1
|
Chowdhury S, Latham KA, Tran AC, Carroll CJ, Stanton RJ, Weekes MP, Neil SJD, Swanson CM, Strang BL. Inhibition of human cytomegalovirus replication by interferon alpha can involve multiple anti-viral factors. J Gen Virol 2023; 104:001929. [PMID: 38063292 PMCID: PMC10770924 DOI: 10.1099/jgv.0.001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The shortcomings of current direct-acting anti-viral therapy against human cytomegalovirus (HCMV) has led to interest in host-directed therapy. Here we re-examine the use of interferon proteins to inhibit HCMV replication utilizing both high and low passage strains of HCMV. Pre-treatment of cells with interferon alpha (IFNα) was required for robust and prolonged inhibition of both low and high passage HCMV strains, with no obvious toxicity, and was associated with an increased anti-viral state in HCMV-infected cells. Pre-treatment of cells with IFNα led to poor expression of HCMV immediate-early proteins from both high and low passage strains, which was associated with the presence of the anti-viral factor SUMO-PML. Inhibition of HCMV replication in the presence of IFNα involving ZAP proteins was HCMV strain-dependent, wherein a high passage HCMV strain was obviously restricted by ZAP and a low passage strain was not. This suggested that strain-specific combinations of anti-viral factors were involved in inhibition of HCMV replication in the presence of IFNα. Overall, this work further supports the development of strategies involving IFNα that may be useful to inhibit HCMV replication and highlights the complexity of the anti-viral response to HCMV in the presence of IFNα.
Collapse
Affiliation(s)
- Shabab Chowdhury
- Institute of Infection & Immunity, St George’s, University of London, London, UK
| | - Katie A. Latham
- Institute of Infection & Immunity, St George’s, University of London, London, UK
| | - Andy C. Tran
- Institute of Infection & Immunity, St George’s, University of London, London, UK
| | - Christopher J. Carroll
- Institute of Molecular & Cellular Sciences, St George’s, University of London, London, UK
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Blair L. Strang
- Institute of Infection & Immunity, St George’s, University of London, London, UK
| |
Collapse
|
2
|
Le-Trilling VTK, Ebel JF, Baier F, Wohlgemuth K, Pfeifer KR, Mookhoek A, Krebs P, Determann M, Katschinski B, Adamczyk A, Lange E, Klopfleisch R, Lange CM, Sokolova V, Trilling M, Westendorf AM. Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells. Eur J Immunol 2023; 53:e2249940. [PMID: 36250419 DOI: 10.1002/eji.202249940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 02/04/2023]
Abstract
Primary and recurrent cytomegalovirus (CMV) infections frequently cause CMV colitis in immunocompromised as well as inflammatory bowel disease (IBD) patients. Additionally, colitis occasionally occurs upon primary CMV infection in patients who are apparently immunocompetent. In both cases, the underlying pathophysiologic mechanisms are largely elusive - in part due to the lack of adequate access to specimens. We employed the mouse cytomegalovirus (MCMV) model to assess the association between CMV and colitis. During acute primary MCMV infection of immunocompetent mice, the gut microbial composition was affected as manifested by an altered ratio of the Firmicutes to Bacteroidetes phyla. Interestingly, these microbial changes coincided with high-titer MCMV replication in the colon, crypt hyperplasia, increased colonic pro-inflammatory cytokine levels, and a transient increase in the expression of the antimicrobial protein Regenerating islet-derived protein 3 gamma (Reg3γ). Further analyses revealed that murine and human intestinal epithelial cell lines, as well as primary intestinal crypt cells and organoids represent direct targets of CMV infection causing increased cell death. Accordingly, in vivo MCMV infection disrupted the intestinal epithelial barrier and increased apoptosis of intestinal epithelial cells. In summary, our data show that CMV transiently induces colitis in immunocompetent hosts by altering the intestinal homeostasis.
