1
|
Bird JT, Margulieux KR, Burke KA, Mzhavia N, Kevorkian RT, Ellison DW, Nikolich MP, Filippov AA. Genome Sequence of Staphylococcus aureus Phage ESa2. Microbiol Resour Announc 2023:e0019223. [PMID: 37338419 DOI: 10.1128/mra.00192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
We describe the genome of a lytic phage, ESa2, isolated from environmental water and specific for Staphylococcus aureus. ESa2 belongs to the family Herelleviridae and genus Kayvirus. Its genome consists of 141,828 bp, with 30.25% GC content, 253 predicted protein-coding sequences, 3 tRNAs, and 10,130-bp-long terminal repeats.
Collapse
Affiliation(s)
- Jordan T Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Katie R Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kevin A Burke
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Richard T Kevorkian
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Damon W Ellison
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrey A Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Shimamori Y, Pramono AK, Kitao T, Suzuki T, Aizawa SI, Kubori T, Nagai H, Takeda S, Ando H. Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Curr Microbiol 2021; 78:1267-1276. [PMID: 33638001 PMCID: PMC7997843 DOI: 10.1007/s00284-021-02395-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The bacterium Staphylococcus aureus, which colonizes healthy human skin, may cause diseases, such as atopic dermatitis (AD). Treatment for such AD cases involves antibiotic use; however, alternate treatments are preferred owing to the development of antimicrobial resistance. This study aimed to characterize the novel bacteriophage SaGU1 as a potential agent for phage therapy to treat S. aureus infections. SaGU1 that infects S. aureus strains previously isolated from the skin of patients with AD was screened from sewage samples in Gifu, Japan. Its genome was sequenced and analyzed using bioinformatics tools, and the morphology, lytic activity, stability, and host range of the phage were determined. The SaGU1 genome was 140,909 bp with an average GC content of 30.2%. The viral chromosome contained 225 putative protein-coding genes and four tRNA genes, carrying neither toxic nor antibiotic resistance genes. Electron microscopy analysis revealed that SaGU1 belongs to the Myoviridae family. Stability tests showed that SaGU1 was heat-stable under physiological and acidic conditions. Host range testing revealed that SaGU1 can infect a broad range of S. aureus clinical isolates present on the skin of AD patients, whereas it did not kill strains of Staphylococcus epidermidis, which are symbiotic resident bacteria on human skin. Hence, our data suggest that SaGU1 is a potential candidate for developing a phage therapy to treat AD caused by pathogenic S. aureus.
Collapse
Affiliation(s)
- Yuzuki Shimamori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ajeng K Pramono
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Tohru Suzuki
- Genome Microbiology Laboratory, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Shin-Ichi Aizawa
- Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Shigeki Takeda
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.
| |
Collapse
|
3
|
Song J, Niu W, Wu R, Wang J, Lei L, Han W, Gu J. The Phage Holin HolGH15 Exhibits Potential As an Antibacterial Agent to Control Listeria monocytogenes. Foodborne Pathog Dis 2020; 18:574-581. [PMID: 32955931 DOI: 10.1089/fpd.2020.2833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen that is a serious threat to public health security, and new strategies to control this bacterium in food are needed. HolGH15, derived from Staphylococcus aureus phage GH15, has shown antibacterial activity against several bacterial species. In this work, the antilisterial behavior and effectiveness of HolGH15 are further studied. To elucidate its antimicrobial modes against L. monocytogenes, cell integrity and membrane permeabilization assays were performed. When treated with HolGH15, the release of 260-nm-absorbing materials of L. monocytogenes was rapidly increased. HolGH15 triggered a significant increase in fluorescence intensity by flow cytometry. In membrane permeabilization assays, the cytoplasmic β-galactosidase of L. monocytogenes treated with HolGH15 was released via an increase in the permeability of the membrane. HolGH15 caused changes in the structural properties of L. monocytogenes cells resulting in shrinkage, which evoked the release and removal of cellular contents and finally lead to cell death. Electron microscopy observations indicated that HolGH15 exhibited excellent bactericidal potency by permeabilizing the cell membrane, damaging membrane integrity, and inducing cellular content shrinkage or loss. Moreover, HolGH15 (at the final concentration of 240 μg/mL) reduced L. monocytogenes (at the initial concentration of 106 colony-forming unit/mL) to an undetectable level at 4°C. Collectively, HolGH15 has potential as a novel antimicrobial agent against L. monocytogenes in the manufacture and store of food by spraying or soaking, especially at refrigerated temperature.
