1
|
Noris E, Pegoraro M, Palzhoff S, Urrejola C, Wochner N, Kober S, Ruoff K, Matić S, Schnepf V, Weisshaar N, Wege C. Differential Effects of RNA-Dependent RNA Polymerase 6 (RDR6) Silencing on New and Old World Begomoviruses in Nicotiana benthamiana. Viruses 2023; 15:v15040919. [PMID: 37112899 PMCID: PMC10143181 DOI: 10.3390/v15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
RNA-dependent RNA polymerases (RDRs) are key players in the antiviral defence mediated by RNA silencing in plants. RDR6 is one of the major components of the process, regulating the infection of certain RNA viruses. To better clarify its function against DNA viruses, we analyzed the effect of RDR6 inactivation (RDR6i) in N. benthamiana plants on two phloem-limited begomoviruses, the bipartite Abutilon mosaic virus (AbMV) and the monopartite tomato yellow leaf curl Sardinia virus (TYLCSV). We observed exacerbated symptoms and DNA accumulation for the New World virus AbMV in RDR6i plants, varying with the plant growth temperature (ranging from 16 °C to 33 °C). However, for the TYLCSV of Old World origin, RDR6 depletion only affected symptom expression at elevated temperatures and to a minor extent; it did not affect the viral titre. The accumulation of viral siRNA differed between the two begomoviruses, being increased in RDR6i plants infected by AbMV but decreased in those infected by TYLCSV compared to wild-type plants. In situ hybridization revealed a 6.5-fold increase in the number of AbMV-infected nuclei in RDR6i plants but without egress from the phloem tissues. These results support the concept that begomoviruses adopt different strategies to counteract plant defences and that TYLCSV evades the functions exerted by RDR6 in this host.
Collapse
Affiliation(s)
- Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Sandra Palzhoff
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Catalina Urrejola
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Nicolai Wochner
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Sigi Kober
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Kerstin Ruoff
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Vera Schnepf
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Nina Weisshaar
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
2
|
Fiallo-Olivé E, Navas-Castillo J. The Role of Extensive Recombination in the Evolution of Geminiviruses. Curr Top Microbiol Immunol 2023; 439:139-166. [PMID: 36592245 DOI: 10.1007/978-3-031-15640-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutation, recombination and pseudo-recombination are the major forces driving the evolution of viruses by the generation of variants upon which natural selection, genetic drift and gene flow can act to shape the genetic structure of viral populations. Recombination between related virus genomes co-infecting the same cell usually occurs via template swapping during the replication process and produces a chimeric genome. The family Geminiviridae shows the highest evolutionary success among plant virus families, and the common presence of recombination signatures in their genomes reveals a key role in their evolution. This review describes the general characteristics of members of the family Geminiviridae and associated DNA satellites, as well as the extensive occurrence of recombination at all taxonomic levels, from strain to family. The review also presents an overview of the recombination patterns observed in nature that provide some clues regarding the mechanisms involved in the generation and emergence of recombinant genomes. Moreover, the results of experimental evolution studies that support some of the conclusions obtained in descriptive or in silico works are summarized. Finally, the review uses a number of case studies to illustrate those recombination events with evolutionary and pathological implications as well as recombination events in which DNA satellites are involved.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
3
|
Jammes M, Urbino C, Diouf MB, Peterschmitt M. Refining the emergence scenario of the invasive recombinant Tomato yellow leaf curl virus -IS76. Virology 2023; 578:71-80. [PMID: 36473279 DOI: 10.1016/j.virol.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
TYLCV-IS76, a unique recombinant between tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), has replaced its parental viruses in southern Morocco. To refine its emergence scenario, its fitness was monitored experimentally in conditions aiming at reproducing natural situations, i.e. superinfection of plants already infected with parental viruses and competition with other TYLCV/TYLCSV recombinants (LSRec) automatically generated in plants coinfected with TYLCV and TYLCSV. TYLCV-IS76 accumulated significantly more than parental viruses regardless of plant age and superinfection delay. Although TYLCV-IS76 and LSRec both accumulated more than parental viruses in laboratory conditions, LSRec were displaced by TYLCV-IS76 in nature like parental viruses were. TYLCV-IS76 did not exhibit any vector transmission advantage over LSRec and TYLCV the most competitive parental virus. Thus, it is apparently only in the plant compartment that the recombination event that generated TYLCV-IS76, induced the competitiveness advantage by which the last became first.
