1
|
Zhang HS, Liu C, Liu GF, Chen YY, Zhu P, Xu X, Yin BX, Jiang JZ. Exploring the recombinant evolution and hosts of crucivirus based on novel oyster-associated viruses. Front Microbiol 2025; 16:1454079. [PMID: 39967733 PMCID: PMC11832652 DOI: 10.3389/fmicb.2025.1454079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
"Crucivirus" represents a group of viruses with chimeric genomes, significant for viral evolution and recombination studies. Their capsid proteins share homology with the RNA virus tombusvirus, while their replicase-associated proteins are homologous to a class of single-stranded DNA viruses, namely CRESS DNA viruses. This study identifies seven novel crucivirus genomes from oysters cultivated along the coast of the South China Sea. Phylogenetic analysis reveals that five sequences form a distinct branch, which may indicate the presence of a new subclass within the crucivirus family. We analyzed crucivirus from multiple perspectives, including viral genomes, hallmark proteins, sequence similarity, and potential hosts. The results indicate that the crucivirus genomes and replicase-associated proteins (Rep) from oysters conform to the typical characteristics of crucivirus; Crucivirus Rep appears to have a direct parallel origin from multiple clades of CRESS DNA viruses, while only the S-domain of their capsid proteins shows some evolutionary relationship with tombusvirus. We found protein sequences in rotifers that are highly similar to the Cap three-dimensional structure of crucivirus, which may suggest host relevance. Overall, this study provides new insights into the classification, evolution, and host origins of crucivirus.
Collapse
Affiliation(s)
- Hong-Sai Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Guang-Feng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yu-Yu Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Peng Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xin Xu
- Livestock, Aquaculture and Technology Promotion and Service Center of Conghua District, Guangzhou, China
| | - Bing-Xin Yin
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jing-Zhe Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
2
|
Shakir S, Mubin M, Nahid N, Serfraz S, Qureshi MA, Lee TK, Liaqat I, Lee S, Nawaz-ul-Rehman MS. REPercussions: how geminiviruses recruit host factors for replication. Front Microbiol 2023; 14:1224221. [PMID: 37799604 PMCID: PMC10548238 DOI: 10.3389/fmicb.2023.1224221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics Lab, Gembloux Agro-Bio Tech, University of Liѐge, Gembloux, Belgium
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saad Serfraz
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Gnanasekaran P, Gupta N, Ponnusamy K, Devendran R, George B, Chakraborty S. Betasatellite-encoded βC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of geminivirus-encoded replication initiator protein. J Gen Virol 2023; 104. [PMID: 37326617 DOI: 10.1099/jgv.0.001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Geminivirus-betasatellite disease complexes are an epidemic threat to the majority of economically important crops across the world. Plant virus satellites including betasatellites are maintained by their associated helper virus. Geminivirus-betasatellites influence viral pathogenesis by substantially increasing or decreasing their helper virus accumulation. In the present study, we attempted to understand the mechanistic details of the geminivirus-betasatellite interaction. Here, we used tomato leaf curl Gujarat virus (ToLCGV) and tomato leaf curl Patna betasatellite (ToLCPaB) as a model system. This study reveals that ToLCGV can efficiently trans-replicate ToLCPaB in Nicotiana benthamiana plants, but ToLCPaB greatly reduced the accumulation of its helper virus DNA. For the first time, we have identified that the ToLCPaB-encoded βC1 protein is able to interact with ToLCGV-encoded replication initiator protein (Rep). In addition, we demonstrate that the C-terminal region of βC1 interacts with the C-terminus of Rep (RepC) protein. Our previous study had established that βC1 proteins encoded by diverse betasatellites possess a novel ATP hydrolysis activity and the conserved lysine/arginine residues at positions 49 and 91 are necessary for this function. Here, we show that mutating lysine at positions 49 to alanine of βC1 (βC1K49A) protein did not affect its ability to interact with RepC protein. Biochemical studies performed with ATP hydrolysis activity-deficient K49A mutated βC1 (βC1K49A) and RepC proteins revealed that Rep-βC1 interaction interferes with the ATP hydrolysis activity of Rep protein. Further, we demonstrate that βC1 protein is able to interact with D227A and D289A mutated RepC proteins but not with D262A, K272A or D286A mutated RepC proteins, suggesting that the βC1-interacting region of Rep protein encompasses its Walker-B and B' motifs. The results of docking studies supported that the βC1-interacting region of Rep protein encompasses its motifs associated with ATP binding and ATP hydrolysis activities. Docking studies also provided evidence that the Rep-βC1 interaction interferes with the ATP binding activity of Rep protein. Together, our findings suggest that βC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of helper virus Rep protein.