1
|
Zhang L, Li Y, Kuhn JH, Zhang K, Song Q, Liu F. Polyubiquitylated rice stripe virus NS3 translocates to the nucleus to promote cytosolic virus replication via miRNA-induced fibrillin 2 upregulation. PLoS Pathog 2024; 20:e1012112. [PMID: 38507423 PMCID: PMC10984529 DOI: 10.1371/journal.ppat.1012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Viruses are encapsidated mobile genetic elements that rely on host cells for replication. Several cytoplasmic RNA viruses synthesize proteins and/or RNAs that translocate to infected cell nuclei. However, the underlying mechanisms and role(s) of cytoplasmic-nuclear trafficking are unclear. We demonstrate that infection of small brown planthoppers with rice stripe virus (RSV), a negarnaviricot RNA virus, results in K63-linked polyubiquitylation of RSV's nonstructural protein 3 (NS3) at residue K127 by the RING ubiquitin ligase (E3) LsRING. In turn, ubiquitylation leads to NS3 trafficking from the cytoplasm to the nucleus, where NS3 regulates primary miRNA pri-miR-92 processing through manipulation of the microprocessor complex, resulting in accumulation of upregulated miRNA lst-miR-92. We show that lst-miR-92 regulates the expression of fibrillin 2, an extracellular matrix protein, thereby increasing RSV loads. Our results highlight the manipulation of intranuclear, cytoplasmic, and extracellular components by an RNA virus to promote its own replication in an insect vector.
Collapse
Affiliation(s)
- Lu Zhang
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Yao Li
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick; Frederick, Maryland; United States of America
| | - Kun Zhang
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Qisheng Song
- Division of Plant Science and Technology; College of Agriculture; Food and Natural Resources; University of Missouri; Columbia, Missouri; United States of America
| | - Fang Liu
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| |
Collapse
|
2
|
Deng Z, Lai C, Zhang J, Sun F, Li D, Hao P, Shentu X, Pang K, Yu X. Effects of Secondary Metabolites of Rice on Brown Planthopper and Its Symbionts. Int J Mol Sci 2023; 25:386. [PMID: 38203556 PMCID: PMC10779037 DOI: 10.3390/ijms25010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The brown planthopper Nilaparvata lugens (Stål) (BPH) is a main rice pest in China and many other Asian countries. In the control of BPH, the application of insect-resistant rice has proven to be quite effective. Secondary metabolites are essential weapons in plants' defense against phytophagous insects. Studies have found that differences in the content of secondary metabolites play a crucial role in determining whether rice exhibits resistance or susceptibility to BPH. Simultaneously, symbionts are essential to the BPH. Nevertheless, there is limited research on the impact of secondary metabolites on the symbionts within BPH. Therefore, investigating the influence of secondary metabolites on both BPH and their symbionts is significant for the control of BPH. In this experiment, newly emerged female adults of BPH were fed artificial diets containing 10 different secondary metabolites. The results indicated that methyl jasmonate had inhibitory effects on the survival rate, weight gain, and reproductive capacity of BPH. Using qPCR methods, it was discovered that the number of symbiotic fungi (Ascomycetes symbionts) within BPH significantly decreased under methyl jasmonate stress. In conclusion, this experiment has preliminarily revealed the inhibitory effects of methyl jasmonate on BPH and its symbionts, demonstrating its potential for controlling BPH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Modern Science and Technology, China Jiliang University, Hangzhou 310018, China; (Z.D.); (C.L.); (J.Z.); (F.S.); (D.L.); (P.H.); (X.S.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Modern Science and Technology, China Jiliang University, Hangzhou 310018, China; (Z.D.); (C.L.); (J.Z.); (F.S.); (D.L.); (P.H.); (X.S.)