Collapse
Affiliation(s)
- Margaux Jammes
- CIRAD, UMR PHIM, F-34398, Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Cica Urbino
- CIRAD, UMR PHIM, F-34398, Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Mame Boucar Diouf
- CIRAD, UMR PHIM, F-34398, Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Michel Peterschmitt
- CIRAD, UMR PHIM, F-34398, Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| |
Collapse
|
4
|
Devi OP, Sharma SK, Sanatombi K, Devi KS, Pathaw N, Roy SS, Chanu NT, Sanabam R, Devi HC, Singh AR, Baranwal VK. A Simplified Multiplex PCR Assay for Simultaneous Detection of Six Viruses Infecting Diverse Chilli Species in India and Its Application in Field Diagnosis. Pathogens 2022; 12:pathogens12010006. [PMID: 36678354 PMCID: PMC9861913 DOI: 10.3390/pathogens12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Chilli is infected by at least 65 viruses globally, with a mixed infection of multiple viruses leading to severe losses being a common occurrence. A simple diagnostic procedure that can identify multiple viruses at once is required to track their spread, initiate management measures and manage them using virus-free planting supplies. The present study, for the first time, reports a simplified and robust multiplex PCR (mPCR) assay for the simultaneous detection of five RNA viruses, capsicum chlorosis orthotospovirus (CaCV), chilli veinal mottle virus (ChiVMV), large cardamom chirke virus (LCCV), cucumber mosaic virus (CMV), and pepper mild mottle virus (PMMoV), and a DNA virus, chilli leaf curl virus (ChiLCV) infecting chilli. The developed mPCR employed six pairs of primer from the conserved coat protein (CP) region of the respective viruses. Different parameters viz., primer concentration (150-450 nM) and annealing temperature (50 °C), were optimized in order to achieve specific and sensitive amplification of the target viruses in a single reaction tube. The detection limit of the mPCR assay was 5.00 pg/µL to simultaneously detect all the target viruses in a single reaction, indicating a sufficient sensitivity of the developed assay. The developed assay showed high specificity and showed no cross-amplification. The multiplex PCR assay was validated using field samples collected across Northeast India. Interestingly, out of 61 samples collected across the northeastern states, only 22 samples (36%) were positive for single virus infection while 33 samples (54%) were positive for three or more viruses tested in mPCR, showing the widespread occurrence of mixed infection under field conditions. To the best of our knowledge, this is the first report on the development and field validation of the mPCR assay for six chilli viruses and will have application in routine virus indexing and virus management.
Collapse
Affiliation(s)
- Oinam Priyoda Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, India
| | - Susheel Kumar Sharma
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence:
| | | | - Konjengbam Sarda Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | - Neeta Pathaw
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | - Subhra Saikat Roy
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | | | - Rakesh Sanabam
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal 795004, India
| | | | | | - Virendra Kumar Baranwal
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
5
|
Marchant WG, Gautam S, Dutta B, Srinivasan R. Whitefly-Mediated Transmission and Subsequent Acquisition of Highly Similar and Naturally Occurring Tomato Yellow Leaf Curl Virus Variants. PHYTOPATHOLOGY 2022; 112:720-728. [PMID: 34370554 DOI: 10.1094/phyto-06-21-0248-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Begomoviruses are whitefly-transmitted viruses that infect many agricultural crops. Numerous reports exist on individual host plants harboring two or more begomoviruses. Mixed infection allows recombination events to occur among begomoviruses. However, very few studies have examined mixed infection of different isolates/variants/strains of a Begomovirus species in hosts. In this study, the frequency of mixed infection of tomato yellow leaf curl virus (TYLCV) variants in field-grown tomato was evaluated. At least 60% of symptomatic field samples were infected with more than one TYLCV variant. These variants differed by a few nucleotides and amino acids, resembling a quasispecies. Subsequently, in the greenhouse, single and mixed infection of two TYLCV variants (variant #2 and variant #4) that shared 99.5% nucleotide identity and differed by a few amino acids was examined. Plant-virus variant-whitefly interactions including transmission of one and/or two variants, variants' concentrations, competition between variants in inoculated tomato plants, and whitefly acquisition of one and/or two variants were assessed. Whiteflies transmitted both variants to tomato plants at similar frequencies; however, the accumulation of variant #4 was greater than that of variant #2 in tomato plants. Despite differences in variants' accumulation in inoculated tomato plants, whiteflies acquired variant #2 and variant #4 at similar frequencies. Also, whiteflies acquired greater amounts of TYLCV from singly infected plants than from mixed-infected plants. These results demonstrated that even highly similar TYLCV variants could differentially influence component (whitefly-variant-plant) interactions.