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Kalaiarasan Ponnusamy
- Biotechnology Division, National Centre for Disease Control, New Delhi-110 054, India
| | - Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Biju George
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
4
|
Expression, Purification, and Characterisation of South African Cassava Mosaic Virus Cell-to-Cell Movement Protein. Curr Issues Mol Biol 2022; 44:2717-2729. [PMID: 35735627 PMCID: PMC9221656 DOI: 10.3390/cimb44060186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
South African cassava mosaic virus (SACMV) is a circular ssDNA bipartite begomovirus, whose genome comprises DNA-A (encodes six genes) and DNA-B (encodes BC1 cell-to-cell movement and BV1 nuclear shuttle proteins) components. A few secondary and tertiary structural and physicochemical characteristics of partial but not full-length begomovirus proteins have been elucidated to date. The full-length codon-optimised SACMV BC1 gene was cloned into a pET-28a (+) expression vector and transformed into expression host cells E. coli BL21 (DE3). The optimal expression of the full-length BC1-encoded movement protein (MP) was obtained via induction with 0.25 mM IPTG at an OD600 of ~0.45 at 37 °C for four hours. Denatured protein fractions (dialysed in 4 M urea), passed through an IMAC column, successfully bound to the nickel resin, and eluted using 250 mM imidazole. The protein was refolded using stepwise dialysis. The molecular weight of MP was confirmed to be 35 kDa using SDS-PAGE. The secondary structure of SACMV MP presented as predominantly β-strands. An ANS (1-anilino-8-naphthalene sulphonate)-binding assay confirmed that MP possesses hydrophobic pockets with the ability to bind ligands such as ANS (8-anilino-1-naphthalenesulphonic acid). A 2' (3')-N-methylanthraniloyl-ATP (mant-ATP) assay showed binding of mant-ATP to MP and indicated that, while hydrophobic pockets are present, MP also exhibits hydrophilic regions. Intrinsic tryptophan fluorescence indicated a significant conformational change in the denatured form of BC1 in the presence of ATP. In addition, a phosphatase assay showed that MP possessed ATPase activity.
Collapse
|
5
|
Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F, Chakraborty S. Insights into the multifunctional roles of geminivirus-encoded proteins in pathogenesis. Arch Virol 2022; 167:307-326. [PMID: 35079902 DOI: 10.1007/s00705-021-05338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with host factors to provide a mechanistic understanding of the infection process.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tsewang Namgial
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kishore Kumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
6
|
Gnanasekaran P, Gupta N, Ponnusamy K, Chakraborty S. Geminivirus Betasatellite-Encoded βC1 Protein Exhibits Novel ATP Hydrolysis Activity That Influences Its DNA-Binding Activity and Viral Pathogenesis. J Virol 2021; 95:e0047521. [PMID: 34132576 PMCID: PMC8354231 DOI: 10.1128/jvi.00475-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Plant virus satellites are maintained by their associated helper viruses, and satellites influence viral pathogenesis. Diseases caused by geminivirus-betasatellite complexes can become epidemics and therefore have become a threat to economically important crops across the world. Here, we identified a novel molecular function of the betasatellite-encoded pathogenicity determinant βC1. The tomato leaf curl Patna betasatellite (ToLCPaB)-encoded βC1 protein was found to exhibit novel ATPase activity in the presence of the divalent metal ion cofactor MgCl2. Moreover, ATPase activity was confirmed to be ubiquitously displayed by βC1 proteins encoded by diverse betasatellites. Mutational and sequence analysis showed that conserved lysine/arginine residues at positions 49/50 and 91 of βC1 proteins are essential for their ATPase activity. Biochemical studies revealed that the DNA-binding activity of the βC1 