease viruses circulating in commercial poultry in Italy in the years 2015-2018 are closely related by their meq gene phylogeny. Transbound Emerg Dis 2019; 67:98-107. [PMID: 31411371 DOI: 10.1111/tbed.13327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Marek's disease (MD) is a lymphoproliferative disease important to the poultry industry worldwide; it is caused by Gallid alphaherpesvirus 2 (GaHV-2). The virulence of GaHV-2 isolates has shifted over the years from mild to virulent, very virulent and very virulent +. Nowadays the disease is controlled by vaccination, but field strains of increased virulence are emerging worldwide. Economic losses due to MD are mostly associated with its acute form, characterized by visceral lymphomas. The present study aimed to molecularly classify a group of 13 GaHV-2 strains detected in vaccinated Italian commercial chicken flocks during acute MD outbreaks, and to scrutinize the ability of predicting GaHV-2 virulence, according to the meq gene sequence. The full-length meq genes were amplified, and the obtained amino acid (aa) sequences were analysed, focusing mainly on the number of stretches of four proline molecules (PPPP) within the transactivation domain. Phylogenetic analysis was carried out with the Maximum Likelihood method using the obtained aa sequences, and the sequences of Italian strains detected in backyard flocks and of selected strains retrieved from GenBank. All the analysed strains showed 100% sequence identity in the meq gene, which encodes a Meq protein of 339 aa. The Meq protein includes four PPPP motifs in the transactivation domain and an interruption of a PPPP motif due to a proline-to-serine substitution at position 218. These features are typically encountered in highly virulent isolates. Phylogenetic analysis revealed that the analysed strains belonged to a cluster that includes high-virulence GaHV-2 strains detected in Italian backyard flocks and a hypervirulent Polish strain. Our results support the hypothesis that the virulence of field isolates can be suggested by meq aa sequence analysis.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
8
|
Jarosinski KW. Interindividual Spread of Herpesviruses. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:195-224. [PMID: 28528445 DOI: 10.1007/978-3-319-53168-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interindividual spread of herpesviruses is essential for the virus life cycle and maintenance in host populations. For most herpesviruses, the virus-host relationship is close, having coevolved over millions of years resulting in comparatively high species specificity. The mechanisms governing interindividual spread or horizontal transmission are very complex, involving conserved herpesviral and cellular proteins during the attachment, entry, replication, and egress processes of infection. Also likely, specific herpesviruses have evolved unique viral and cellular interactions during cospeciation that are dependent on their relationship. Multiple steps are required for interindividual spread including virus assembly in infected cells; release into the environment, followed by virus attachment; and entry into new hosts. Should any of these steps be compromised, transmission is rendered impossible. This review will focus mainly on the natural virus-host model of Marek's disease virus (MDV) in chickens in order to delineate important steps during interindividual spread.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
9
|
Lv H, Zhang Y, Sun G, Bao K, Gao Y, Qi X, Cui H, Wang Y, Li K, Gao L, Pan Q, Wang X, Liu C. Genetic evolution of Gallid herpesvirus 2 isolated in China. INFECTION GENETICS AND EVOLUTION 2016; 51:263-274. [PMID: 27112385 DOI: 10.1016/j.meegid.2016.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/12/2023]
Abstract
Gallid herpesvirus 2 (GaHV-2), which causes Marek's disease in chickens and has caused extensive economic losses, has recently evolved increased virulence in China. To better understand the genetic basis of the pathogenic characteristics changed and increased virulence, we sequenced the genomes of six new GaHV-2 strains (LCC, LTS, WC/1203, JL/1404, CC/1409, and HS/1412) isolated from chickens with failed immunisation as well as one previously isolated Chinese GaHV-2 strain, J-1. Based on a multiple sequence alignment, several characteristic point mutations were detected in the open reading frames of the Chinese isolates. In addition, two deletions and an insertion were identified at the unique short region and terminal repeat short region junctions in Chinese isolates, and the insertion was a characteristic of the new Chinese isolates. According to a phylogenetic analysis, the GaHV-2 genome diverged substantially over the last two decades in China. Based on the internal repeat long region, the new isolates were closely related to very virulent or very virulent plus strains. Additionally, the new Chinese isolates diverged from the previously isolated strains J-1 and 814. In conclusion, our results provide evidence that Chinese GaHV-2 strains contain characteristic sequences, especially the new isolates. The observed genetic divergence in the new Chinese GaHV-2 strains over the last two decades may be related to observed changes in pathogenic characteristics and virulence.