Collapse
Affiliation(s)
- Wendy G Marchant
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | | |
Collapse
|
6
|
Panno S, Caruso AG, Bertacca S, Matić S, Davino S, Parrella G. Detection of Parietaria Mottle Virus by RT-qPCR: An Emerging Virus Native of Mediterranean Area That Undermine Tomato and Pepper Production in Southern Italy. FRONTIERS IN PLANT SCIENCE 2021; 12:698573. [PMID: 34539693 PMCID: PMC8446651 DOI: 10.3389/fpls.2021.698573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Parietaria mottle virus (PMoV) is considered an emerging virus in many countries of the Mediterranean basin, especially on tomato and pepper crops. Symptoms on tomato leaves and fruits can be easily confused with those induced by cucumber mosaic virus (CMV) with necrogenic satellite RNA (CMV-satRNA), tomato spotted wilt virus (TSWV) or tomato mosaic virus (ToMV). Mixed infection of these viruses has been also reported in some tomato cultivars, with an increase in the complexity of the symptoms and severity of the disease. Although a specific serum and riboprobes have been produced, nowadays no sensitive diagnostic methods are available for the rapid PMoV detection. Here, we have developed a RT-qPCR assay with the aim to establish a more sensitive and specific method for PMoV detection. Specific primers and TaqMan probe were designed and in silico tested with all PMoV isolates available in GenBank. Moreover, this method was evaluated on tomato naturally infected samples from Sicily region (Italy). Results obtained showed that the RT-qPCR assay developed in this work is extremely sensitive, in fact, it is able to detect as few as 10 PMoV RNA copies in tomato total RNA; moreover, it will be a particularly valuable tool for early detection of PMoV. Furthermore, the analyzes on field samples show how this pathogen is increasingly present in tomato crops in the last years, helping to undermine the Italian horticultural sector.
Collapse
Affiliation(s)
- Stefano Panno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Science and Technologies, University of Palermo, Palermo, Italy
| | - Andrea Giovanni Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Sofia Bertacca
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Salvatore Davino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
- Consorzio di Ricerca sul Rischio Biologico in Agricoltura (Co.Ri.Bi.A.), Palermo, Italy
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Portici, Italy
| |
Collapse
|
7
|
Miozzi L, Vaira AM, Brilli F, Casarin V, Berti M, Ferrandino A, Nerva L, Accotto GP, Lanfranco L. Arbuscular Mycorrhizal Symbiosis Primes Tolerance to Cucumber Mosaic Virus in Tomato. Viruses 2020; 12:E675. [PMID: 32580438 PMCID: PMC7354615 DOI: 10.3390/v12060675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/30/2023] Open
Abstract
Tomato plants can establish symbiotic interactions with arbuscular mycorrhizal fungi (AMF) able to promote plant nutrition and prime systemic plant defenses against pathogens attack; the mechanism involved is known as mycorrhiza-induced resistance (MIR). However, studies on the effect of AMF on viral infection, still limited and not conclusive, indicate that AMF colonization may have a detrimental effect on plant defenses against viruses, so that the term "mycorrhiza-induced susceptibility" (MIS) has been proposed for these cases. To expand the case studies to a not yet tested viral family, that is, Bromoviridae, we investigated the effect of the colonization by the AMF Funneliformis mosseae on cucumber mosaic virus (CMV) infection in tomato by phenotypic, physiological, biochemical, and transcriptional analyses. Our results showed that the establishment of a functional AM symbiosis is able to limit symptoms development. Physiological and transcriptomic data highlighted that AMF mitigates the drastic downregulation of photosynthesis-related genes and the reduction of photosynthetic CO2 assimilation rate caused by CMV infection. In parallel, an increase of salicylic acid level and a modulation of reactive oxygen species (ROS)-related genes, toward a limitation of ROS accumulation, was specifically observed in CMV-infected mycorrhizal plants. Overall, our data indicate that the AM symbiosis influences the development of CMV infection in tomato plants and exerts a priming effect able to enhance tolerance to viral infection.