| |
Collapse
|
3
|
Arya SK, Goodman CL, Stanley D, Palli SR. A database of crop pest cell lines. In Vitro Cell Dev Biol Anim 2022; 58:719-757. [PMID: 35994130 DOI: 10.1007/s11626-022-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
We have developed an online database describing the known cell lines from Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera that were developed from agricultural pests. Cell line information has been primarily obtained from previous compilations of insect cell lines. We conducted in-depth Internet literature searches and drew on Internet sources such as the Cellosaurus database (https://web.expasy.org/cellosaurus/), and inventories from cell line depositories. Here, we report on a new database of insect cell lines, which covers 719 cell lines from 86 species. We have not included cell lines developed from Drosophila because they are already known from published databases, such as https://dgrc.bio.indiana.edu/cells/Catalog. We provide the designation, tissue and species of origin, cell line developer, unique characteristics, its use in various applications, publications, and patents, and, when known, insect virus susceptibility. This information has been assembled and organized into a searchable database available at the link https://entomology.ca.uky.edu/aginsectcellsdatabase which will be updated on an ongoing basis.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Cynthia L Goodman
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
4
|
Detection of Yeast-like Symbionts in Brown Planthopper Reared on Different Resistant Rice Varieties Combining DGGE and Absolute Quantitative Real-Time PCR. INSECTS 2022; 13:insects13010085. [PMID: 35055928 PMCID: PMC8779971 DOI: 10.3390/insects13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The brown planthopper (BPH) is an important pest that causes huge losses in rice production. The promotion and use of insect-resistant rice varieties is an important way to control BPH. However, in practice, BPH can adapt to resistant rice within several generations. Endosymbionts may be one of the reasons for the rapid adaptation of BPH to resistant rice. The BPH harbor yeast-like symbionts (YLS) in their abdomen, and YLS are essential for the nutrition, development, and reproduction of BPH. Our previous report showed that among the YLS communities detected in BPH, Ascomycetes symbionts, Pichia-like symbionts, and Candida-like symbionts were the three dominant populations of YLS. In this study, PCR-DGGE and absolute quantitative real-time PCR were used to detect the variations of three dominant YLS in BPH across different nymph ages and on different resistant rice varieties. The results showed that the total number of YLS gradually increased from the first instar to adulthood, but decreased in the fifth instar nymph, when BPH were reared on the susceptible rice variety TN1. The rice-resistant varieties, Mudgo, ASD7, and RH have more significant inhibitory effects on the three dominant YLS in the first and second generations of BPH. However, the numbers of the three dominant YLS were all recovered from the third generation of BPH. Ascomycetes symbionts were the most dominant strain among the three YLS. Abstract The brown planthopper (BPH), Nilaparvata lugens, is a serious pest of rice throughout Asia. Yeast-like symbionts (YLS) are endosymbionts closely linked with the development of BPH and the adapted mechanism of BPH virulence to resistant plants. In this study, we used semi-quantitative DGGE and absolute quantitative real-time PCR (qPCR) to quantify the number of the three YLS strains (Ascomycetes symbionts, Pichia-like symbionts, and Candida-like symbionts) that typically infect BPH in the nymphal stages and in newly emerged female adults. The quantities of each of the three YLS assessed increased in tandem with the developing nymphal instar stages, peaking at the fourth instar stage, and then declined significantly at the fifth instar stage. However, the amount of YLS present recovered sharply within the emerging adult females. Additionally, we estimated the quantities of YLS for up to eight generations after their inoculation onto resistant cultivars (Mudgo, ASD7, and RH) to reassociate the dynamics of YLS with the fitness of BPH. The minimum number of each YLS was detected in the second generation and gradually increased from the third generation with regard to resistant rice varieties. In addition, the Ascomycetes symbionts of YLS were found to be the most abundant of the three YLS strains tested for all of the development stages of BPH.
Collapse
|
5
|
Chen H, Wu W, Wei T. Establishment of White-Backed Planthopper Cell Lines. Methods Mol Biol 2022; 2400:197-205. [PMID: 34905203 DOI: 10.1007/978-1-0716-1835-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The first continuous cell line of leafhopper was established over 50 years ago. Since then, leafhopper cell monolayers have been used extensively to assay the infectivity of plant viruses that multiply in their insect vectors and to elucidate the viral determinants for virus transmission via insects. We have established continuous insect cell lines of three rice planthoppers, which have been used to study the mechanisms for replication and spread of rice viruses. The notable advantage of the vector cell monolayer system is that it can reach a uniform infection rate of 100% of the cells in the culture inoculated with diluted viruses, and thus allows for synchronous virus multiplication. The self-propagative nature of leafhopper and planthopper cell lines under favorable conditions ensures the system both dynamic and stable for viral infection. The vector cell monolayer systems and molecular probes, along with reliable traditional methods, certainly facilitate studies on interactions between plant viruses and insect vectors at molecular and cellular levels.