Collapse
Affiliation(s)
- Jun Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenchao Niu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Wu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Botka T, Pantůček R, Mašlaňová I, Benešík M, Petráš P, Růžičková V, Havlíčková P, Varga M, Žemličková H, Koláčková I, Florianová M, Jakubů V, Karpíšková R, Doškař J. Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci. Sci Rep 2019; 9:5475. [PMID: 30940900 PMCID: PMC6445280 DOI: 10.1038/s41598-019-41868-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
Lytic bacteriophages are valuable therapeutic agents against bacterial infections. There is continual effort to obtain new phages to increase the effectivity of phage preparations against emerging phage-resistant strains. Here we described the genomic diversity of spontaneous host-range mutants of kayvirus 812. Five mutant phages were isolated as rare plaques on phage-resistant Staphylococcus aureus strains. The host range of phage 812-derived mutants was 42% higher than the wild type, determined on a set of 186 methicillin-resistant S. aureus strains representing the globally circulating human and livestock-associated clones. Comparative genomics revealed that single-nucleotide polymorphisms from the parental phage 812 population were fixed in next-step mutants, mostly in genes for tail and baseplate components, and the acquired point mutations led to diverse receptor binding proteins in the phage mutants. Numerous genome changes associated with rearrangements between direct repeat motifs or intron loss were found. Alterations occurred in host-takeover and terminal genomic regions or the endolysin gene of mutants that exhibited the highest lytic activity, which implied various mechanisms of overcoming bacterial resistance. The genomic data revealed that Kayvirus spontaneous mutants are free from undesirable genes and their lytic properties proved their suitability for rapidly updating phage therapeutics.
Collapse
Affiliation(s)
- Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic.
| | - Ivana Mašlaňová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Martin Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Petr Petráš
- National Institute of Public Health, Praha, 100 42, Czech Republic
| | - Vladislava Růžičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Pavla Havlíčková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Marian Varga
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Helena Žemličková
- National Institute of Public Health, Praha, 100 42, Czech Republic.,Department of Clinical Microbiology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, 500 05, Czech Republic
| | | | | | - Vladislav Jakubů
- National Institute of Public Health, Praha, 100 42, Czech Republic
| | | | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| |
Collapse
|
5
|
The Characteristics and Genome Analysis of vB_AviM_AVP, the First Phage Infecting Aerococcus viridans. Viruses 2019; 11:v11020104. [PMID: 30691182 PMCID: PMC6409932 DOI: 10.3390/v11020104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 01/21/2023] Open
Abstract
Aerococcus viridans is an opportunistic pathogen that is clinically associated with various human and animal diseases. In this study, the first identified A. viridans phage, vB_AviM_AVP (abbreviated as AVP), was isolated and studied. AVP belongs to the family Myoviridae. AVP harbors a double-stranded DNA genome with a length of 133,806 bp and a G + C content of 34.51%. The genome sequence of AVP showed low similarity (<1% identity) to those of other phages, bacteria, or other organisms in the database. Among 165 predicted open reading frames (ORFs), there were only 69 gene products exhibiting similarity (≤65% identity) to proteins of known functions in the database. In addition, the other 36 gene products did not match any viral or prokaryotic sequences in any publicly available database. On the basis of the putative functions of the ORFs, the genome of AVP was divided into three modules: nucleotide metabolism and replication, structural components, and lysis. A phylogenetic analysis of the terminase large subunits and capsid proteins indicated that AVP represents a novel branch of phages. The observed characteristics of AVP indicate that it represents a new class of phages.