Collapse
Affiliation(s)
| | - Jana-Fabienne Ebel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Franziska Baier
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Wohlgemuth
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kai Robin Pfeifer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aart Mookhoek
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Madita Determann
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Katschinski
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erik Lange
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | - Christian M Lange
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Viktoriya Sokolova
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Le‐Trilling VTK, Ebel J, Baier F, Wohlgemuth K, Pfeifer KR, Mookhoek A, Krebs P, Determann M, Katschinski B, Adamczyk A, Lange E, Klopfleisch R, Lange CM, Sokolova V, Trilling M, Westendorf AM. Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells. Eur J Immunol 2022. [DOI: 10.1002/eji.202249940 10.1002/eji.202249940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Jana‐Fabienne Ebel
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Franziska Baier
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Kerstin Wohlgemuth
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Kai Robin Pfeifer
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Aart Mookhoek
- Institute of Pathology University of Bern Bern Switzerland
| | - Philippe Krebs
- Institute of Pathology University of Bern Bern Switzerland
| | - Madita Determann
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Benjamin Katschinski
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Erik Lange
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology Free University of Berlin Berlin Germany
| | - Christian M. Lange
- Department of Gastroenterology and Hepatology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Viktoriya Sokolova
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| | - Mirko Trilling
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| |
Collapse
|
4
|
Zaghi E, Calvi M, Puccio S, Spata G, Terzoli S, Peano C, Roberto A, De Paoli F, van Beek JJ, Mariotti J, De Philippis C, Sarina B, Mineri R, Bramanti S, Santoro A, Le-Trilling VTK, Trilling M, Marcenaro E, Castagna L, Di Vito C, Lugli E, Mavilio D. Single-cell profiling identifies impaired adaptive NK cells expanded after HCMV reactivation in haploidentical HSCT. JCI Insight 2021; 6:146973. [PMID: 34003794 PMCID: PMC8262468 DOI: 10.1172/jci.insight.146973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (h-HSCT) represents an efficient curative approach for patients affected by hematologic malignancies in which the reduced intensity conditioning induces a state of immunologic tolerance between donor and recipient. However, opportunistic viral infections greatly affect h-HSCT clinical outcomes. NK cells are the first lymphocytes that recover after transplant and provide a prompt defense against human cytomegalovirus (HCMV) infection/reactivation. By undertaking a longitudinal single-cell computational profiling of multiparametric flow cytometry, we show that HCMV accelerates NK cell immune reconstitution together with the expansion of CD158b1b2jpos/NKG2Aneg/NKG2Cpos/NKp30lo NK cells. The frequency of this subset correlates with HCMV viremia, further increases in recipients experiencing multiple episodes of viral reactivations, and persists for months after the infection. The transcriptional profile of FACS-sorted CD158b1b2jpos NK cells confirmed the ability of HCMV to deregulate NKG2C, NKG2A, and NKp30 gene expression, thus inducing the expansion of NK cells with adaptive traits. These NK cells are characterized by the downmodulation of several gene pathways associated with cell migration, the cell cycle, and effector-functions, as well as by a state of metabolic/cellular exhaustion. This profile reflects the functional impairments of adaptive NK cells to produce IFN-γ, a phenomenon also due to the viral-induced expression of lymphocyte-activation gene 3 (LAG-3) and programmed cell death protein 1 (PD-1) checkpoint inhibitors.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | | | - Gianmarco Spata
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, and Genomic Unit
| | | | | | | | | | | | | | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology.,Flow Cytometry Core, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Hypoxia-Inducible Factor 1α (HIF1α) Suppresses Virus Replication in Human Cytomegalovirus Infection by Limiting Kynurenine Synthesis. mBio 2021; 12:mBio.02956-20. [PMID: 33758082 PMCID: PMC8092273 DOI: 10.1128/mbio.02956-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Viruses, including human cytomegalovirus (HCMV), reprogram cellular metabolism using host metabolic regulators to support virus replication. Alternatively, in response to infection, the host can use metabolism to limit virus replication. Human cytomegalovirus (HCMV) replication depends on the activities of several host regulators of metabolism. Hypoxia-inducible factor 1α (HIF1α) was previously proposed to support virus replication through its metabolic regulatory function. HIF1α protein levels rise in response to HCMV infection in nonhypoxic conditions, but its effect on HCMV replication was not investigated. We addressed the role of HIF1α in HCMV replication by generating primary human cells with HIF1α knocked out using CRISPR/Cas9. When HIF1α was absent, we found that HCMV replication was enhanced, showing that HIF1α suppresses viral replication. We used untargeted metabolomics to determine if HIF1α regulates metabolite concentrations in HCMV-infected cells. We discovered that in HCMV-infected cells, HIF1α suppresses intracellular and extracellular concentrations of kynurenine. HIF1α also suppressed the expression of indoleamine 2,3-dioxygenase 1 (IDO1), the rate-limiting enzyme in kynurenine synthesis. In addition to its role in tryptophan metabolism, kynurenine acts as a signaling messenger by activating aryl hydrocarbon receptor (AhR). Inhibiting AhR reduces HCMV replication, while activating AhR with an exogenous ligand increases virus replication. Moreover, we found that feeding kynurenine to cells promotes HCMV replication. Overall, our findings indicate that HIF1α reduces HCMV replication by regulating metabolism and metabolite signaling.