Collapse
Affiliation(s)
- Hongyan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wei Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
6
|
Xu Y, Fu S, Tao X, Zhou X. Rice stripe virus: Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:351-371. [PMID: 34077238 DOI: 10.1146/annurev-phyto-020620-113020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rice stripe disease caused by Rice stripe virus (RSV) is one of the most devastating plant viruses of rice and causes enormous losses in production. RSV is transmitted from plant to plant by the small brown planthopper (Laodelphax striatellus) in a circulative-propagative manner. The recent reemergence of this pathogen in East Asia since 2000 has made RSV one of the most studied plant viruses over the past two decades. Extensive studies of RSV have resulted in substantial advances regarding fundamental aspects of the virus infection. Here, we compile and analyze recent information on RSV with a special emphasis on the strategies that RSV has adopted to establish infections. These advances include RSV replication and movement in host plants and the small brown planthopper vector, innate immunity defenses against RSV infection, epidemiology, and recent advances in the management of rice stripe disease. Understanding these issues will facilitate the design of novel antiviral therapies for management and contribute to a more detailed understanding of negative-sense virus-host interactions at the molecular level.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Lu L, Wang Q, Huang D, Xu Q, Zhou X, Wu J. Rice black-streaked dwarf virus P10 suppresses protein kinase C in insect vector through changing the subcellular localization of LsRACK1. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180315. [PMID: 30967017 DOI: 10.1098/rstb.2018.0315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) was known to be transmitted by the small brown planthopper (SBPH) in a persistent, circulative and propagative manner in nature. Here, we show that RBSDV major outer capsid protein (also known as P10) suppresses the protein kinase C (PKC) activity of SBPH through interacting with the receptor for activated protein kinase C 1 (LsRACK1). The N terminal of P10 (amino acids (aa) 1-270) and C terminal of LsRACK1 (aa 268-315) were mapped as crucial for the interaction. Confocal microscopy and subcellular fractionation showed that RBSDV P10 fused to enhanced green fluorescent protein formed vesicular structures associated with endoplasmic reticulum (ER) membranes in Spodoptera frugiperda nine cells. Our results also indicated that RBSDV P10 retargeted the initial subcellular localization of LsRACK1 from cytoplasm and cell membrane to ER and affected the function of LsRACKs to activate PKC. Inhibition of RACK1 by double stranded RNA-induced gene silencing significantly promoted the replication of RBSDV in SBPH. In addition, the PKC pathway participates in the antivirus innate immune response of SBPH. This study highlights that RACK1 negatively regulates the accumulation of RBSDV in SBPH through activating the PKC signalling pathway, and RBSDV P10 changes the subcellular localization of LsRACK1 and affects its function to activate PKC. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Lina Lu
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China
| | - Qi Wang
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China
| | - Deqing Huang
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China
| | - Qiufang Xu
- 2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , People's Republic of China
| | - Xueping Zhou
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China.,3 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Jianxiang Wu
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China
| |
Collapse
|
8
|
Chen Q, Wei T. Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:18-25. [PMID: 31729283 DOI: 10.1094/mpmi-07-19-0184-cr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant viruses typically cause severe pathogenicity in plants, even resulting in the death of plants. Many pathogenic plant viruses are transmitted in a persistent manner via insect vectors. Interestingly, unlike in the plant hosts, persistent viruses are either nonpathogenic or show limited pathogenicity in their insect vectors, while taking advantage of the cellular machinery of insect vectors for completing their life cycles. This review discusses why persistent plant viruses are nonpathogenic or have limited pathogenicity to their insect vectors while being pathogenic to plants hosts. Current advances in cell biology of virus-insect vector interactions are summarized, including virus-induced inclusion bodies, changes of insect cellular ultrastructure, and immune response of insects to the viruses, especially autophagy and apoptosis. The corresponding findings of virus-plant interactions are compared. An integrated view of the balance strategy achieved by the interaction between viral attack and the immune response of insect is presented. Finally, we outline progress gaps between virus-insect and virus-plant interactions, thus highlighting the contributions of cultured cells to the cell biology of virus-insect interactions. Furthermore, future prospects of studying the cell biology of virus-vector interactions are presented.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
9
|