Collapse
Affiliation(s)
- Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Unit of Sesto Fiorentino (FI), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy;
| | - Valerio Casarin
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Mara Berti
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy;
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
8
|
Urbino C, Regragui ZF, Granier M, Peterschmitt M. Fitness advantage of inter-species TYLCV recombinants induced by beneficial intra-genomic interactions rather than by specific mutations. Virology 2020; 542:20-27. [PMID: 31957662 DOI: 10.1016/j.virol.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 11/19/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) and its related viruses are prone to recombination. It was reported that random homologous recombination between 20% diverging TYLCV related species is rarely deleterious and may be associated with a fitness advantage. Indeed, TYLCV-IS76, a recombinant between the 20% divergent TYLCV and tomato yellow leaf curl Sardinia virus (TYLCSV), exhibited a higher fitness than that of parental viruses. As this typical fitness advantage was observed with TYLCV-IS76 representatives of different pedigrees, it was thought that it is induced by beneficial intra-genomic interactions rather than by specific mutations. This hypothesis was further supported with TYLCV-IS141, a TYLCV recombinant with a short TYLCSV inherited fragment of around 141 nts, slightly longer than that of TYLCV-IS76. Indeed, the typical fitness advantage was detected irrespective of the position of the recombination breakpoint (loci 76 or 141) and the sequences of the TYLCV and TYLCSV inherited fragments.
Collapse
Affiliation(s)
- Cica Urbino
- CIRAD, UMR BGPI, Montpellier, France; BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Zohra Fatima Regragui
- CIRAD, UMR BGPI, Montpellier, France; BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Martine Granier
- CIRAD, UMR BGPI, Montpellier, France; BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Michel Peterschmitt
- CIRAD, UMR BGPI, Montpellier, France; BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
10
|
Panno S, Ruiz-Ruiz S, Caruso AG, Alfaro-Fernandez A, Font San Ambrosio MI, Davino S. Real-time reverse transcription polymerase chain reaction development for rapid detection of Tomato brown rugose fruit virus and comparison with other techniques. PeerJ 2019; 7:e7928. [PMID: 31637144 PMCID: PMC6800982 DOI: 10.7717/peerj.7928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Tomato brown rugose fruit virus (ToBRFV) is a highly infectious tobamovirus that causes severe disease in tomato (Solanum lycopersicum L.) crops. In Italy, the first ToBRFV outbreak occurred in 2018 in several provinces of the Sicily region. ToBRFV outbreak represents a serious threat for tomato crops in Italy and the Mediterranean Basin. Methods Molecular and biological characterisation of the Sicilian ToBRFV ToB-SIC01/19 isolate was performed, and a sensitive and specific Real-time RT-PCR TaqMan minor groove binder probe method was developed to detect ToBRFV in infected plants and seeds. Moreover, four different sample preparation procedures (immunocapture, total RNA extraction, direct crude extract and leaf-disk crude extract) were evaluated. Results The Sicilian isolate ToB-SIC01/19 (6,391 nt) showed a strong sequence identity with the isolates TBRFV-P12-3H and TBRFV-P12-3G from Germany, Tom1-Jo from Jordan and TBRFV-IL from Israel. The ToB-SIC01/19 isolate was successfully transmitted by mechanical inoculations in S. lycopersicum L. and Capsicum annuum L., but no transmission occurred in S. melongena L. The developed real-time RT-PCR, based on the use of a primer set designed on conserved sequences in the open reading frames3, enabled a reliable quantitative detection. This method allowed clear discrimination of ToBRFV from other viruses belonging to the genus Tobamovirus, minimising false-negative results. Using immunocapture and total RNA extraction procedures, the real-time RT-PCR and end-point RT-PCR gave the same comparable results. Using direct crude extracts and leaf-disk crude extracts, the end-point RT-PCR was unable to provide a reliable result. This developed highly specific and sensitive real-time RT-PCR assay will be a particularly valuable tool for early ToBRFV diagnosis, optimising procedures in terms of costs and time.