Collapse
|
6
|
The aryl hydrocarbon receptor facilitates the human cytomegalovirus-mediated G1/S block to cell cycle progression. Proc Natl Acad Sci U S A 2021; 118:2026336118. [PMID: 33723080 DOI: 10.1073/pnas.2026336118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tryptophan metabolite, kynurenine, is known to be produced at elevated levels within human cytomegalovirus (HCMV)-infected fibroblasts. Kynurenine is an endogenous aryl hydrocarbon receptor (AhR) ligand. Here we show that the AhR is activated following HCMV infection, and pharmacological inhibition of AhR or knockdown of AhR RNA reduced the accumulation of viral RNAs and infectious progeny. RNA-seq analysis of infected cells following AhR knockdown showed that the receptor alters the levels of numerous RNAs, including RNAs related to cell cycle progression. AhR knockdown alleviated the G1/S cell cycle block that is normally instituted in HCMV-infected fibroblasts, consistent with its known ability to regulate cell cycle progression and cell proliferation. In sum, AhR is activated by kynurenine and perhaps other ligands produced during HCMV infection, it profoundly alters the infected-cell transcriptome, and one outcome of its activity is a block to cell cycle progression, providing mechanistic insight to a long-known element of the virus-host cell interaction.
Collapse
|
7
|
Lin YT, Chiweshe S, McCormick D, Raper A, Wickenhagen A, DeFillipis V, Gaunt E, Simmonds P, Wilson SJ, Grey F. Human cytomegalovirus evades ZAP detection by suppressing CpG dinucleotides in the major immediate early 1 gene. PLoS Pathog 2020; 16:e1008844. [PMID: 32886716 PMCID: PMC7498042 DOI: 10.1371/journal.ppat.1008844] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/17/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing.
Collapse
Affiliation(s)
- Yao-Tang Lin
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Stephen Chiweshe
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Dominique McCormick
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Anna Raper
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Arthur Wickenhagen
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Victor DeFillipis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Eleanor Gaunt
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
8
|
Spekker-Bosker K, Ufermann CM, Oldenburg M, Däubener W, Eller SK. Interplay between IDO1 and iNOS in human retinal pigment epithelial cells. Med Microbiol Immunol 2019; 208:811-824. [PMID: 31267172 PMCID: PMC6817751 DOI: 10.1007/s00430-019-00627-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Human retinal pigment epithelial (hRPE) cells form a selectively permeable monolayer between the neural retina and the highly permeable choroidal vessels. Thus, hRPE cells bear important regulatory functions and are potential targets of pathogens in vivo. Endogenous bacterial endophthalmitis (EBE) is frequently caused by infections with the Gram-positive bacterium Staphylococcus aureus (S. aureus). Upon microbial infection, interferon gamma (IFN-γ), a major cytokine of the adaptive immune response, induces a broad spectrum of effector molecules, such as the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase-1 (IDO1). We stimulated human RPE (hRPE) cells in vitro with proinflammatory cytokines and analyzed the expression levels and enzymatic activities of IDO1 and inducible nitric oxide synthase (iNOS), another antimicrobial effector molecule. The antimicrobial capacity was analyzed in infection experiments using S. aureus and Toxoplasma gondii (T. gondii). Our aim was to characterize the particular importance of IDO1 and iNOS during EBE. We found that an IFN-γ stimulation of hPRE cells induced the expression of IDO1, which inhibited the growth of T. gondii and S. aureus. A co-stimulation with IFN-γ, interleukin-1 beta, and tumor necrosis factor alpha induced a strong expression of iNOS. The iNOS-derived nitric oxide production was dependent on cell-culture conditions; however, it could not cause antimicrobial effects. iNOS did not act synergistically with IDO1. Instead, iNOS activity inhibited IDO1-mediated tryptophan degradation and bacteriostasis. This effect was reversible by the addition of the iNOS inhibitor NG-monomethyl-l-arginine. In conclusion, iNOS mediates anti-inflammatory effects in hRPE cells stimulated with high amounts of IFN-γ together with tumor necrosis factor alpha and Interleukin-1 beta and prevents potential IDO1-dependent tissue damage.