Collapse
Affiliation(s)
- Hongchao Lv
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Guorong Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Keyan Bao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| |
Collapse
|
10
|
Understanding the molecular basis of disease is crucial to improving the design and construction of herpesviral vectors for veterinary vaccines. Vaccine 2015; 33:5897-904. [PMID: 26387436 DOI: 10.1016/j.vaccine.2015.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/13/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
Viral infections are associated with production losses in many animal production industries. Important examples of this are Marek's disease (MD) and bovine respiratory disease (BRD) which are significant issues in the chicken and cattle industries, respectively. Viruses play key roles in MD and BRD development and consequently have also been utilised in vaccination strategies to control these diseases. Despite the widespread availability and use of vaccines to control these diseases both are still major issues for their respective industries. Here the dual role of members of viruses from the family Herpesviridae in causation and control of MD and BRD will be discussed. The technologies that may lead to the development of improved vaccines to provide more sustainable control of MD and BRD will also be identified.
Collapse
|
11
|
Wang J, Ge A, Xu M, Wang Z, Qiao Y, Gu Y, Liu C, Liu Y, Hou J. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens. Virol J 2015; 12:126. [PMID: 26263920 PMCID: PMC4533785 DOI: 10.1186/s12985-015-0354-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
Background Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. Methods To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEVC-KCE). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. Results The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 106 TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 107 TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 106 TCID50 DEV-vectored vaccine. Conclusions We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEVC-KCE. (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEVC-KCE affects neither the growth kinetics of the virus nor its protection against DEV. (iii) DEV-H5(UL55) can generate a strong humoral immune response in 3-week-old chickens, despite the virulence of this virus observed in 1-week-old chickens. (iv) DEV-H5(UL55) induces a weak HI titer in ducks. An increase in the HI titers induced by DEV-vectored HA(H5) will be required prior to its wide application.
Collapse
Affiliation(s)
- Jichun Wang
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Aimin Ge
- Shandong Vocational Animal Science and Veterinary College, Weifang, 261061, China.
| | - Mengwei Xu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Zhisheng Wang
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Yongfeng Qiao
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Yiqi Gu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chang Liu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yamei Liu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Jibo Hou
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| |
Collapse
|
12
|
Genomic deletions and mutations resulting in the loss of eight genes reduce the in vivo replication capacity of Meleagrid herpesvirus 1. Virus Genes 2015; 51:85-95. [DOI: 10.1007/s11262-015-1216-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
|
13
|
Labaille J, Lion A, Boissel E, Trapp S, Nair V, Rasschaert D, Dambrine G. Vaccine and oncogenic strains of gallid herpesvirus 2 contain specific subtype variations in the 5' region of the latency-associated transcript that evolve in vitro and in vivo. Arch Virol 2014; 160:161-71. [PMID: 25298182 DOI: 10.1007/s00705-014-2248-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/27/2014] [Indexed: 12/01/2022]
Abstract
Gallid herpesvirus 2 (GaHV-2) is the alphaherpesvirus responsible for Marek's disease (MD), a T-cell lymphoma of chickens. The virulence of the GaHV-2 field strain is steadily increasing, but MD is still controlled by the CVI988/Rispens vaccine. We tried to determine distinguishing traits of the CVI988/Rispens vaccine by focusing on the 5' end region of the latency-associated transcript (5'LAT). It includes a variable number of 60-bp tandem repeats depending on the GaHV-2 strain. By analyzing six batches of vaccine, we showed that CVI988/Rispens consisted of a population of 5'LAT molecular subtypes, all with deletions and lacking 60-bp tandem repeat motifs, with two major subtypes that probably constitute CVI988/Rispens markers. Serial passages in cell culture led to a substantial change in the frequency of CVI988/Rispens 5'LAT subtypes, with non-deleted subtypes harboring up to four 60-bp repeats emerging during the last few passages. Dynamic changes in the distribution of 5'LAT-deleted subtypes were also detected after infection of chickens. By contrast, the 5'LAT region of the oncogenic clonal RB-1B strain, which was investigated at every step from the isolation of the clonal bacmid RB-1B DNA to the isolation of the ovarian lymphoma cell line, consisted of non-deleted 5'LAT subtypes harboring at least two 60-bp repeats. Thus, vaccine and oncogenic GaHV-2 strains consist of specific populations of viral genomes that are constantly evolving in vivo and in vitro and providing potential markers for epidemiological surveys.