Collapse
Affiliation(s)
- Stefano Panno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy.,Molecular Dynamics srl, RAGUSA, Italy
| | - Susana Ruiz-Ruiz
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, Valencia, Spain
| | - Andrea Giovanni Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Ana Alfaro-Fernandez
- Instituto Agroforestal Mediteráneo, Universitat Politécnica de València (IAM-UPV), Valencia, Spain
| | | | - Salvatore Davino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy.,Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| |
Collapse
|
11
|
Fiallo-Olivé E, Trenado HP, Louro D, Navas-Castillo J. Recurrent speciation of a tomato yellow leaf curl geminivirus in Portugal by recombination. Sci Rep 2019; 9:1332. [PMID: 30718735 PMCID: PMC6362282 DOI: 10.1038/s41598-018-37971-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
Recurrent evolution can involve interspecific interactions, recognized to play a primary role in the diversification and organization of life. Both in the plant and animal kingdoms, the recurrent formation of allopolyploid species has been described. In the virosphere, recombination between isolates of different species has been shown to be a source of speciation. In this work, complete genome analysis showed that speciation through recombination of an emergent DNA plant virus, tomato yellow leaf curl Malaga virus (genus Begomovirus, family Geminiviridae), has occurred independently in Portugal and Spain, confirming previous observations with tomato yellow leaf curl Axarquia virus, also originated independently in Spain and Italy. These results will guide future research to discover new cases of recurrent emergence of recombinant virus species in geographical areas where the putative parents co-exist or can be introduced. This will reveal the role that recurrent speciation through recombination plays in the evolution of the virosphere and will help to understand the consequences of this phenomenon on the diversification of life.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga (IHSM-CSIC-UMA), Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain
| | - Helena P Trenado
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga (IHSM-CSIC-UMA), Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain
| | - Diamantina Louro
- Instituto Nacional dos Recursos Biológicos (INRB), Quinta do Marquês, Oeiras, Portugal
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga (IHSM-CSIC-UMA), Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
12
|
Díaz-Pendón JA, Sánchez-Campos S, Fortes IM, Moriones E. Tomato Yellow Leaf Curl Sardinia Virus, a Begomovirus Species Evolving by Mutation and Recombination: A Challenge for Virus Control. Viruses 2019; 11:E45. [PMID: 30634476 PMCID: PMC6356960 DOI: 10.3390/v11010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
The tomato leaf curl disease (TYLCD) is associated with infections of several species of begomoviruses (genus Begomovirus, family Geminiviridae) and causes severe damage to tomatoes throughout tropical and sub-tropical regions of the world. Among others, the Tomato yellow leaf curl Sardinia virus (TYLCSV) species causes damage in the Mediterranean Basin since early outbreaks occurred. Nevertheless, scarce information is available about the diversity of TYLCSV. Here, we study this aspect based on the sequence information accessible in databases. Isolates of two taxonomically differentiated TYLCSV strains can be found in natural epidemics. Their evolution is mostly associated with mutation combined with selection and random genetic drift and also with inter-species recombination which is frequent in begomoviruses. Moreover, a novel putative inter-strain recombinant is reported. Although no significantly new biological behaviour was observed for this latter recombinant, its occurrence supports that as shown for other related begomoviruses, recombination continues to play a central role in the evolution of TYLCD-associated viruses and the dynamism of their populations. The confrontation of resistant tomatoes with isolates of different TYLCD-associated viruses including the novel recombinant demonstrates the existence of a variable virus x plant genotype interaction. This has already been observed for other TYLCD-associated viruses and is a challenge for the control of their impact on tomato production.