protein was interfered with by the binding of ATP to the protein. Mutating arginine 91 of βC1 to alanine reduced its DNA-binding activity. The results of docking studies provided evidence for an overlap of the ATP-binding and DNA-binding regions of βC1 and for the importance of arginine 91 for both ATP-binding and DNA-binding activities. A mutant betasatellite with a specifically βC1-ATPase dominant negative mutation was found to induce symptoms on Nicotiana benthamiana plants similar to those induced by wild-type betasatellite infection. The ATPase function of βC1 was found to be negatively associated with geminivirus-betasatellite DNA accumulation, despite the positive influence of this ATPase function on the accumulation of replication-associated protein (Rep) and βC1 transcripts. IMPORTANCE Most satellites influence the pathogenesis of their helper viruses. Here, we characterized the novel molecular function of βC1, a nonstructural pathogenicity determinant protein encoded by a betasatellite. We demonstrated the display of ATPase activity by this βC1 protein. Additionally, we confirmed the ubiquitous display of ATPase activity by βC1 proteins encoded by diverse betasatellites. The lysine/arginine residues conserved at positions 49 and 91 of βC1 were found to be crucial for its ATPase function. DNA-binding activity of βC1 was found to be reduced in the presence of ATP. Inhibition of ATPase activity of βC1 in the presence of an excess concentration of cold ATP, GTP, CTP, or UTP suggested that the purified βC1 can also hydrolyze other cellular nucleoside triphosphates (NTPs) besides ATP in vitro. These results established the importance of the ATPase and DNA-binding activities of the βC1 protein in regulating geminivirus-betasatellite DNA accumulation in the infected plant cell.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru Universitygrid.10706.30, New Delhi, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru Universitygrid.10706.30, New Delhi, India
| | | | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru Universitygrid.10706.30, New Delhi, India
| |
Collapse
|
7
|
Aimone CD, Lavington E, Hoyer JS, Deppong DO, Mickelson-Young L, Jacobson A, Kennedy GG, Carbone I, Hanley-Bowdoin L, Duffy S. Population diversity of cassava mosaic begomoviruses increases over the course of serial vegetative propagation. J Gen Virol 2021; 102:001622. [PMID: 34310272 PMCID: PMC8491896 DOI: 10.1099/jgv.0.001622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.
Collapse
Affiliation(s)
- Catherine D. Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Erik Lavington
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - George G. Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Ruhel R, Mazumder M, Gnanasekaran P, Kumar M, Gourinath S, Chakraborty S. Functional implications of residues of the B' motif of geminivirus replication initiator protein in its helicase activity. FEBS J 2021; 288:6492-6509. [PMID: 34092039 DOI: 10.1111/febs.16053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
Geminivirus replication initiator protein (Rep) is a multifunctional viral protein required for replication. During the process of viral replication, Rep acts as a site- and strand-specific endonuclease, ligase, ATPase, and helicase. B' motif and β-hairpin loop of the geminivirus Rep are conserved and important for Rep-mediated helicase activity required for viral replication. To dissect the roles of various amino acid residues of the B' motif and β-hairpin loop of the geminivirus Rep helicase in its process of unwinding DNA, we investigated eight conserved residues near the ATP active site or the ssDNA contact channel. Our strategy was to mutate these residues to alanines and investigate the effects of these mutations on various biochemical activities associated with DNA unwinding. We looked into the ATP binding, ATP hydrolysis, DNA binding, and DNA unwinding activities of the wild-type and mutant Rep proteins. These investigations showed four residues (Arg279, Asp280, Tyr287, and Pro290) affecting the DNA unwinding activity. A structural model analysis confirmed the B' loop and ssDNA binding loop to be connected through a β-hairpin structure, suggesting that changes on one loop might affect the other and that these residues function by acting in concert. Viral genomes containing Rep proteins having these mutations in the B' motif did not replicate in planta. Taken together, these results indicated all four residues to be implicated in helicase activity mediated by Rep and demonstrated the significance, for viral replication, of the B' motif and β-hairpin loop of the C-terminal region of the Rep protein.