Collapse
Affiliation(s)
- Jennifer Labaille
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Parc de Grandmont, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Reddy SM, Sun A, Khan OA, Lee LF, Lupiani B. Cloning of a very virulent plus, 686 strain of Marek's disease virus as a bacterial artificial chromosome. Avian Dis 2013; 57:469-73. [PMID: 23901763 DOI: 10.1637/10444-110412-resnote.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate propagation and manipulation of large DNA fragments. This technology was later used to clone full-length genomes of large DNA viruses to study viral gene function. Marek's disease virus (MDV) is a highly oncogenic herpesvirus that causes rapid induction of T-cell lymphomas in chickens. Based on the virus's ability to cause disease in vaccinated chickens, MDV strains are classified into pathotypes, with the most virulent strains belonging to the very virulent plus (vv+) pathotype. Here we report the construction of BAC clones of 686 (686-BAC), a vv+ strain of MDV. Transfection of DNA isolated from two independent clones into duck embryo fibroblasts resulted in recovery of infectious virus. Pathogenesis studies showed that the BAC-derived 686 viruses were more virulent than Md5, a vv strain of MDV. With the use of a two-step red-mediated mutagenesis process, both copies of viral interleukin 8 (vIL-8) were deleted from the MDV genome, showing that 686-BACs were amenable to mutagenesis techniques. The generation of BAC clones from a vv+ strain of MDV is a significant step toward understanding molecular basis of MDV pathogenesis.
Collapse
Affiliation(s)
- Sanjay M Reddy
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
15
|
Sequence analysis of the whole genome of a recombinant Marek's disease virus strain, GX0101, with a reticuloendotheliosis virus LTR insert. Arch Virol 2013; 158:2007-14. [PMID: 23553452 DOI: 10.1007/s00705-013-1671-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
Marek's disease virus Chinese strain GX0101, isolated in 2001, is the first reported recombinant gallid herpesvirus type 2 (GaHV-2) field strain with one reticuloendotheliosis virus (REV) long terminal repeat (LTR) insert. We constructed an infectious bacterial artificial chromosome (BAC) clone of GX0101, which showed characteristics very similar to those of the parental virus in replication and pathogenicity. Using the GX0101 BAC clone, the complete genome of GX0101 was sequenced and analyzed. The length of the GX0101 genome is 178,101 bp, and it contains only one REV-LTR insert at a site 267 bp upstream of the sorf2 gene.
Collapse
|
16
|
Complete genome sequence of a recombinant Marek's disease virus field strain with one reticuloendotheliosis virus long terminal repeat insert. J Virol 2013; 86:13818-9. [PMID: 23166235 DOI: 10.1128/jvi.02583-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) Chinese strain GX0101, isolated in 2001 from a vaccinated flock of layer chickens with severe tumors, was the first reported recombinant MDV field strain with one reticuloendotheliosis virus (REV) long terminal repeat (LTR) insert. GX0101 belongs to very virulent MDV (vvMDV) but has higher horizontal transmission ability than the vvMDV strain Md5. The complete genome sequence of GX0101 is 178,101 nucleotides (nt) and contains only one REV-LTR insert at a site 267 nt upstream of the sorf2 gene. Moreover, GX0101 has 5 repeats of a 217-nt fragment in its terminal repeat short (TRS) region and 3 repeats in internal repeat short (IRS) region, compared to the other 10 strains with only 1 or 2 repeats in both TRS and IRS.
Collapse
|
17
|
Spatz SJ, Volkening JD, Gimeno IM, Heidari M, Witter RL. Dynamic equilibrium of Marek's disease genomes during in vitro serial passage. Virus Genes 2012; 45:526-36. [PMID: 22923089 DOI: 10.1007/s11262-012-0792-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/14/2012] [Indexed: 01/31/2023]
Abstract
Attenuation of Gallid herpesvirus-2 (GaHV-2), the causative agent of Marek's disease, can occur through serial passage of a virulent field isolate in avian embryo fibroblasts. In order to gain a better understanding of the genes involved in attenuation and associate observed changes in phenotype with specific genetic variations, the genomic DNA sequence of a single GaHV-2 virulent strain (648A) was determined at defined passage intervals. Biological characterization of these "interval-isolates" in chickens previously indicated that the ability to induce transient paralysis was lost by passages 40 and the ability to induce persistent neurological disease was lost after passage 80, coincident with the loss of neoplastic lesion formation. Deep sequencing of the interval-isolates allowed for a detailed cataloguing of the mutations that exist within a single passage population and the frequency with which a given mutation occurs across passages. Gross genetic alterations were identified in both novel and well-characterized genes and cis-acting regions involved in replication and cleavage/packaging. Deletions in genes encoding the virulence factors vLipase, vIL8, and RLORF4, as well as a deletion in the promoter of ICP4, appeared between passages 61 and 101. Three mutations in the virus-encoded telomerase which predominated in late passages were also identified. Overall, the frequency of mutations fluctuated greatly during serial passage and few genetic changes were absolute. This indicates that serial passage of GaHV-2 results in the generation of a collection of genomes with limited sequence heterogeneity.