Collapse
|
6
|
Ji Y, Cheng M, Zhai S, Xi H, Cai R, Wang Z, Zhang H, Wang X, Xue Y, Li X, Sun C, Feng X, Lei L, Ur Rahman S, Han W, Gu J. Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet Microbiol 2018; 229:72-80. [PMID: 30642601 DOI: 10.1016/j.vetmic.2018.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Staphylococcus aureus is one of the most important pathogens causing rabbit necrotizing pneumonia and brings huge economic losses to rabbit production. This study investigated the preventive effect of a phage on rabbit necrotizing pneumonia caused by S. aureus. S. aureus S6 was isolated from the lungs of rabbits suffering necrotizing pneumonia and identified. A novel phage named VB-SavM-JYL01 was isolated by using S. aureus S6 as a host and showed a broader host range than the phages GH15 and K. The genome of VB-SavM-JYL01 lacked bacterial virulence-, antibiotic resistance- and lysogenesis-related genes. A single intranasal administration of VB-SavM-JYL01 (3 × 109 PFU) could effectively improve the survival rate at 48 h to 90% (9/10) compared with the survival rate of 10% and 80% observed with the PBS or linezolid treatment, respectively. The bacterial count in the lungs of rabbits treated with the phage VB-SavM-JYL01 was 4.18 × 104 CFU/g at 24 h, which was significantly decreased compared to that of rabbits treated with PBS (7.38 × 107 CFU/g) or linezolid (3.12 × 105 CFU/g). The phage treatment significantly alleviated lung tissue damage. The levels of total proteins, Panton-Valentine leukocidin (PVL), alpha-toxin (Hla) and cytokines in the lungs of the rabbits treated with the phage were significantly lower than those of the rabbits treated with PBS and similar to those of the rabbits treated with linezolid. These data demonstrate the potential utility of phage as an alternative for preventing rabbit necrotizing pneumonia caused by S. aureus.
Collapse
Affiliation(s)
- Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Shengjie Zhai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China.
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
7
|
Antibacterial Effects of Phage Lysin LysGH15 on Planktonic Cells and Biofilms of Diverse Staphylococci. Appl Environ Microbiol 2018; 84:AEM.00886-18. [PMID: 29776929 DOI: 10.1128/aem.00886-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/15/2018] [Indexed: 01/07/2023] Open
Abstract
Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we observed the ability of the phage lysin LysGH15 to eliminate staphylococcal planktonic cells and biofilms formed by Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis All these strains were sensitive to LysGH15, showing reductions in bacterial counts of approximately 4 log units within 30 min after treatment with 20 μg/ml of LysGH15, and the MICs ranged from 8 μg/ml to 32 μg/ml. LysGH15 efficiently prevented biofilm formation by the four staphylococcal species at a dose of 50 μg/ml. At a higher dose (100 μg/ml), LysGH15 also showed notable disrupting activity against 24-h and 72-h biofilms formed by S. aureus and coagulase-negative species. In the in vivo experiments, a single intraperitoneal injection of LysGH15 (20 μg/mouse) administered 1 h after the injection of S. epidermidis at double the minimum lethal dose was sufficient to protect the mice. The S. epidermidis cell counts were 4 log units lower in the blood and 3 log units lower in the organs of mice 24 h after treatment with LysGH15 than in the untreated control mice. LysGH15 reduced cytokine levels in the blood and improved pathological changes in the organs. The broad antistaphylococcal activity exerted by LysGH15 on planktonic cells and biofilms makes LysGH15 a valuable treatment option for biofilm-related or non-biofilm-related staphylococcal infections.IMPORTANCE Most staphylococcal species are major causes of health care- and community-associated infections. In particular, Staphylococcus aureus is a common and dangerous pathogen, and Staphylococcus epidermidis is a ubiquitous skin commensal and opportunistic pathogen. Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we found that all tested S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis strains were sensitive to the phage lysin LysGH15 (MICs ranging from 8 to 32 μg/ml). More importantly, LysGH15 not only prevented biofilm formation by these staphylococci but also disrupted 24-h and 72-h biofilms. Furthermore, the in vivo efficacy of LysGH15 was demonstrated in a mouse model of S. epidermidis bacteremia. Thus, LysGH15 exhibits therapeutic potential for treating biofilm-related or non-biofilm-related infections caused by diverse staphylococci.