Zhang XF, Xie Y, Wang H, Wang J, Chen H, Zeng T, Zhao Y, Wei T. Exploration of an Actin Promoter-Based Transient Expression Vector to Trace the Cellular Localization of Nucleorhabdovirus Proteins in Leafhopper Cultured Cells. Front Microbiol 2018; 9:3034. [PMID: 30619126 PMCID: PMC6306041 DOI: 10.3389/fmicb.2018.03034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Continuously cultured cell lines derived from planthopper and leafhopper have greatly facilitated the investigation of rice viruses transmitted by these insects. However, the lack of a suitable transient expression vector has limited their utility. Here, by cloning and analyzing the promoter sequence of the gene encoding cytoplasmic actin from the leafhopper Nephotettix cincticeps, we successfully developed the first efficient transient expression vector for cultured leafhopper cells, which can also be used to express exogenous proteins in other insect culture cell lines, including those derived from Recilia dorsalis leafhopper and Spodoptera frugiperda (Sf9). Furthermore, insertion of the Hr5 viral enhancer element and knockdown of the endogenous Dicer2 gene notably improved the vector's expression efficiency in leafhopper cells. Using the optimized vector, we have for the first time traced the cellular localization of the proteins encoded by rice yellow stunt virus (RYSV) in cells of its insect vector and demonstrated that P6 protein is a component of the viroplasm.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou,China
| |
Collapse
|
10
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
11
|
García-Reina A, Rodríguez-García MJ, Ramis G, Galián J. Real-time cell analysis and heat shock protein gene expression in the TcA Tribolium castaneum cell line in response to environmental stress conditions. INSECT SCIENCE 2017; 24:358-370. [PMID: 26678377 DOI: 10.1111/1744-7917.12306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environmental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real-Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL-TcA-CLG1 (TcA) of T. castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV-A light with the aim of measuring the expression levels of Hsp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TcA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up-regulation of all studied Hsp genes is observed after 1 h of exposure to 40 °C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real-time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management.
Collapse
Affiliation(s)
- Andrés García-Reina
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain
| | | | - Guillermo Ramis
- Department of Animal Production, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain
| | - José Galián
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain
| |
Collapse
|
12
|
Jackson AO, Li Z. Developments in Plant Negative-Strand RNA Virus Reverse Genetics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:469-498. [PMID: 27359368 DOI: 10.1146/annurev-phyto-080615-095909] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Twenty years ago, breakthroughs for reverse genetics analyses of negative-strand RNA (NSR) viruses were achieved by devising conditions for generation of infectious viruses in susceptible cells. Recombinant strategies have subsequently been engineered for members of all vertebrate NSR virus families, and research arising from these advances has profoundly increased understanding of infection cycles, pathogenesis, and complexities of host interactions of animal NSR viruses. These strategies also permitted development of many applications, including attenuated vaccines and delivery vehicles for therapeutic and biotechnology proteins. However, for a variety of reasons, it was difficult to devise procedures for reverse genetics analyses of plant NSR viruses. In this review, we discuss advances that have circumvented these problems and resulted in construction of a recombinant system for Sonchus yellow net nucleorhabdovirus. We also discuss possible extensions to other plant NSR viruses as well as the applications that may emanate from recombinant analyses of these pathogens.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720;
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China;
| |
Collapse
|
13
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
14
|
Chen Q, Wei T. Viral receptors of the gut: insect-borne propagative plant viruses of agricultural importance. CURRENT OPINION IN INSECT SCIENCE 2016; 16:9-13. [PMID: 27720057 DOI: 10.1016/j.cois.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Insect-borne propagative plant viruses of agricultural importance are transmitted by sap-sucking insects. Although the infection routes of these viruses within the bodies of insect vectors are well established, cellular receptors on the microvilli, intercellular junctions, and basal lamina for mediating viral entry or spread in insect gut epithelium have not been well identified or characterized. Recent trends in the field are opening questions on how viruses exploit actin-based tubule motility to overcome insect gut epithelium barriers after viral entry in epithelium. Advances in insect cell lines, genome sequencing, reverse genetic systems and others not yet developed technologies are needed to find and characterize the counterpart receptors in vectors and to design strategies to interfere with viral transmission.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
15
|
Lan H, Chen H, Liu Y, Jiang C, Mao Q, Jia D, Chen Q, Wei T. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus. J Virol 2016; 90:917-29. [PMID: 26537672 PMCID: PMC4702677 DOI: 10.1128/jvi.01835-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector.
