1
|
Guo W, Zhang C, Qiao T, Zhao J, Shi C. Strategies for the Construction of Mouse Models With Humanized Immune System and Evaluation of Tumor Immune Checkpoint Inhibitor Therapy. Front Oncol 2021; 11:673199. [PMID: 33996603 PMCID: PMC8117211 DOI: 10.3389/fonc.2021.673199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has been used as a first-line treatment for a variety of advanced tumors, allowing remarkable progress to be made in cancer treatment. Nonetheless, only a small number of patients can benefit from immune checkpoint inhibitor monotherapy. To improve the effect of immunotherapy, the underlying mechanism of combination therapy was investigated in the context of an intact human tumor immune microenvironment using mice with a human immune system (HIS) bearing human tumors. Herein, we summarize and discuss strategies for the development and use of HIS mice models in tumor immunotherapies. Most importantly, this review proposes a method of t11umor identification and classification in HIS mice based on the tumor-infiltrating lymphocytes and PD-L1 expression, and according to this classification, we propose different combination treatment strategies that can be utilized to enhance the effect of immunotherapy. Thus, we provide effective experimental schemes for tumor immunotherapy in HIS mice models.
Collapse
Affiliation(s)
- Wenwen Guo
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China.,School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
O’Connell AK, Douam F. Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises. Vaccines (Basel) 2020; 8:E36. [PMID: 31973073 PMCID: PMC7157703 DOI: 10.3390/vaccines8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor.
Collapse
Affiliation(s)
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
3
|
Das AT, Tenenbaum L, Berkhout B. Tet-On Systems For Doxycycline-inducible Gene Expression. Curr Gene Ther 2017; 16:156-67. [PMID: 27216914 PMCID: PMC5070417 DOI: 10.2174/1566523216666160524144041] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
The tetracycline-controlled Tet-Off and Tet-On gene expression systems are used to regulate the activity of genes in eukaryotic cells in diverse settings, varying from basic biological research to biotechnology and gene therapy applications. These systems are based on regulatory elements that control the activity of the tetracycline-resistance operon in bacteria. The Tet-Off system allows silencing of gene expression by administration of tetracycline (Tc) or tetracycline-derivatives like doxycycline (dox), whereas the Tet-On system allows activation of gene expression by dox. Since the initial design and construction of the original Tet-system, these bacterium-derived systems have been significantly improved for their function in eukaryotic cells. We here review how a dox-controlled HIV-1 variant was designed and used to greatly improve the activity and dox-sensitivity of the rtTA transcriptional activator component of the Tet-On system. These optimized rtTA variants require less dox for activation, which will reduce side effects and allow gene control in tissues where a relatively low dox level can be reached, such as the brain.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
4
|
van der Velden YU, Kleibeuker W, Harwig A, Klaver B, Siteur-van Rijnstra E, Frankin E, Berkhout B, Das AT. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements. Virology 2015; 488:96-107. [PMID: 26615334 DOI: 10.1016/j.virol.2015.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022]
Abstract
Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication.
Collapse
Affiliation(s)
- Yme U van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wendy Kleibeuker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bep Klaver
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Siteur-van Rijnstra
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esmay Frankin
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Conditionally replicating HIV and SIV variants. Virus Res 2015; 216:66-75. [PMID: 25982510 DOI: 10.1016/j.virusres.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/11/2023]
Abstract
Conditionally replicating human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) variants that can be switched on and off at will are attractive tools for HIV and SIV research. We constructed HIV and SIV variants in which the natural transcription control mechanism was replaced by the doxycycline (dox)-inducible Tet-On gene expression mechanism. These HIV-rtTA and SIV-rtTA variants are fully replication-competent, but replication is critically dependent on dox administration. We here describe how the dox-dependent virus variants may improve the safety of live-attenuated virus vaccines and how they can be used to study the immune responses that correlate with vaccine-induced protection. Furthermore, we review how these variants were initially designed and subsequently optimized by spontaneous viral evolution. These efforts yielded efficiently replicating and tightly dox-controlled HIV-rtTA and SIV-rtTA variants that replicate in a variety of cell and tissue culture systems, and in human immune system (HIS) mice and macaques, respectively. These viruses can be used as a tool in HIV and SIV biology studies and in vaccine research. We review how HIV-rtTA and SIV-rtTA were used to study the role of the viral TAR and Tat elements in virus replication.
Collapse
|
6
|
Centlivre M, Combadière B. New challenges in modern vaccinology. BMC Immunol 2015; 16:18. [PMID: 25879661 PMCID: PMC4374378 DOI: 10.1186/s12865-015-0075-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Vaccination has been a major advance for health care, allowing eradication or reduction of incidence and mortality of various infectious diseases. However, there are major pathogens, such as Human Immunodeficiency Virus (HIV) or the causative agent of malaria, for which classical vaccination approaches have failed, therefore requiring new vaccination strategies. The development of new vaccine strategies relies on the ability to identify the challenges posed by these pathogens. Understanding the pathogenesis and correlates of protection for these diseases, our ability to accurately direct immune responses and to vaccinate specific populations are such examples of these roadblocks. In this respect, the use of a robust, cost-effective and predictive animal model that recapitulates features of both human infection and vaccination is currently a much-needed tool. We discuss here the major limitations faced by modern vaccinology and notably, the development of humanized mice for assessing the immune system, along with their potential as vaccine models.
Collapse
Affiliation(s)
- Mireille Centlivre
- Sorbonne Universités, UPMC University Paris 06, UMR_S CR7, Centre d'Immunologie et des Maladies Infectieuses- Paris, F-75013, Paris, France. .,Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Béhazine Combadière
- Sorbonne Universités, UPMC University Paris 06, UMR_S CR7, Centre d'Immunologie et des Maladies Infectieuses- Paris, F-75013, Paris, France. .,Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
7
|
Hagen CJ, Titong A, Sarnoski EA, Verardi PH. Antibiotic-dependent expression of early transcription factor subunits leads to stringent control of vaccinia virus replication. Virus Res 2014; 181:43-52. [PMID: 24394294 DOI: 10.1016/j.virusres.2013.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022]
Abstract
The use of vaccinia virus (VACV) as the vaccine against variola virus resulted in the eradication of smallpox. VACV has since been used in the development of recombinant vaccine and therapeutic vectors, but complications associated with uncontrolled viral replication have constrained its use as a live viral vector. We propose to improve the safety of VACV as a live-replicating vector by using elements of the tet operon to control the transcription of genes that are essential for viral growth. Poxviruses encode all enzymes and factors necessary for their replication within the host cell cytoplasm. One essential VACV factor is the vaccinia early transcription factor (VETF) packaged into the viral core. This heterodimeric protein is required for expression of early VACV genes. VETF is composed of a large subunit encoded by the A7L gene and a small subunit encoded by the D6R gene. Two recombinant VACVs were generated in which either the A7L or D6R gene was placed under the control of tet operon elements to allow their transcription, and therefore viral replication, to be dependent on tetracycline antibiotics such as doxycycline. In the absence of inducers, no plaques were produced but abortively infected cells could be identified by expression of a reporter gene. In the presence of doxycycline, both recombinant viruses replicated indistinguishably from the wild-type strain. This stringent control of VACV replication can be used for the development of safer, next-generation VACV vaccines and therapeutic vectors. Such replication-inducible VACVs would only replicate when administered with tetracycline antibiotics, and if adverse events were to occur, treatment would be as simple as antibiotic cessation.
Collapse
Affiliation(s)
- Caitlin J Hagen
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Allison Titong
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Ethan A Sarnoski
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States
| | - Paulo H Verardi
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|