Collapse
|
8
|
Cheng M, Liang J, Zhang Y, Hu L, Gong P, Cai R, Zhang L, Zhang H, Ge J, Ji Y, Guo Z, Feng X, Sun C, Yang Y, Lei L, Han W, Gu J. The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Front Microbiol 2017; 8:837. [PMID: 28536572 PMCID: PMC5423268 DOI: 10.3389/fmicb.2017.00837] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Enterococcus faecalis is becoming an increasingly important opportunistic pathogen worldwide, especially because it can cause life-threatening nosocomial infections. Treating E. faecalis infections has become increasingly difficult because of the prevalence of multidrug-resistant E. faecalis strains. Because bacteriophages show specificity for their bacterial hosts, there has been a growth in interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. In this study, we isolated a new lytic phage, EF-P29, which showed high efficiency and a broad host range against E. faecalis strains, including vancomycin-resistant strains. The EF-P29 genome contains 58,984 bp (39.97% G+C), including 101 open reading frames, and lacks known putative virulence factors, integration-related proteins or antibiotic resistance determinants. In murine experiments, the administration of a single intraperitoneal injection of EF-P29 (4 × 105 PFU) at 1 h after challenge was sufficient to protect all mice against bacteremia caused by infection with a vancomycin-resistant E. faecalis strain (2 × 109 CFU/mouse). E. faecalis colony counts were more quickly eliminated in the blood of EF-P29-protected mice than in unprotected mice. We also found that exogenous E. faecalis challenge resulted in enrichment of members of the genus Enterococcus (family Enterococcaceae) in the guts of the mice, suggesting that it can enter the gut and colonize there. The phage EF-P29 reduced the number of colonies of genus Enterococcus and alleviated the gut microbiota imbalance that was caused by E. faecalis challenge. These data indicate that the phage EF-P29 shows great potential as a therapeutic treatment for systemic VREF infection. Thus, phage therapies that are aimed at treating opportunistic pathogens are also feasible. The dose of phage should be controlled and used at the appropriate level to avoid causing imbalance in the gut microbiota.
Collapse
Affiliation(s)
- Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jiaming Liang
- College of Clinical Medicine, Jilin UniversityChangchun, China
| | - Yufeng Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Liyuan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Pengjuan Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Lei Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jinli Ge
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Zhimin Guo
- First Hospital of Jilin University, Jilin UniversityChangchun, China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Jiangsu Co-innovation Center for the Prevention and Control of important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| |
Collapse
|
9
|
Cui Z, Feng T, Gu F, Li Q, Dong K, Zhang Y, Zhu Y, Han L, Qin J, Guo X. Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China. Virol J 2017; 14:26. [PMID: 28179010 PMCID: PMC5299689 DOI: 10.1186/s12985-017-0701-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background The implementation of phage therapy is re-emerging with the increase in widespread antibiotic-resistant bacteria. Methods Staphylococcus phage JD007 was characterized and its complete genome sequence analysed. Results Staphylococcus phage JD007 was classified as belonging to the Myoviridae family based on its morphology, as observed by transmission electron microscopy. Its lytic activity was stable between pH 5–11 and below 42 °C; moreover, an absorbance curve showed that nearly 90% of the viral particles had adsorbed to its host after a 20 min co-incubation. The complete genome size is 141,836 bp, making JD007 one of the largest Staphylococcus phages of Myoviridae. No identifiable resistance or virulence genes were found in the JD007 genome. JD007 was able to lyse 95% of S. aureus isolates, including the prevalent ST239-MRSA and ST59-MRSA strains isolated from different hospitals in Shanghai, China, and inhibition assays showed that JD007 could inhibit S. aureus growth at a multiplicity of infection of 0.1. Conclusions The results suggested that Staphylococcus phage JD007 can potentially be used in phage therapy or for the detection of S. aureus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0701-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Feifei Gu