Collapse
Affiliation(s)
- Rajrani Ruhel
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Mazumder
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Wang D, Zhang X, Yao X, Zhang P, Fang R, Ye J. A 7-Amino-Acid Motif of Rep Protein Essential for Virulence Is Critical for Triggering Host Defense Against Sri Lankan Cassava Mosaic Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:78-86. [PMID: 31486716 DOI: 10.1094/mpmi-06-19-0163-fi] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Geminiviruses cause severe damage to agriculture worldwide. The replication (Rep) protein is the indispensable viral protein for viral replication. Although various functional domains of Rep protein in Geminivirus spp. have been characterized, the most carboxyl terminus of Rep protein was not available. We have reported the first cassava-infecting geminivirus, Sri Lankan cassava mosaic virus (SLCMV-HN7 strain), in China. In this study, we reported the second Chinese SLCMV strain, SLCMV-Col, and conducted comparative genomic analysis between these two SLCMV strains. The virulence of SLCMV-Col is much stronger than SLCMV-HN7, indicated by the higher virus titer, more severe symptoms, and more extent host defense. We functionally characterized that Rep protein, a 7-amino-acid motif at the most carboxyl terminus, is essential for Rep protein accumulation and virulence of SLCMV. We also provided evidence suggesting that the motif could also enhance triggering of salicylic acid (SA) defense against SLCMV infection in Nicotiana benthamiana. The significance of the balance between virulence and host SA defense responses in expanding invasions of SLCMV is also discussed.
Collapse
Affiliation(s)
- Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangmei Yao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Mansi, Kushwaha NK, Singh AK, Karim MJ, Chakraborty S. Nicotiana benthamiana phosphatidylinositol 4-kinase type II regulates chilli leaf curl virus pathogenesis. MOLECULAR PLANT PATHOLOGY 2019; 20:1408-1424. [PMID: 31475785 PMCID: PMC6792133 DOI: 10.1111/mpp.12846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Geminiviruses are single-stranded DNA viruses that can cause significant losses in economically important crops. In recent years, the role of different kinases in geminivirus pathogenesis has been emphasized. Although geminiviruses use several host kinases, the role of phosphatidylinositol 4-kinase (PI4K) remains obscure. We isolated and characterized phosphatidylinositol 4-kinase type II from Nicotiana benthamiana (NbPI4KII) which interacts with the replication initiator protein (Rep) of a geminivirus, chilli leaf curl virus (ChiLCV). NbPI4KII-mGFP was localized into cytoplasm, nucleus or both. NbPI4KII-mGFP was also found to be associated with the cytoplasmic endomembrane systems in the presence of ChiLCV. Furthermore, we demonstrated that Rep protein directly interacts with NbPI4KII protein and influenced nuclear occurrence of NbPI4KII. The results obtained in the present study revealed that NbPI4KII is a functional protein kinase lacking lipid kinase activity. Downregulation of NbPI4KII expression negatively affects ChiLCV pathogenesis in N. benthamiana. In summary, NbPI4KII is a susceptible factor, which is required by ChiLCV for pathogenesis.