Collapse
Affiliation(s)
- Hanhong Lan
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Yuyan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Chaoyang Jiang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
16
|
Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis. PLoS Pathog 2015; 11:e1005223. [PMID: 26484673 PMCID: PMC4616665 DOI: 10.1371/journal.ppat.1005223] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/22/2015] [Indexed: 01/21/2023] Open
Abstract
Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses. Reverse genetics is a powerful tool for fundamental studies of virus biology, pathology and biotechnology applications. Although plant negative-strand RNA (NSR) viruses consist of members in the Rhabdoviridae, Bunyaviridae, Ophioviridae families and several unassigned genera that collectively account for many economically important crop diseases, unfortunately, several technical difficulties have hindered application of genetic engineering to these groups of viruses. This study describes the first reverse genetics system developed for plant NSR viruses. We report an efficient procedure for production of infectious virus from cloned cDNAs of sonchus yellow net virus (SYNV) RNAs, a model plant rhabdovirus. We have also engineered a recombinant SYNV vector for stable expression of a fluorescent reporter gene. Using this system, we have generated targeted SYNV mutants whose analyses provide key insights into enveloped plant virus movement and morphogenesis processes. Moreover, our findings provide a template for reverse genetics studies with other plant rhabdoviruses, and a strategy to circumvent technical difficulties that have hampered these applications to plant NSR viruses.
Collapse
|
17
|
Liu W, Gray S, Huo Y, Li L, Wei T, Wang X. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein. Mol Cell Proteomics 2015; 14:2229-42. [PMID: 26091699 DOI: 10.1074/mcp.m114.046763] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 01/17/2023] Open
Abstract
Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects.
Collapse
Affiliation(s)
- Wenwen Liu
- From the ‡State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Stewart Gray
- §USDA, ARS, Plant Protection Research Unit, Cornell University, Ithaca, NY
| | - Yan Huo
- ¶State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China; Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Li
- From the ‡State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Taiyun Wei
- From the ‡State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; §USDA, ARS, Plant Protection Research Unit, Cornell University, Ithaca, NY; ¶State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China; Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xifeng Wang
- From the ‡State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
18
|
Replication of Chinese sacbrood virus in primary cell cultures of Asian honeybee (Apis cerana). Arch Virol 2014; 159:3435-8. [PMID: 25139546 DOI: 10.1007/s00705-014-2183-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
A primary cell culture system was established for the first time from embryonic tissues of Asian honeybee, Apis cerana, and used to trace the early infection process of Chinese sacbrood virus (CSBV), an iflavirus in the family Iflaviridae. A monolayer of epithelium-like cells of A. cerana, approximately 8-10 μm in diameter, was grown in Kimura's insect medium at 28 °C within 3-4 days of setting up the cultures. Such cultured cells were inoculated with CSBV purified from infected larvae or pupae for 2 h. In electron and confocal micrographs, viral particles accumulated as filamentous or vesicular inclusions in the cytoplasm of infected cultured cells at 36 h post-inoculation (hpi). Real-time quantitative RT-PCR assay showed that the expression levels of four cistrons of CSBV in the cultured cells increased rapidly between 12 and 48 hpi. This newly established primary cell culture derived from A. cerana will be useful for further studies of infection caused by CSBV.
Collapse
|
19
|
Wu W, Zheng L, Chen H, Jia D, Li F, Wei T. Nonstructural protein NS4 of Rice Stripe Virus plays a critical role in viral spread in the body of vector insects. PLoS One 2014; 9:e88636. [PMID: 24523924 PMCID: PMC3921211 DOI: 10.1371/journal.pone.0088636] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Rice stripe virus (RSV), a tenuivirus, is transmitted by small brown planthopper (SBPH) in a persistent-propagative manner. In this study, sequential infection of RSV in the internal organs of SBPH after ingestion of virus indicated that RSV initially infected the midgut epithelium, and then progressed to the visceral muscle tissues, through which RSV spread to the entire alimentary canal. Finally, RSV spread into the salivary glands and reproductive system. During viral infection, the nonstructural protein NS4 of RSV formed cytoplasmic inclusions in various tissues of viruliferous SBPH. We demonstrated that the ribonucleoprotein particles of RSV were closely associated with NS4-specific inclusions in the body of viruliferous SBPH through a direct interaction between NS4 and nucleoprotein of RSV. Moreover, the knockdown of NS4 expression due to RNA interference induced by dsRNA from NS4 gene significantly prevented the spread of RSV in the bodies of SBPHs without a significant effect on viral replication in continuous cell culture derived from SBPH. All these results suggest that the nonstructural protein NS4 of RSV plays a critical role in viral spread by the vector insects.