- Department of Clinical Microbiology, Shanghai Ruijin hospital, Shanghai, 200025, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ke Dong
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Zhang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yongzhang Zhu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lizhong Han
- Department of Clinical Microbiology, Shanghai Ruijin hospital, Shanghai, 200025, China
| | - Jinhong Qin
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
10
|
Gu J, Li X, Yang M, Du C, Cui Z, Gong P, Xia F, Song J, Zhang L, Li J, Yu C, Sun C, Feng X, Lei L, Han W. Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia. Vet Microbiol 2016; 190:5-11. [PMID: 27283850 DOI: 10.1016/j.vetmic.2016.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/11/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
Abstract
Hemorrhagic pneumonia caused by Pseudomonas aeruginosa remains one of the most costly infectious diseases among farmed mink and commonly leads to large economic losses during mink production. The objective of this study was to investigate the potential of using phages as a therapy against hemorrhagic pneumonia in mink. A broad-host-range phage from the Podoviridae family, YH30, was isolated using the mink-originating P. aeruginosa (serotype G) D7 strain as a host. The genome of YH30 was 72,192bp (54.92% G+C), contained 86 open reading frames and lacked regions encoding known virulence factors, integration-related proteins or antibiotic resistance determinants. These characteristics make YH30 eligible for use in phage therapy. The results of a curative treatment experiment demonstrated that a single intranasal administration of YH30 was sufficient to cure hemorrhagic pneumonia in mink. The mean colony count of P. aeruginosa in the blood and lung of YH30-protected mink was less than 10(3) CFU/mL (g) within 24h of bacterial challenge and ultimately became undetectable, whereas that in unprotected mink reached more than 10(8) CFU/mL (g). Additionally, YH30 dramatically improved the pathological manifestations of lung injury in mink with hemorrhagic pneumonia. Our work demonstrates the potential of phages to treat P. aeruginosa-caused hemorrhagic pneumonia in mink.
Collapse
Affiliation(s)
- Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Mei Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Ziyin Cui
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Pengjuan Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Feifei Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Jun Song
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Juecheng Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Chuang Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-innovation Center for the Prevention and Control of important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
11
|
Gong P, Cheng M, Li X, Jiang H, Yu C, Kahaer N, Li J, Zhang L, Xia F, Hu L, Sun C, Feng X, Lei L, Han W, Gu J. Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5. Virology 2016; 492:11-20. [PMID: 26896930 DOI: 10.1016/j.virol.2016.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/21/2023]
Abstract
Due to the worldwide prevalence of antibiotic resistant strains, phages therapy has been revitalized recently. In this study, an Enterococcus faecium phage named IME-EFm5 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that IME-EFm5 belong to the Siphoviridae family, and has a double-stranded genome of 42,265bp (with a 35.51% G+C content) which contains 70 putative coding sequences. LysEFm5, the endolysin of IME-EFm5, contains an amidase domain in its N-terminal and has a wider bactericidal spectrum than its parental phage IME-EFm5, including 7 strains of vancomycin-resistant E. faecium. The mutagenesis analysis revealed that the zinc ion binding residues (H27, H132, and C140), E90, and T138 are required for the catalysis of LysEFm5. However, the antibacterial activity of LysEFm5 is zinc ion independent, which is inconsistent with most of other amidase members. The phage lysin LysEFm5 might be an alternative treatment strategy for infections caused by multidrug-resistant E. faecium.