Collapse
Affiliation(s)
- Mansi
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
11
|
Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. MOLECULAR PLANT PATHOLOGY 2019; 20:943-960. [PMID: 30985068 PMCID: PMC6589724 DOI: 10.1111/mpp.12804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Geminivirus disease complexes potentially interfere with plants physiology and cause disastrous effects on a wide range of economically important crops throughout the world. Diverse geminivirus betasatellite associations exacerbate the epidemic threat for global food security. Our previous study showed that βC1, the pathogenicity determinant of geminivirus betasatellites induce symptom development by disrupting the ultrastructure and function of chloroplasts. Here we explored the betasatellite-virus-chloroplast interaction in the scope of viral pathogenesis as well as plant defence responses, using Nicotiana benthamiana-Radish leaf curl betasatellite (RaLCB) as the model system. We have shown an interaction between RaLCB-encoded βC1 and one of the extrinsic subunit proteins of oxygen-evolving complex of photosystem II both in vitro and in vivo. Further, we demonstrate a novel function of the Nicotiana benthamiana oxygen-evolving enhancer protein 2 (PsbP), in that it binds DNA, including geminivirus DNA. Transient silencing of PsbP in N. benthamiana plants enhances pathogenicity and viral DNA accumulation. Overexpression of PsbP impedes disease development during the early phase of infection, suggesting that PsbP is involved in generation of defence response during geminivirus infection. In addition, βC1-PsbP interaction hampers non-specific binding of PsbP to the geminivirus DNA. Our findings suggest that betasatellite-encoded βC1 protein accomplishes counter-defence by physical interaction with PsbP reducing the ability of PsbP to bind geminivirus DNA to establish infection.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Kalaiarasan Ponnusamy
- Synthetic Biology Laboratory, School of BiotechnologyJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
12
|
Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virusdisease 2018; 30:66-73. [PMID: 31143833 DOI: 10.1007/s13337-018-0458-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Geminivirus infection has been a threat to cultivation worldwide by causing huge losses to the crop. The single-stranded DNA genome of a geminivirus possesses a limited coding potential and many of the open reading frames (ORFs) are overlapping. Out of 5-7 ORFs that a geminivirus genome codes for, the AC1 ORF encodes for the replication initiator protein (Rep) which is involved in the replication of virus within the infected plant cell. Rep is the only viral protein absolutely required for the in planta viral replication. Across different genera of the Geminiviridae family, the AC1 ORF exhibits a high degree of sequence conservation thus it has been used as an effective target for developing broad spectrum resistance against the invading geminiviruses. This multifunctional protein is required for initiation, elongation as well as termination of the viral replication process. Rep is also involved in stimulation of viral transcription. In addition, it also functions as suppressor of gene silencing and is involved in the process of transcription by regulating the expression of certain viral genes. Rep protein also interacts with few viral proteins such as coat protein, replication enhancer protein and with several host factors involved in different pathways and processes for its replication and efficient infection. This review will summarise our current understanding about the role of this early viral protein in viral propagation as well as in establishment of pathogenesis in a permissive host.
Collapse
Affiliation(s)
- Rajrani Ruhel
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
13
|
Kushwaha NK, Bhardwaj M, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog 2017; 13:e1006587. [PMID: 28859169 PMCID: PMC5597257 DOI: 10.1371/journal.ppat.1006587] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/13/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Geminiviruses constitute a group of plant viruses, with a ssDNA genome, whose replication in the nucleus of an infected cell requires the function of geminivirus-encoded replication initiator protein (Rep). Our results suggest that monoubiquitinated histone 2B (H2B-ub) promotes tri-methylation of histone 3 at lysine 4 (H3-K4me3) on the promoter of Chilli leaf curl virus (ChiLCV). We isolated homologues of two major components of the monoubiquitination machinery: UBIQUITIN-CONJUGATING ENZYME2 (NbUBC2) and HISTONE MONOUBIQUITINATION1 (NbHUB1) from N. benthamiana. ChiLCV failed to cause disease in NbUBC2-, and NbHUB1-silenced plants, at the same time, H2B-ub and H3-K4me3 modifications were decreased, and the occupancy of RNA polymerase II on the viral promoter was reduced as well. In further investigations, Rep protein of ChiLCV was found to re-localize NbUBC2 from the cytoplasm to the nucleoplasm, like NbHUB1, the cognate partner of NbUBC2. Rep was observed to interact and co-localize with NbHUB1 and NbUBC2 in the nuclei of the infected cells. In summary, the current study reveals that the ChiLCV Rep protein binds the viral genome and interacts with NbUBC2 and NbHUB1 for the monoubiquitination of histone 2B that subsequently promotes trimethylation of histone 3 at lysine 4 on ChiLCV mini-chromosomes and enhances transcription of the viral genes.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansi Bhardwaj