Collapse
Affiliation(s)
- Juan A Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Sonia Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Isabel María Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| |
Collapse
|
13
|
Panno S, Caruso AG, Davino S. The nucleotide sequence of a recombinant tomato yellow leaf curl virus strain frequently detected in Sicily isolated from tomato plants carrying the Ty-1 resistance gene. Arch Virol 2017; 163:795-797. [PMID: 29209811 DOI: 10.1007/s00705-017-3674-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
In July 2016, an aggressive syndrome of tomato yellow leaf curl disease was reported in Sicily in tomato plants carrying the Ty-1 resistance gene. A total of 34 samples were collected and analyzed. Twenty-seven out of the 34 samples analyzed appeared to contain only recombinant molecules. One full sequence was obtained after cloning. Alignments and plot similarity analysis showed that the genome of the recombinant, named TYLCV-IL[IT:Sic23:16], was mostly derived from tomato yellow leaf curl virus (TYLCV), with a small region of 132 nucleotides in the non-coding region between the stem-loop and the start of the V2 ORF replaced by 124 nucleotides derived from a virus of a different species, tomato yellow leaf curl Sardinia virus. All plants in which the new recombinant was detected belonged to resistant tomato cultivars.
Collapse
Affiliation(s)
- Stefano Panno
- Department of Agricultural, Food and Forest science, University of Palermo, Viale delle Scienze, bld 5, 90128, Palermo, Italy
| | - Andrea Giovanni Caruso
- Department of Agricultural, Food and Forest science, University of Palermo, Viale delle Scienze, bld 5, 90128, Palermo, Italy
| | - Salvatore Davino
- Department of Agricultural, Food and Forest science, University of Palermo, Viale delle Scienze, bld 5, 90128, Palermo, Italy. .,Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Turin, Italy.
| |
Collapse
|
14
|
Belabess Z, Urbino C, Granier M, Tahiri A, Blenzar A, Peterschmitt M. The typical RB76 recombination breakpoint of the invasive recombinant tomato yellow leaf curl virus of Morocco can be generated experimentally but is not positively selected in tomato. Virus Res 2017; 243:44-51. [PMID: 28988981 DOI: 10.1016/j.virusres.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
TYLCV-IS76 is an unusual recombinant between the highly recombinogenic tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), two Mediterranean begomoviruses (Geminiviridae). In contrast with the previously reported TYLCV/TYLCSV recombinants, it has a TYLCSV derived fragment of only 76 nucleotides, and has replaced its parental viruses in natural conditions (Morocco, Souss region). The viral population shift coincided with the deployment of the popular Ty-1 resistant tomato cultivars, and according to experimental studies, has been driven by a strong positive selection in such resistant plants. However, although Ty-1 cultivars were extensively used in Mediterranean countries, TYLCV-IS76 was not reported outside Morocco. This, in combination with its unusual recombination pattern suggests that it was generated through a rare and possibly multistep process. The potential generation of a recombination breakpoint (RB) at locus 76 (RB76) was investigated over time in 10 Ty-1 resistant and 10 nearly isogenic susceptible tomato plants co-inoculated with TYLCV and TYLCSV clones. RB76 could not be detected in the recombinant progeny using the standard PCR/sequencing approach that was previously designed to monitor the emergence of TYLCV-IS76 in Morocco. Using a more sensitive PCR test, RB76 was detected in one resistant and five susceptible plants. The results are consistent with a very low intra-plant frequency of RB76 bearing recombinants throughout the test and support the hypothesis of a rare emergence of TYLCV-IS76. More generally, RBs were more scattered in resistant than in susceptible plants and an unusual RB at position 141 (RB141) was positively selected in the resistant cultivar; interestingly, RB141 bearing recombinants were detected in resistant tomato plants from the field. Scenarios of TYLCV-IS76 pre-emergence are proposed.