Collapse
Affiliation(s)
- Pengjuan Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Mengjun Cheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Haiyan Jiang
- The first affiliated hospital to Changchun University of Chinese Medicine, Changchun 130021, PR China
| | - Chuang Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Nadire Kahaer
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Juecheng Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Feifei Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liyuan Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
12
|
Song J, Xia F, Jiang H, Li X, Hu L, Gong P, Lei L, Feng X, Sun C, Gu J, Han W. Identification and characterization of HolGH15: the holin of Staphylococcus aureus bacteriophage GH15. J Gen Virol 2016; 97:1272-1281. [PMID: 26873847 DOI: 10.1099/jgv.0.000428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Holins are phage-encoded hydrophobic membrane proteins that spontaneously and non-specifically accumulate and form lesions in the cytoplasmic membrane. The ORF72 gene (also designated HolGH15) derived from the genome of the Staphylococcus aureus phage GH15 was predicted to encode a membrane protein. An analysis indicated that the protein encoded by HolGH15 potentially consisted of two hydrophobic transmembrane helices. This protein exhibited the structural characteristics of class II holins and belonged to the phage_holin_1 superfamily. Expression of HolGH15 in Escherichia coli BL21 cells resulted in growth retardation of the host cells, which was triggered prematurely by the addition of 2,4-dinitrophenol. The expression of HolGH15 caused morphological alterations in engineered E. coli cells, including loss of the cell wall and cytoplasmic membrane integrity and release of intracellular components, which were visualized by transmission electron microscopy. HolGH15 exerted efficient antibacterial activity at 37 °C and pH 5.2. Mutation analysis indicated that the two transmembrane domains of HolGH15 were indispensable for the activity of the full-length protein. HolGH15 showed a broad antibacterial range: it not only inhibited Staphylococcus aureus, but also demonstrated antibacterial activity against other species, including Listeria monocytogenes, Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella pneumoniae and E. coli. At the minimal inhibitory concentration, HolGH15 evoked the release of cellular contents and resulted in the shrinkage and death of Staphylococcus aureus and Listeria monocytogenes cells. To the best of our knowledge, this study is the first report of a Staphylococcus aureus phage holin that exerts antibacterial activity against heterogeneous pathogens.
Collapse
Affiliation(s)
- Jun Song
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Feifei Xia
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Haiyan Jiang
- The First Affiliated Hospital to Changchun University of Chinese Medicine,Changchun 130021, PRChina
| | - Xinwei Li
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Liyuan Hu
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Pengjuan Gong
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Liancheng Lei
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Xin Feng
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Changjiang Sun
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Jingmin Gu
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Wenyu Han
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses,Yangzhou 225009, PRChina
| |
Collapse
|
13
|
Yang M, Du C, Gong P, Xia F, Sun C, Feng X, Lei L, Song J, Zhang L, Wang B, Xiao F, Yan X, Cui Z, Li X, Gu J, Han W. Therapeutic effect of the YH6 phage in a murine hemorrhagic pneumonia model. Res Microbiol 2015; 166:633-43. [PMID: 26254772 DOI: 10.1016/j.resmic.2015.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/07/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
The treatment, in farmed mink, of hemorrhagic pneumonia caused by multidrug-resistant Pseudomonas aeruginosa strains has become increasingly difficult. This study investigated the potential use of phages as a therapy against hemorrhagic pneumonia caused by P. aeruginosa in a murine hemorrhagic pneumonia model. An N4-like phage designated YH6 was isolated using P. aeruginosa strain D9. YH6 is a virulent phage with efficient and broad host lytic activity against P. aeruginosa. No bacterial virulence- or lysogenesis-related ORF is present in the YH6 genome, making it eligible for use in phage therapy. In our murine experiments, a single intranasal administration of YH6 (2 × 10(7) PFU) 2 h after D9 intranasal injections at double minimum lethal dose was sufficient to protect mice against hemorrhagic pneumonia. The bacterial load in the lungs of YH6-protected mice was less than 10(3) CFU/g within 24 h after challenge and ultimately became undetectable, whereas the amount of bacteria in the lung tissue derived from unprotected mice was more than 10(8) CFU/g within 24 h after challenge. In view of its protective efficacy in this murine hemorrhagic pneumonia model, YH6 may serve as an alternative treatment strategy for infections caused by multidrug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Mei Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Pengjuan Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Feifei Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Jun Song