Collapse
Affiliation(s)
- Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Agricultural Biodiversity for Pest Management of China’s Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, PR China
| | - Limin Zheng
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Fan Li
- Key Laboratory of Agricultural Biodiversity for Pest Management of China’s Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, PR China
- * E-mail: (FL); (TW)
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- * E-mail: (FL); (TW)
| |
Collapse
|
20
|
Development of continuous cell culture of brown planthopper to trace the early infection process of oryzaviruses in insect vector cells. J Virol 2014; 88:4265-74. [PMID: 24478421 DOI: 10.1128/jvi.03466-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rice ragged stunt virus (RRSV), an oryzavirus in the family Reoviridae, is transmitted by the brown planthopper, Nilaparvata lugens, in a persistent-propagative manner. Here, we established a continuous cell line of brown planthopper to investigate the mechanism underlying the formation of the viroplasm, the putative site for viral replication and assembly, during infection of RRSV in its insect vector cells. Within 24 h of viral infection of cultured cells, the viroplasm had formed and contained the viral nonstructural proteins Pns6 and Pns10, known to be constituents of viroplasm. Core capsid protein P3, core particles, and newly synthesized viral RNAs were accumulated inside the viroplasm, while outer capsid protein P8 and virions were accumulated at the periphery of the viroplasm, confirming that the viroplasm induced by RRSV infection was the site for viral replication and assembly. Pns10 formed viroplasm-like inclusions in the absence of viral infection, suggesting that the viroplasm matrix was largely composed of Pns10. Pns6 was recruited in the viroplasm by direct interaction with Pns10. Core capsid protein P3 was recruited to the viroplasm through specific association with Pns6. Knockdown of Pns6 and Pns10 expression using RNA interference inhibited viroplasm formation, virion assembly, viral protein expression, and viral double-stranded RNA synthesis. Thus, the present study shows that both Pns6 and Pns10 of RRSV play important roles in the early stages of viral life cycle in its insect vector cells, by recruiting or retaining components necessary for viral replication and assembly. IMPORTANCE The brown planthopper, a commonly distributed pest of rice in Asia, is the host of numerous insect endosymbionts, and the major vector of two rice viruses (RRSV and rice grassy stunt virus). For the first time, we successfully established the continuous cell line of brown planthopper. The unique uniformity of brown planthopper cells in the monolayer can support a consistent, synchronous infection by endosymbionts or viral pathogens, improving our understanding of molecular insect-microbe interactions.
Collapse
|
21
|
Xu Y, Chen YH, Yu X. Cell culture of the rice brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). In Vitro Cell Dev Biol Anim 2014; 50:384-8. [PMID: 24399256 DOI: 10.1007/s11626-013-9728-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/22/2013] [Indexed: 12/01/2022]
Abstract
The rice brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive insect pests of rice in Asia. Although resistant rice varieties can be effective in managing planthopper populations, BPH has repeatedly been able to overcome resistant rice varieties. It is possible that BPH adaptation to resistant rice varieties may be related to its endosymbionts. We investigated methods for culturing BPH cells in order to study in-depth interactions between rice, BPH, and its endosymbionts. In this study, we tested EX-CELL™ 405, EX-CELL™ 420, Mitsuhashi and Maramorosch's medium, and Kimura's medium, for in vitro culture of BPH cells. Only Kimura's medium was found to be suitable for BPH cell culture, and BPH embryos around blastokinetic stage were the best source for BPH cell culture. Cells from BPH embryonic tissues adhered to the plate substrate, and the migration of cells was observed within 24 h in primary culture. After 3 mo of subculture, various types of BPH cells were successfully maintained in the Kimura's medium.
Collapse
Affiliation(s)
- Yipeng Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, People's Republic of China,
| | | | | |
Collapse
|