Collapse
Affiliation(s)
- Stephen J Spatz
- Southeast Poultry Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 934 College Station Rd, Athens, GA 30605, USA.
| | | | | | | | | |
Collapse
|
18
|
Cheng Y, Cong F, Zhang YP, Li ZJ, Xu NN, Hou GY, Liu CJ. Genome sequence determination and analysis of a Chinese virulent strain, LMS, of Gallid herpesvirus type 2. Virus Genes 2012; 45:56-62. [PMID: 22476905 DOI: 10.1007/s11262-012-0739-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
Marek's disease (MD) is a neoplastic and neurodegenerative disease of chickens, which is caused by the Gallid herpesvirus type 2 (GaHV-2). Although vaccination has been used widely in China, MD still occurs frequently. Some molecular epidemiologic studies have shown that Chinese GaHV-2 isolates seem to constitute a separate clade from strains isolated from other regions. However, more of a genomic background of the Chinese strains is necessary. In 2007, a virulent GaHV-2 field strain, named LMS, was isolated from diseased chicken flocks in the southwest of China. The whole genome sequence of LMS was determined to evaluate its genetic property. The genome of LMS is 177,526 bp long, and 197 open reading frames (ORFs) were predicted. Most of the ORFs have high sequence identity with homologous ORFs of reference strains. Two regions in the LMS genome are grossly different from other strains: the α-like region and the latency-associated transcripts (LATs) promoters. Evolutionary analysis demonstrated that LMS has a larger phylogenetic distance from most American isolated strains but a closer relationship with 648Ap80 and the European pC12/130 strain. The characterised genome of LMS provides further insight into the genetics of the Chinese GaHV-2 field strains, which is useful for the control of MD in China.
Collapse
Affiliation(s)
- Yun Cheng
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 2012; 4:211-35. [PMID: 22470833 PMCID: PMC3315213 DOI: 10.3390/v4020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
Collapse
|
20
|
Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res 2011; 160:316-25. [PMID: 21802458 DOI: 10.1016/j.virusres.2011.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 12/30/2022]
Abstract
We here report the complete genome sequence of the duck enteritis virus (DEV) wild-type strain 2085, an avian herpesvirus (GenBank ID: JF999965). The nucleotide sequence was derived from the 2085 genome cloned as an infectious bacterial artificial chromosome (BAC) clone. The DEV 2085 genome is 160,649-bp in length and encodes 78 predicted open reading frames (ORFs), a number identical to that identified for the attenuated DEV VAC strain (GenBank ID: EU082088.2). Comparison of the genome sequences DEV 2085 and VAC with partial sequences of the virulent CHv strain and the attenuated strain Clone-03 was carried out to identify nucleotide or amino acid polymorphisms that potentially contribute to DEV virulence. No amino acid changes were identified in 24 of the 78 ORFs, a result indicating high conservation in DEV independently of strain origin or virulence. In addition, 39 ORFs contain non-synonymous nucleotide substitutions, while 15 ORFs had nucleotide insertions or deletions, frame-shift mutations and/or non-synonymous nucleotide substitutions with an effect on ORF initiation or termination. In 7 of the 15 ORFs with high and 27 of the 39 ORFs with low variability, polymorphisms were exclusively found in DEV 2085, a finding that likely is a result of a different origin of 2085 (Europe) or VAC, Clone-03 and CHv (Eastern Asia). Five ORFs (UL2, UL12, US10, UL47 and UL41) with polymorphisms were identical between the virulent DEV 2085 and CHv but different from VAC or Clone-03. They, individually or in combination, may therefore represent DEV virulence factors. Our comparative analysis of four DEV sequences provides a comprehensive overview of DEV genome structure and identifies ORFs that are changed during serial virus passage.
Collapse
|