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Bin Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Feng Xiao
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwu Yan
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Ziyin Cui
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
14
|
Gu J, Feng Y, Feng X, Sun C, Lei L, Ding W, Niu F, Jiao L, Yang M, Li Y, Liu X, Song J, Cui Z, Han D, Du C, Yang Y, Ouyang S, Liu ZJ, Han W. Structural and biochemical characterization reveals LysGH15 as an unprecedented "EF-hand-like" calcium-binding phage lysin. PLoS Pathog 2014; 10:e1004109. [PMID: 24831957 PMCID: PMC4022735 DOI: 10.1371/journal.ppat.1004109] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
The lysin LysGH15, which is derived from the staphylococcal phage GH15, demonstrates a wide lytic spectrum and strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we find that the lytic activity of the full-length LysGH15 and its CHAP domain is dependent on calcium ions. To elucidate the molecular mechanism, the structures of three individual domains of LysGH15 were determined. Unexpectedly, the crystal structure of the LysGH15 CHAP domain reveals an "EF-hand-like" calcium-binding site near the Cys-His-Glu-Asn quartet active site groove. To date, the calcium-binding site in the LysGH15 CHAP domain is unique among homologous proteins, and it represents the first reported calcium-binding site in the CHAP family. More importantly, the calcium ion plays an important role as a switch that modulates the CHAP domain between the active and inactive states. Structure-guided mutagenesis of the amidase-2 domain reveals that both the zinc ion and E282 are required in catalysis and enable us to propose a catalytic mechanism. Nuclear magnetic resonance (NMR) spectroscopy and titration-guided mutagenesis identify residues (e.g., N404, Y406, G407, and T408) in the SH3b domain that are involved in the interactions with the substrate. To the best of our knowledge, our results constitute the first structural information on the biochemical features of a staphylococcal phage lysin and represent a pivotal step forward in understanding this type of lysin.
Collapse
Affiliation(s)
- Jingmin Gu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xin Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Changjiang Sun
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Ding
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fengfeng Niu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lianying Jiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mei Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaohe Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jun Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyin Cui
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dong Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chongtao Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Songying Ouyang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenyu Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
15
|
Genomic and phylogenetic traits of Staphylococcus phages S25-3 and S25-4 (family Myoviridae, genus Twort-like viruses). ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0762-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Abstract
The abundance of group I introns, intragenic RNA sequences capable of self-splicing, in Gram-positive bacteriophage genomes, is illustrated by various new group I introns recently described in Staphylococcus phage genomes. These introns were found to interrupt DNA metabolism genes as well as late genes. These group I introns often code for homing endonucleases, which promote lateral transfer of group I introns, thereby enabling spread through a population. Homing endonucleases encoded by group I introns in Staphylococcus phage genomes were predicted to belong to the GIY-YIG, LAGLIDADG, HNH or EDxHD family of endonucleases. The group I intron distribution in Staphylococcus phage genomes exemplifies the homology between these introns as well as the encoded endonucleases. Despite several suggested functions, the role of group I introns in bacteriophages remains unclear or might be nonexistent. However, transcriptome analysis might provide additional information to elucidate the possible purpose of group I introns in phage genomes.
Collapse
Affiliation(s)
- Rob Lavigne
- Katholieke Universiteit Leuven, Department of Biosystems, Kasteelpark Arenberg 21, Bus 2462, Leuven, Belgium
| | - Katrien Vandersteegen
- Katholieke Universiteit Leuven, Department of Biosystems, Kasteelpark Arenberg 21, Bus 2462, Leuven, Belgium
| |
Collapse
|