Collapse
Affiliation(s)
- Z Belabess
- CIRAD, UMR BGPI, 34398 Montpellier, France; Ecole Nationale d'Agriculture de Meknès, BPS 40 Meknès, Morocco; Faculté des Sciences de Meknès, BP 11201, Avenue Zitoune, Meknès, Morocco
| | - C Urbino
- CIRAD, UMR BGPI, 34398 Montpellier, France
| | - M Granier
- CIRAD, UMR BGPI, 34398 Montpellier, France
| | - A Tahiri
- Ecole Nationale d'Agriculture de Meknès, BPS 40 Meknès, Morocco
| | - A Blenzar
- Faculté des Sciences de Meknès, BP 11201, Avenue Zitoune, Meknès, Morocco
| | | |
Collapse
|
15
|
Belabess Z, Peterschmitt M, Granier M, Tahiri A, Blenzar A, Urbino C. The non-canonical tomato yellow leaf curl virus recombinant that displaced its parental viruses in southern Morocco exhibits a high selective advantage in experimental conditions. J Gen Virol 2016; 97:3433-3445. [DOI: 10.1099/jgv.0.000633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zineb Belabess
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
- Ecole Nationale d'Agriculture de Meknès, BPS 40, Meknès, Morocco
- Faculté des Sciences de Meknès BP 11201, Avenue Zitoune, Meknès, Morocco
| | - Michel Peterschmitt
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Martine Granier
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | | | - Abdelali Blenzar
- Faculté des Sciences de Meknès BP 11201, Avenue Zitoune, Meknès, Morocco
| | - Cica Urbino
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| |
Collapse
|
16
|
Monitoring the dynamics of emergence of a non-canonical recombinant of Tomato yellow leaf curl virus and displacement of its parental viruses in tomato. Virology 2015; 486:291-306. [DOI: 10.1016/j.virol.2015.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/13/2015] [Accepted: 09/22/2015] [Indexed: 11/23/2022]
|
17
|
Lefeuvre P, Moriones E. Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr Opin Virol 2015; 10:14-9. [DOI: 10.1016/j.coviro.2014.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
|
18
|
Walia JJ, Willemsen A, Elci E, Caglayan K, Falk BW, Rubio L. Genetic variation and possible mechanisms driving the evolution of worldwide fig mosaic virus isolates. PHYTOPATHOLOGY 2014; 104:108-14. [PMID: 24571394 DOI: 10.1094/phyto-05-13-0145-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fig mosaic virus (FMV) is a multipartite negative-sense RNA virus infecting fig trees worldwide. FMV is transmitted by vegetative propagation and grafting of plant materials, and by the eriophyid mite Aceria ficus. In this work, the genetic variation and evolutionary mechanisms shaping FMV populations were characterized. Nucleotide sequences from four genomic regions (each within the genomic RNAs 1, 2, 3, and 4) from FMV isolates from different countries were determined and analyzed. FMV genetic variation was low, as is seen for many other plant viruses. Phylogenetic analysis showed some geographically distant FMV isolates which clustered together, suggesting long-distance migration. The extent of migration was limited, although varied, between countries, such that FMV populations of different countries were genetically differentiated. Analysis using several recombination algorithms suggests that genomes of some FMV isolates originated by reassortment of genomic RNAs from different genetically similar isolates. Comparison between nonsynonymous and synonymous substitutions showed selection acting on some amino acids; however, most evolved neutrally. This and neutrality tests together with the limited gene flow suggest that genetic drift plays an important role in shaping FMV populations.
Collapse
|
19
|
Detection and identification of Fabavirus species by one-step RT-PCR and multiplex RT-PCR. J Virol Methods 2013; 197:77-82. [PMID: 24361876 DOI: 10.1016/j.jviromet.2013.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/04/2013] [Accepted: 12/10/2013] [Indexed: 11/21/2022]
Abstract
The genus Fabavirus of the family Secoviridae comprises a group of poorly characterized viruses. To date, only five species have been described: Broad bean wilt virus 1 (BBWV-1), Broad bean wilt virus 2 (BBWV-2), Lamium mild mosaic virus (LMMV), Gentian mosaic virus (GeMV) and Cucurbit mild mosaic virus (CuMMV). The development is described of two RT-PCR procedures for the detection and identification of Fabavirus species: a one-step RT-PCR using a single pair of conserved primers for the detection of all fabaviruses, and a one-step multiplex RT-PCR using species-specific primers for the simultaneous detection and identification of the above-mentioned species of the genus Fabavirus. These methods were applied successfully to field samples and the results were compared with those obtained by molecular hybridization and ELISA. The combination of the two techniques enables rapid, sensitive and reliable identification of the five known fabavirus species, as well as the possibility of discovering new species of this genus.
Collapse
|
20
|
Urbino C, Gutiérrez S, Antolik A, Bouazza N, Doumayrou J, Granier M, Martin DP, Peterschmitt M. Within-host dynamics of the emergence of Tomato yellow leaf curl virus recombinants. PLoS One 2013; 8:e58375. [PMID: 23472190 PMCID: PMC3589402 DOI: 10.1371/journal.pone.0058375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection–a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results anticipate the outcomes of natural encounters between TYLCV and ToLCKMV.
Collapse
|