Collapse
Affiliation(s)
- Katrin Spekker-Bosker
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Christoph-Martin Ufermann
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Maike Oldenburg
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Silvia Kathrin Eller
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
hCMV-Mediated Immune Escape Mechanisms Favor Pathogen Growth and Disturb the Immune Privilege of the Eye. Int J Mol Sci 2019; 20:ijms20040858. [PMID: 30781494 PMCID: PMC6413209 DOI: 10.3390/ijms20040858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Human retinal pigment epithelial (hRPE) cells are important for the establishment and maintenance of the immune privilege of the eye. They function as target cells for human cytomegalovirus (hCMV), but are able to restrict viral replication. hCMV causes opportunistic posterior uveitis such as retinitis and chorioretinitis. Both mainly occur in severely immunocompromised patients and rarely manifest in immunocompetent individuals. In this study, hRPE cells were infected with hCMV in vitro and activated with proinflammatory cytokines. The enzymatic activities of indoleamine 2,3-dioxygenase-1 (IDO1) and inducible nitric oxide synthase (iNOS) were determined. The antimicrobial capacity of both molecules was analyzed in co-infection experiments using Staphylococcus aureus (S. aureus) and Toxoplasmagondii (T. gondii), causing uveitis in patients. We show that an hCMV infection of hRPE cells blocks IDO1 and iNOS mediated antimicrobial defense mechanisms necessary for the control of S. aureus and T. gondii. hCMV also inhibits immune suppressive effector mechanisms in hRPE. The interferon gamma-induced IDO1 dependent immune regulation was severely blocked, as detected by the loss of T cell inhibition. We conclude that an active hCMV infection in the eye might favor the replication of pathogens causing co-infections in immunosuppressed individuals. An hCMV caused blockade of IDO1 might weaken the eye’s immune privilege and favor the development of post-infectious autoimmune uveitis.
Collapse
|
10
|
Who's Driving? Human Cytomegalovirus, Interferon, and NFκB Signaling. Viruses 2018; 10:v10090447. [PMID: 30134546 PMCID: PMC6163874 DOI: 10.3390/v10090447] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022] Open
Abstract
As essential components of the host's innate immune response, NFκB and interferon signaling are critical determinants of the outcome of infection. Over the past 25 years, numerous Human Cytomegalovirus (HCMV) genes have been identified that antagonize or modulate the signaling of these pathways. Here we review the biology of the HCMV factors that alter NFκB and interferon signaling, including what is currently known about how these viral genes contribute to infection and persistence, as well as the major outstanding questions that remain.
Collapse
|
11
|
Human Cytomegalovirus Particles Treated with Specific Antibodies Induce Intrinsic and Adaptive but Not Innate Immune Responses. J Virol 2017; 91:JVI.00678-17. [PMID: 28878085 DOI: 10.1128/jvi.00678-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) persistently infects 40% to 100% of the human population worldwide. Experimental and clinical evidence indicates that humoral immunity to HCMV plays an important role in restricting virus dissemination and protecting the infected host from disease. Specific immunoglobulin preparations from pooled plasma of adults selected for high titers of HCMV antibodies have been used for the prevention of CMV disease in transplant recipients and pregnant women. Even though incubation of HCMV particles with these preparations leads to the neutralization of viral infectivity, it is still unclear whether the antibody-treated HCMV particles (referred to here as HCMV-Ab) enter the cells and modulate antiviral immune responses. Here we demonstrate that HCMV-Ab did enter macrophages. HCMV-Ab did not initiate the expression of immediate early antigens (IEAs) in macrophages, but they induced an antiviral state and rendered the cells less susceptible to HCMV infection upon challenge. Resistance to HCMV infection seemed to be due to the activation of intrinsic restriction factors and was independent of interferons. In contrast to actively infected cells, autologous NK cells did not degranulate against HCMV-Ab-treated macrophages, suggesting that these cells may not be eliminated by innate effector cells. Interestingly, HCMV-Ab-treated macrophages stimulated the proliferation of autologous adaptive CD4+ and CD8+ T cells. Our findings not only expand the current knowledge on virus-antibody immunity but may also be relevant for future vaccination strategies.IMPORTANCE Human cytomegalovirus (HCMV), a common herpesvirus, establishes benign but persistent infections in immunocompetent hosts. However, in subjects with an immature or dysfunctional immune system, HCMV is a major cause of morbidity and mortality. Passive immunization has been used in different clinical settings with variable clinical results. Intravenous hyperimmune globulin preparations (IVIg) are obtained from pooled adult human plasma selected for high anti-CMV antibody titers. While HCMV neutralization can be shown in vitro using different systems, data are lacking regarding the cross-influence of IVIg administration on the cellular immune responses. The aim of this study was to evaluate the effects of IVIg on distinct components of the immune response against HCMV, including antigen presentation by macrophages, degranulation of innate natural killer cells, and proliferation of adaptive CD4+ and CD8+ T cells.