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
Vinoth Kumar R, Singh D, Singh AK, Chakraborty S. Molecular diversity, recombination and population structure of alphasatellites associated with begomovirus disease complexes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 49:39-47. [PMID: 28062387 DOI: 10.1016/j.meegid.2017.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 11/21/2022]
Abstract
The genus, begomovirus (family Geminiviridae) includes a large number of viruses infecting a wide range of plant species worldwide. The majority of monopartite begomoviruses are associated with satellites (betasatellites) and/or satellite-like molecules (alphasatellites). In spite of the Indo-China region being regarded as the centre of origin of begomoviruses and satellites, a detailed study on the emergence and evolution of alphasatellites in India has not yet conducted. Our present analysis indicated the association of 22 alphasatellites with monopartite and bipartite begomovirus-betasatellite complexes in India. Based on sequence pairwise identity, these alphasatellites were categorized into five distinct groups: Cotton leaf curl alphasatellite, Gossypium darwinii symptomless alphasatellite, Gossypium mustelinum symptomless alphasatellite, Okra leaf curl alphasatellite and an unreported Chilli leaf curl alphasatellite (ChiLCA). Furthermore, infectivity analysis of the cloned ChiLCA along with the viral components of either cognate or non-cognate chilli-infecting begomoviruses on Nicotiana benthamiana suggested that ChiLCA is dispensable for leaf curl disease development. It is noteworthy that in the presence of ChiLCA, a marginal decrease in betasatellite DNA level was noticed. Additionally, high genetic variability and diverse recombination patterns were detected among these alphasatellites, and the nucleotide substitution rate for the Rep gene of ChiLCA was determined to be 2.25×10-3nucleotides/site/year. This study highlights the genetic distribution, and likely contribution of recombination and nucleotide diversity in facilitating the emergence of alphasatellites.
Collapse
Affiliation(s)
- R Vinoth Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - Divya Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - Achuit K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India.
| |
Collapse
|
15
|
Varsani A, Krupovic M. Sequence-based taxonomic framework for the classification of uncultured single-stranded DNA viruses of the family Genomoviridae. Virus Evol 2017; 3:vew037. [PMID: 28458911 PMCID: PMC5399927 DOI: 10.1093/ve/vew037] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various types of environmental, plant, and animal samples. One such widespread virus group is the recently established family Genomoviridae which includes viruses with small (∼2-2.4 kb), circular ssDNA genomes encoding rolling-circle replication initiation proteins (Rep) and unique capsid proteins. Here, we propose a sequence-based taxonomic framework for classification of 121 new virus genomes within this family. Genomoviruses display ∼47% sequence diversity, which is very similar to that within the well-established and extensively studied family Geminiviridae (46% diversity). Based on our analysis, we establish a 78% genome-wide pairwise identity as a species demarcation threshold. Furthermore, using a Rep sequence phylogeny-based analysis coupled with the current knowledge on the classification of geminiviruses, we establish nine genera within the Genomoviridae family. These are Gemycircularvirus (n = 73), Gemyduguivirus (n = 1), Gemygorvirus (n = 9), Gemykibivirus (n = 29), Gemykolovirus (n = 3), Gemykrogvirus (n = 3), Gemykroznavirus (n = 1), Gemytondvirus (n = 1), Gemyvongvirus (n = 1). The presented taxonomic framework offers rational classification of genomoviruses based on the sequence information alone and sets an example for future classification of other groups of uncultured viruses discovered using metagenomics approaches.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa
| | - Mart Krupovic
- Unité Biologie moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| |
Collapse
|
16
|
Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep 2016; 6:27078. [PMID: 27252084 PMCID: PMC4890432 DOI: 10.1038/srep27078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023] Open
Abstract
Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Swati Puranik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Supriya Chakraborty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|