Collapse
|
12
|
The Kynurenine Pathway of Tryptophan Catabolism and AIDS-Associated Kaposi Sarcoma in Africa. J Acquir Immune Defic Syndr 2016; 70:296-303. [PMID: 26181812 DOI: 10.1097/qai.0000000000000747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Other than Kaposi sarcoma (KS)-associated herpesvirus and CD4 T-cell lymphopenia, the mechanisms responsible for KS in the context of HIV are poorly understood. One recently explored pathway of HIV pathogenesis involves induction of the enzyme indoleamine 2,3-dioxygenase-1 (IDO), which catabolizes tryptophan into kynurenine and several other immunologically active metabolites that suppress T-cell proliferation. We investigated the role of IDO in the development of KS in HIV disease. METHODS In a case-control study among untreated HIV-infected Ugandans, cases were adults with KS and controls were without KS. IDO activity was assessed by the ratio of plasma kynurenine to tryptophan levels (KT ratio), measured by liquid chromatography-tandem mass spectrometry. RESULTS We studied 631 HIV-infected subjects: 222 KS cases and 409 controls. Non-KS controls had a higher median plasma KT ratio (130, interquartile range: 90 to 190 nM/μM) than KS cases (110, interquartile range: 90 to 150 nM/μM) (P = 0.004). After adjustment for age, sex, CD4 count, and plasma HIV RNA level, subjects with the highest (fourth quartile) plasma KT ratios had a 59% reduction (95% confidence interval: 27% to 77%) in the odds of KS compared with those with the lowest (first quartile) levels. KS was also independently associated with lower CD4 count, higher plasma HIV RNA, and men. CONCLUSIONS Among HIV-infected individuals, greater activity of the kynurenine pathway of tryptophan catabolism, as evidenced by higher levels of plasma KT ratio, was associated with lower occurrence of KS. Some consequences of immune activation in HIV infection might actually suppress certain cancers.
Collapse
|
13
|
Mehraj V, Routy JP. Tryptophan Catabolism in Chronic Viral Infections: Handling Uninvited Guests. Int J Tryptophan Res 2015; 8:41-8. [PMID: 26309411 PMCID: PMC4527356 DOI: 10.4137/ijtr.s26862] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022] Open
Abstract
l-Tryptophan (l-Trp) is an essential amino acid that possesses diverse metabolic, neurological, and immunological roles spanning from the synthesis of proteins, neurotransmitter serotonin, and neurohormone melatonin, to its degradation into immunosuppressive catabolites by indoleamine-2, 3-dioxygenase (IDO) in the kynurenine pathway (KP). Trp catabolites, by activating aryl hydrocarbon receptor (AhR), play an important role in antimicrobial defense and immune regulation. IDO/AhR acts as a double-edged sword by both depleting l-Trp to starve the invaders and by contributing to the state of immunosuppression with microorganisms that were not cleared during acute infection. Pathogens experiencing Trp deprivation by IDO-mediated degradation include certain bacteria, parasites, and less likely viruses. However, chronic viral infections highjack the host immune response to create a state of disease tolerance via kynurenine catabolites. This review covers the latest data involving chronic viral infections such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes, and cytomegalovirus (CMV) and their cellular interplay with Trp catabolites. Strategies developed by viruses to escape immune control also represent new avenues for therapeutic interventions based on Trp metabolism.
Collapse
Affiliation(s)
- Vikram Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. ; Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. ; Research Institute of the McGill University Health Centre, Montreal, QC, Canada. ; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|